

Eötvös Loránd University

Faculty of Science

(k, l)-sparse graphs and their applications

Thesis

Lóránt Matúz

Mathematics BSc

Applied Mathematics Major

Supervisor:

Péter Madarasi

Department of Operations Research

Budapest

2022

Contents

Acknowledgement 2

1 Introduction 3
1.1 Historical overview . 3
1.2 Fundamental problems . 3
1.3 Basic notations and definitions . 4

2 Properties of sparse graphs 5
2.1 Basic characterization . 5
2.2 Blocks and components . 6
2.3 Matroidal aspects . 9
2.4 Partitioning . 9

3 Basic Pebble Game 11
3.1 Description of the algorithm . 11
3.2 Coincidence with sparse graphs . 14

4 Component Pebble Game 17
4.1 Basic Component Pebble Game . 17
4.2 Unweighted Pebble Game . 22

5 Applications 25
5.1 Covering with edge-disjoint forests . 25

5.1.1 Disjoint arborescences . 25
5.1.2 Covering with k edge-disjoint forests . 27

5.2 Arboricity . 28
5.3 Rigidity . 29

6 Generalizations 31
6.1 Excluding small violating vertex subsets . 31

6.1.1 Basic definitions . 31
6.1.2 NP-hardness . 31
6.1.3 A note on l = 2k . 32

6.2 A note on l < 0 . 34

7 Implementations 36
7.1 Implementation details . 36
7.2 Tests . 36

7.2.1 Comparison of the algorithms in different ranges . 38
7.3 Future plans . 40

Bibliography 41

1

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Péter Madarasi, who first recommended this
exciting topic, then inspired and supported me through it. Our effective work together also helped me to
learn how to accomplish a hard project by myself.

I am also grateful to Csaba Király and András Mihálykó for pointing us to relevant literature and for some
discussions.

Last but not least, I also appreciate all the support I got from my friends and my family during these tough
times.

2

1
∣∣ Introduction

In this chapter, we briefly introduce the history of (k, l)-sparse graphs in Section 1.1, then the fundamental
problems that are solved by the described Pebble Game algorithms in Section 1.2, and finally, we describe
the notations and definitions that are used throughout this paper from [1].

1.1 Historical overview

The definition of (k, l)-sparse graphs was first introduced in 1979 by Loréa [2] as example of matroidal fami-
lies. They have been intensively studied in the last decade and it soon became apparent that they have a wide
variety of applications. Hence, (k, k)-tight graphs also appeared in the classical results of Nash-Williams [3]
and Tutte [4] as the characterization of the graphs that can be decomposed into k edge-disjoint spanning trees.

Later, Laman showed in [5] that (2, 3)-tight graphs are the generic minimally rigid graphs for bar-and-joint
frameworks in the plane, and the (2, 3)-sparse graphs are the rigid ones. Further analysis on rigidity theory
in the plane was done by Recski in [6] and the special case of three-dimension for the practical application
of protein flexibility is handled by Jacobs in [7].

The approach of the Pebble Game algorithm was first presented by Jacobs and Hendrickson in [8], and was
further analyzed by Lee and Streinu with pebble game algorithms and sparse graphs in our main reference, [1].

1.2 Fundamental problems

Now we briefly introduce the problems that are solved by the algorithms described later. For better under-
standing of the following problems, we need some definitions, which will be further discussed in Section 1.3.

An undirected multigraphG is called (k, l)-sparse if every subsetX of vertices induces at most max{0, k|X|−l}
edges. Furthermore, G = (V,E) is called (k, l)-tight if it is (k, l)-sparse and it has exactly k|V | − l edges.

Throughout this paper, we investigate the following problems:

1. Decision: Decide if G is a (k, l)-sparse (or (k, l)-tight) graph.

2. Spanning: Detect if G contains a (k, l)-tight subgraph.

3. Extraction: Extract a maximal (k, l)-sparse subgraph from G.

4. Optimization: Extract a maximum weight (k, l)-sparse subgraph from the given graph G with
weighted edges.

5. Components: Find all components (maximal (k, l)-tight subgraphs) in the given non-spanning graphG.

We introduce the Basic Pebble Game in Chapter 3 which solves the first four of these, then the Unweighted
Pebble Game in Section 4.2 which can solve the first three and the last, and finally the Component Pebble
Game in Section 4.1 to solve all of them if k > 0 and 0 ≤ l < 2k. In Section 6.1, some generalizations are
introduced in which some of these problems are solved for special parameters k and l.

3

1.3 Basic notations and definitions

In this section, we introduce the basic definitions required later. Note that sparsity is defined only for
undirected multigraphs, however, all the algorithms construct an inner directed multigraph, so some notations
are also introduced for them.

Notations

A graph is a pair G = (V,E), where V is the set of vertices and E is a set of two-element subsets of the
vertices, called edges. An edge e = uv is incident to a vertex w if one of its endpoints is w, that is, if
w = u or w = v. A directed graph or a digraph is a pair D = (V,A), where V is the set of vertices
and A is a set of ordered pairs of distinct vertices, called directed edges, or arcs. Each arc a = uv of A has
a direction, such that it points from vertex u (called source) to v (called target). A multigraph is a pair
G = (V,E), where V is the set of vertices and E is a multiset of paired vertices, called edges. Note that a
multigraph may have parallel edges (at least two edges with the same incident vertices) and loops (edges
with the same endpoints). A directed multigraph is a multigraph that may have parallel arcs (the same
arcs multiple times) and loops (arcs with the same source- and target vertices). A subgraph G′ = (V ′, E′)
of a multigraph G = (V,E) is a multigraph formed from a subset of the vertices and edges, i.e. V ′ ⊆ V and
E′ ⊆ E, such that each endpoint of the edges of E′ is included in V ′. A proper subgraph G′ = (V ′, E′) of a
multigraph G = (V,E) is a subgraph whose edge set E′ is a proper subset of E, that is, E′ is not equal to E.
An induced subgraph G′ = (V ′, E′) of a multigraph G = (V,E) is a subgraph whose edge set E′ contains
exactly the edges of G with both endpoints in V ′. Thus, in a multigraph G = (V,E), a vertex subset V ′ ⊆ V
uniquely determines an induced subgraph G′ = (V ′, E′), therefore V ′ is said to induce an edge set E′ if
G′ is an induced subgraph. The degree of a vertex v of an undirected multigraph is the number of edges
incident to v, including loops, which we denote by deg(v). The indegree or the outdegree of a vertex v of
a directed multigraph is the number of incoming or outgoing arcs into or from v. Denote them by degin(v)
and degout(v), respectively.

Definitions

Now we turn to the main definitions related to sparsity on undirected multigraphs:

Definition 1.3.1
A multigraph G is (k, l)-sparse if any subset X of vertices induces at most max{0, k|X| − l} edges.

Throughout this paper, i(X) denotes the cardinality of the induced edge set of a vertex subset X.

Definition 1.3.2
A multigraph G = (V,E) is (k, l)-tight if it is (k, l)-sparse and it has exactly k|V | − l edges.

Definition 1.3.3
A multigraph G = (V,E) is (k, l)-spanning if it contains a (k, l)-tight subgraph that spans the entire vertex
set V .

Throughout this paper, we may refer these concepts without the parameters k and l if it is clear from the
context.

Lower and upper range

Throughout the paper, we mostly focus on the case of k > 0 and 0 ≤ l < 2k. It will be useful to divide this
case according to the following.

• Lower range: if k > 0 and 0 ≤ l ≤ k.

• Upper range: if k > 0 and k < l < 2k.

The (k, l)-sparse graphs in the lower- and upper ranges have different properties, therefore the distinction
facilitates their study.

4

2
∣∣ Properties of sparse graphs

In this chapter, we introduce the basic properties of (k, l)-sparse graphs, largely based on [1].

Throughout this chapter, G = (V,E) denotes a multigraph with n := |V | vertices and m := |E| edges, unless
stated otherwise. Let n′ and m′ denote the number of vertices and edges of a subgraph G′ = (V ′, E′) of G,
respectively.

For the detailed description below, let Ka,b
n denote the complete multigraph on n vertices with a loops on

each vertex and b parallel edges between any two distinct vertices. Let Kb
n := K0,b

n .

2.1 Basic characterization

Now we are ready to show the reason behind the interval of 0 ≤ l < 2k.

Lemma 2.1.1
If l ≥ 2k, then only the empty graph is (k, l)-sparse.

Proof.
For every subset X of size n′ = 2, the number of induced edges i(X) is at most 2k − l ≤ 0, therefore no
(k, l)-sparse graph may have any edges, when l ≥ 2k. 2

Lemma 2.1.2
If l < 0, then the union of two vertex-disjoint (k, l)-sparse graphs may not be (k, l)-sparse.

Proof.
Let the graphs be G1 with n1 vertices and G2 with n2 vertices. As they are vertex-disjoint, the union has
exactly n := n1 + n2 vertices, and induces

(kn1 − l) + (kn2 − l) = k(n1 + n2)− 2l > kn− l

edges, so the union cannot be sparse. 2

Lemma 2.1.3
All (k, l)-sparse graphs may contain at most k − l loops on each vertex and the multiplicity of any parallel
edge is at most 2k − l.

Proof.
By definition, any single vertex v may induce at most k− l loops and all pairs of vertices may induce at most
2k − l edges. The latter gives the desired upper bound on the multiplicity of parallel edges. 2

Corollary 2.1.4
All (k, l)-sparse graphs are loopless when l ≥ k.

The following statement comes from Szegő [9].

Lemma 2.1.5
In the range of l ∈

[
3
2k, 2k

)
, there are no (k, l)-tight graphs on n vertices for 2 < n < l

2k−l .

5

Proof.
By Corollary 2.1.4, all vertices are loopless for l ≥ k, so n ≥ 2 is required. As a tight graph on n vertices is

a subgraph of the complete, loopless multigraph K2k−l
n , the following upper bound can be shown:

kn− l ≤ (2k − l) ·
(
n

2

)
.

Extending the inequality for n leads to the following quadratic function:

0 ≤ (2k − l) · n2 + n(l − 4k) + 2l := f(n)

The solutions for f(n) = 0 are n1 = 2 and n2 = l
2k−l , which are exactly the mentioned bounds. The interval

(n1, n2) is nonempty if n2 ≥ 3, which is equivalent with l ≥ 3
2k. Within this interval, all subgraphs of K2k−l

n

are sparse, and no tight ones can be shown. 2

Corollary 2.1.6
In the range of l ∈

[
3
2k, 2k

)
, the smallest non-trivial (k, l)-tight graphs have

⌈
l

2k−l

⌉
vertices. If l

2k−l is

integer, then the only (k, l)-tight graph on l
2k−l vertices is the complete multigraph K2k−l

n ; otherwise there
can be several.

2.2 Blocks and components

This section introduces a commonly used concept, called components. They play a role in speeding up the
Basic Pebble Game, which is discussed in Section 4.1. They also appear in rigidity applications because they
correspond to rigid clusters, which is described in Section 5.3.

Definition 2.2.1
An induced proper subgraph G′ = (V ′, E′) of a (k, l)-sparse graph G is a block if it induces exactly k|V ′| − l
edges.

Definition 2.2.2
A maximal block, with respect to the number of vertices, is a component.

Definition 2.2.3
A vertex v of a multigraph is called free vertex if no component contains v.

Definition 2.2.4
An edge e of a multigraph is called free edge if e is not induced by any block, hence component.

Now we focus on the basic properties of components, and make general observations regarding decomposing
a multigraph into components.

(a) A (1, 1)-sparse graph. (b) A (2, 3)-sparse graph.

Figure 2.1: Examples for Lemma 2.2.5. Figure (a) shows a (1, 1)-sparse graph with two blocks, where
the intersection is also a block, even though it contains only a single vertex without any edges. Figure (b)
shows a (2, 3)-sparse graph with two blocks, where both the union and the intersection induce a block.

6

Lemma 2.2.5
If two blocks of a (k, l)-sparse graph G intersect in at least

a) one vertex for the lower range, (see Figure 2.1 (a)) or

b) two vertices for the upper range (see Figure 2.1 (b)),

then the intersection and the union of their vertex sets induce blocks.

Proof.
Assume that the two blocks of G = (V,E) are B1 = (V1, E1) and B2 = (V2, E2) with n1 and n2 vertices, and
m1 = kn1 − l and m2 = kn2 − l edges.

Let G∩ and G∪ be the subgraphs of G induced by the intersection V1∩V2 and the union V1∪V2, respectively.
Denote the number of their vertices by n∩ and n∪, and the number of their edges by m∩ and m∪. Then the
following equation holds for their edges:

m∪ = m1 +m2 −m∩ = (kn1 − l) + (kn2 − l)−m∩ = k(n1 + n2)− 2l −m∩ =

= k(n∪ + n∩)− 2l −m∩ = kn∪ − l − (m∩ − (kn∩ − l)).

As G is (k, l)-sparse, m∩ ≤ kn∩ − l, from where m∩ − (kn∩ − l) ≥ 0. It follows that m∪ ≥ kn∪ − l.

Assume that n∩ ≥ 1 in the lower range and n∩ ≥ 2 in the upper range. From the sparsity condition,
m∪ ≤ kn∪ − l, from where we get m∪ = kn∪ − l and m∩ = kn∩ − l as well. It means that both the
intersection and the union are blocks. 2

(a) Components in a (2, 2)-sparse graph. (b) Components in a (3, 4)-sparse graph.

Figure 2.2: Components properties in lower (a) and upper (b) range.

Corollary 2.2.6
Components of a (k, l)-sparse graph G are edge-disjoint. They are also vertex-disjoint in the lower range (see
Figure 2.2 (a)), and they may overlap in at most one vertex in the upper range (see Figure 2.2 (b)).

Lemma 2.2.7
Let G be a (k, l)-sparse graph.

• If l = 0, then there is at most one disconnected component in G (see Figure 2.3).

• If l > 0, then all blocks (and components) in G are connected (see Figure 2.2).

Proof.
• If l = 0, then suppose that there exist two different, disconnected components C1, C2. By definition,

i(C1) = k|C1|, i(C2) = k|C2| holds and by Corollary 2.2.6, components are edge-disjoint, so the following
equality is met for their union:

i(C1 ∪ C2) = k|C1|+ k|C2| = k(|C1|+ |C2|).

In fact, this means that the two components form another one.

• The case of l > 0 is a direct corollary of Lemma 2.4.3.
2

7

Figure 2.3: A disconnected component in a (1, 0)-sparse graph.

Lemma 2.2.8
Let G = (V,E) be a (k, l)-sparse graph. A single vertex induces a block if and only if it has k − l loops.

• If l = 0, then a block may be an isolated part of a larger component, otherwise it is a component in
itself (see Figure 2.3).

• Lower range: If 0 ≤ l ≤ k, then a vertex with fewer than k − l loops is either free or part of a larger
block (component).

• Threshold case: If l = k, then a single vertex is loopless by Corollary 2.1.4, and is always a block.
Thus, there are no free vertices, and every vertex of V belongs to exactly one component (see Fig-
ure 2.2 (a)).

• Upper range: If k < l < 2k, then each vertex is either free or part of some larger blocks (components).

• If l = 2k − 1, then there are no loops or parallel edges. A single vertex is free only if it is isolated.
A single edge is always a block, and there are no free edges, thus every edge belongs to exactly one
component (see Figure 2.2 (b)).

Proof.
For analyzing the single vertices, let X := {v} be the subset. The definition of sparsity for X is i(X) ≤
k|X| − l = k − l. A vertex v forms a block if and only if i(X) = k − l, that is, k − l loops are incident to v.

• If l = 0, then by Lemma 2.2.7, there may be an isolated component, and v can also form one. We also
showed in the proof of Lemma 2.2.7 that the union of two components is also a component, meaning
that v can be a part of a larger component.

• Lower range: If 0 ≤ l ≤ k, then fewer than k − l loops means that X does not form a block
(component). If there is no component containing v, then it is a free vertex; otherwise it is a part of
exactly one component because components cannot overlap in this range by Corollary 2.2.6.

• Threshold case: If l = k, then no vertex v contains a loop by Corollary 2.1.4. For each single-element
subset X, the definition of sparsity claims i(X) ≤ k− l = 0, the initial single vertices are already tight
subgraphs, which means that the whole V is covered by components (and there are no free vertices).
Furthermore, components cannot overlap in the lower range by Corollary 2.2.6, so each vertex is in
exactly one component.

• Upper range: If k < l < 2k, then all vertices are loopless by Corollary 2.1.4, so no single vertex can
form a block. Furthermore, if a vertex v is not part of any components, then it is free; otherwise it is
a part of some larger blocks.

• If l = 2k − 1, then as we mentioned in the upper range, no loops are possible. For X := {u, v}, the
definition of sparsity is i(X) ≤ 2k− l = 2k− (2k−1) = 1, which prevents the presence of parallel edges
and also implies that a single edge is always a block, and there are no free edges. Moreover, it follows
that every edge belongs to one component. Finally, if a single vertex v is connected with another one,
they already form a component, so v cannot be free.

2

8

2.3 Matroidal aspects

In this section, we show that tight graphs form the set of bases of a matroid. It ensures that the greedy
algorithm, which considers the edges in an arbitrary order, also solves the optimization of the fundamental
problems, because it allows us to produce the edges in decreasing order by the given weights.

Theorem 2.3.1 (Sparsity-matroid)
Assume that k, l and n satisfies:

• l ∈ [0, k] and n ≥ 1, or

• l ∈
(
k, 32k

)
and n ≥ 2, or

• l ∈
[
3
2k, 2k

)
and n = 2 or n ≥ l

2k−l .

Then the collection of all (k, l)-tight graphs on n vertices is the set of bases of a matroid whose ground set is
the edge set of Kk−l,2k−l

n .

In this theorem, we only claimed the ground set Kk−l,2k−l
n produces all bases, however, we did not mention

other multigraphs. The following shows that the matroid property holds for each (k, l)-tight multigraph:

• Extension: To enlarge the ground set by adding extra loops or parallel edges, the basis remains
restricted to the number of edges required by the sparsity condition.

• Reduction: To shrink the ground set by deleting edges or loops from it, the basis is the maximal
sparse subgraph of G.

2.4 Partitioning

Nash-Williams and Tutte studied coverings with k edge-disjoint forests in [3], and in [4]. In particular, they
realized that the edge set of a graph contains k edge-disjoint spanning trees if and only if every partition of
the vertex set V into p parts induces at least k(p− 1) edges. If, moreover, it has exactly kn− l edges, then
it is the edge-disjoint union of k spanning trees or equivalently a (k, k)-tight graph.

First, we define the partitions of the vertex set V of a graph G = (V,E), then we give an overview of the
connection between partitions and (k, l)-sparse graphs.

Definition 2.4.1
In a multigraph G = (V,E) a vertex set P ⊆ 2V is a partition of V if and only if the following conditions
are met:

1. The empty set is not in P .

2. The vertex sets of P cover all the vertices of V .

3. The vertex sets of P are pairwise disjoint.

Lemma 2.4.2
Assume that G = (V,E) is a (k, l)-tight graph, P = (V1, . . . , Vp) is a partition of the vertices of V . In
addition, also assume that each |Vi| ≥ 2 in the upper range. Then there are at least l(p − 1) edges between
the partition sets Vi.

Proof.
Assume that the number of vertices and edges of a set Vi of P are ni and mi. By the (k, l)-sparsity , for the
edges inside each partition holds mi ≤ kni − l, therefore the number of the inner edges is

p∑
i=1

mi ≤
p∑
i=1

(kni − l) = kn− pl.

9

It follows that the number of the edges among the partitions has a bound of

m−
p∑
i=1

mi ≥ (kn− l)− (kn− pl) = l(p− 1).

2

Lemma 2.4.3
Let G = (V,E) be a (k, l)-tight graph. Then the degree of every vertex is at least k. Moreover, if l > 0, then
there is at least one edge between a vertex v and the rest of vertices V \ {v}.

Proof.
Suppose that there exists a vertex v such that deg(v) =: d < k. Then for the induced edges of the subgraph
V \ {v} would hold

kn− l − d > kn− l − k = k(n− 1)− l,

which contradicts the sparsity of G. As Corollary 2.1.4 states, if l ≥ k, then the sparse graphs are loopless,
which justifies the second part of the lemma in that range. The other case, when 0 < l < k, comes from
Lemma 2.4.2. 2

Corollary 2.4.4
If l > 0, then each (k, l)-tight graph is connected.

10

3
∣∣ Basic Pebble Game

Now we are ready to describe the Basic Pebble Game algorithm to identify the (k, l)-sparse graphs. This
algorithm is able to solve the first four points of the fundamental problems. Later, we introduce the Compo-
nent Pebble Game in Chapter 4 to speed up this basic version with components. The detailed description
of this algorithm is given in Section 3.1, and the correctness of this algorithm is proved in the Section 3.2.
Note that this chapter is a summary of [1].

The algorithm depends on the following parameters.

• G = (V,E): the input undirected multigraph to be tested.

• k: the parameter of (k, l)-sparsity, practically, the initial number of pebbles on each vertex.

• l: the parameter of (k, l)-sparsity, practically, the strict lower bound on the total number of pebbles
being present at the endpoints of an edge to be accepted.

All Pebble Game algorithms are built on the commonly known game, called Pebble Game. It is played on
a board with the set V of n vertices, initialized with k pebbles on each. The player may insert edges and
orient them. The rules of the game define whether an edge is accepted (and inserted with an orientation) or
rejected, and allow to collect pebbles and reorient the already inserted arcs.

The game takes the given multigraph G as an input and considers its edges in an arbitrary order, which
allows us to add the edges decreasing or increasing by their weights to solve the optimization problem. The
algorithm performs the moves of the game to accept or reject each edge.

The following section contains the rules, moves, output and the description of the algorithm.

3.1 Description of the algorithm

Now we turn to the detailed description of the Basic Pebble Game algorithm. First, we determine the concrete
rules and possible moves which are followed during the game, then introduce the algorithm in details.

A note on the inner digraph

The algorithm maintains an inner digraph D = (V,A), which has the same vertex set V of G = (V,E) and
its arc set is initialized to be empty. It processes the edges of E one by one, and D assures a special structure
in which the acceptance of the edges can be accomplished efficiently.

(a) The input graph G. (b) The inner digraph D.

Figure 3.1: The inner digraph at a moment of the algorithm for k = 2, l = 1.

This digraph also serves several purposes: an edge e = uv of E is decided to be accepted by the total number
of pebbles on its endpoints u and v, which may be increased by some breadth first search (BFS) algorithms

11

in D. If e is accepted, then it is inserted with an orientation into D. Throughout the game, D has a special
orientation which assures that the underlying undirected graph of D is (k, l)-sparse. If an edge insertion into
D would violate this orientation, then the edge is rejected, and the algorithm continues with the next edge.

Rules

• Pebbles: At most k pebbles may be present on each vertex at any time. Denote the number of the
pebbles on a vertex v by peb(v).

• Edge acceptance: An edge uv is accepted for insertion if more than l pebbles are present on the
vertices u and v. In case of a loop, count the pebbles of the endpoint only once.

Allowed moves

• Pebble collection: If an edge uv is not yet accepted, then an additional pebble may be collected on
its endpoints u and v via (BFS) in D. It is performed from u and v by marking them as visited, so
they will not be searched and their pebbles are protected from being moved. If one pebble is found on
a reachable vertex w (say, from v), then every arc in the directed path from v to w is reversed and one
pebble is transferred from w to v.

• Edge insertion: If an edge uv is accepted, then there is at least one pebble on at least one of the
endpoints u and v (say, u). Insert arc uv into D and remove a pebble from u.

Illustration for pebble collection

Note that as a result of the insertion and pebble collection processes, the following invariant holds throughout
the game: peb(v) + degout(v) = k. This invariant is precisely described and proved in Lemma 3.2.4. The
following figures give an example of the states of the inner digraph D before and after two pebble collections:

e
u v

(a) Before, there are only two pebbles on the
endpoints u and v.

a
u v

(b) After, the required four pebbles are present
on u and v, therefore, e is accepted.

Figure 3.2: Two pebble collections in a (2, 3)-sparse graph to insert arc a.

Edge e is processed in Algorithm 1 by checking the edge acceptance: peb(u) + peb(v) > l is required,
which is exactly equivalent with 2k − l > degout(u) + degout(v) by the above invariant. In this example, the
parameters are k = 2 and l = 3, so the condition is 1 > degout(u)+degout(v). However, as Example (a) shows,
degout(u) = degout(v) = 1, therefore, e cannot be accepted yet. Thus, a pebble collection is accomplished
from both u and v to gather pebbles, that is, to decrease the values of degout(u) and degout(v) to zero. In
Figure 3.2 (b), the process ends because the edge acceptance condition is met, therefore a is inserted.

Output evaluation

When every edge is processed, the output can be the followings depending on the final state of the game. If
exactly l pebbles remained in the final state, and every edge has been inserted, then it is well-constrained;
otherwise, if some edges have been rejected, then it is over-constrained. Otherwise, if more than l pebbles
remained, and every edge has been inserted, then the output is under-constrained; otherwise, if some edges
have been rejected, then it is other. These evaluations accurately correspond with tight, spanning, sparse
and neither sparse nor spanning graphs, respectively, which is proved in Section 3.2.

The following table contains the evaluation in a compact form.

12

Exactly l pebbles More than l pebbles

All inserted Well-constrained Under-constrained

Some rejected Over-constrained Other

Illustration for evaluation

The following figure illustrates the possible final states of the algorithm.

(a) Well-constrained. (b) Under-constrained.

(c) Over-constrained. (d) Other.

Figure 3.3: The possible outputs of the algorithm for parameters k = 2 and l = 1. The dashed edges
have been rejected.

The exact algorithm is the following.

Algorithm 1: Basic Pebble Game

Input: An undirected multigraph G = (V,E), possibly with parallel edges and loops.
Output: Well-constrained , under-constrained , over-constrained or other .
Maintenance: Maintain the inner digraph D, a container of the current number of pebbles for
each vertex, called peb, and the sum of the pebbles currently on the vertices, called sum.
Initialization: Let the inner digraph D be an empty graph on V , and place k pebbles on each
vertex, that is, let peb be k for each vertex and sum be kn.
Method: Initialize the game and start processing the edges one by one in an arbitrary order by
checking the edge acceptance. If the sum is at most l, then the remaining edges can be rejected
immediately because the edge acceptance surely would not be met. Assume that sum > l and
the edge being processed is e = uv.

• If the edge acceptance condition holds for e, then it is accepted and inserted , furthermore,
the sum and peb for the source of the inserted arc are decreased by one.

• Otherwise, attempt a pebble collection for the endpoints u and v.

– If it fails to collect a further pebble, then e is rejected.

– Otherwise, the total number of pebbles on the endpoints is increased and the edge is
processed again.

Complexity analysis

Since each accepted edge requires the removal of a pebble and initially the total number of pebbles is kn, the
number of inserted edges, ma, is O(kn). Note that this also follows from the definition of sparsity because
the underlying undirected graph of the inner digraph is always (k, l)-sparse, therefore,

ma ≤ kn− l = O(kn).

• Space complexity: The additional structures are the inner digraph D, the container pebbles and
the value sum. The size of the required storage of them is O(n+ma) = O(kn).

13

• Time complexity: As each edge is considered exactly once and requires at most l+1 pebble collections
in D, which are essentially some BFS algorithms, an edge is processed in time O(lma). As the graph
has m edges, the total time of the algorithm is O(mlma) = O(klmn).

In case of considering the input parameters k and l as constants, the running time of the algorithm is O(nm).
This will be slightly improved with Component Pebble Game in Chapter 4 .

3.2 Coincidence with sparse graphs

In this section, we prove that the classification of graphs given by Algorithm 1 coincide with tight, sparse,
spanning and neither sparse nor spanning ones. First, we describe the main theorem, then we introduce some
notations and prove basic lemmas. Afterwards, the main theorem follows as a corollary of the lemmas.

Theorem 3.2.1
The class of under-constrained Pebble Game graphs coincides with the class of sparse graphs, well-constrained
ones coincide with tight graphs, over-constrained coincide with spanning ones and other are neither sparse
nor spanning.

Definition 3.2.2
Let v ∈ V be an arbitrary vertex of graph G = (V,E). Then during the whole execution of Algorithm 1

• peb(v) is the number of pebbles currently on v in D.

• i(v) is the number of induced edges by v, so the number of loops currently on v in D.

• out(v) is the number of outgoing edges of v in D, excluding loops.

The following definition is a natural extension of these concepts for subsets:

Definition 3.2.3
Let V ′ be an arbitrary nonempty subset of V in graph G = (V,E). Then during the whole execution of
Algorithm 1

• peb(V ′) is the summary of peb(v) values for each vertex v in V ′.

• i(V ′) is the number of edges induced by V ′ in D, including loops.

• out(V ′) is the number of edges starting at a vertex in V ′, and ending at a vertex in V \ V ′.

Now we focus on proving the invariant properties of Algorithm 1 .

Lemma 3.2.4
During the whole execution of Algorithm 1,

peb(v) + i(v) + out(v) = k

holds for each vertex v.

Proof.
The invariant holds at the beginning of the game because each vertex v has exactly k pebbles, and D is
empty. We prove that no process of the game changes the invariant.

• Edge insertion: A pebble is removed, and either i or out is increased, depending on whether the edge
is a loop or not, so the total of them stays unchanged.

• Pebble collection: If v is an inner vertex of the path to be reversed, then out(v) does not change. If
v is the source of the path reversal, then out(v) is decreased and peb(v) is increased by one; and vice
versa, if v is the target.

Eventually, the sum peb(v) + i(v) + out(v) remains constant k throughout the game for each vertex v. 2

14

Lemma 3.2.5
During the whole execution of Algorithm 1,

peb(V ′) + i(V ′) + out(V ′) = kn′

holds for each subset V ′ of V , where |V ′| = n′, such that n′ ≥ 1 in the lower range and n′ ≥ 2 in the upper
range.

Proof.
Let mV ′ be the number of non-loop edges induced by V ′. With this notation, it follows that out(V ′) =∑
v∈V ′

out(v)−mV ′ and i(V ′) = mV ′ +
∑
v∈V ′

i(v). Therefore:

peb(V ′) + i(V ′) + out(V ′) = peb(V)′ +

(
mV ′ +

∑
v∈V ′

i(v)

)
+

(∑
v∈V ′

out(v)−mV ′

)
=

=
∑
v∈V ′

peb(v) +
∑
v∈V ′

i(v) +
∑
v∈V ′

out(v) =
∑
v∈V ′

(
peb(v) + i(v) + out(v)

)
= kn′

2

Lemma 3.2.6
During the whole execution of Algorithm 1,

peb(V ′) + out(V ′) ≥ l

holds for each subset V ′, where |V ′| ≥ 1 in the lower range and |V ′| ≥ 2 in the upper range. In particular,
there are at least l free pebbles in D.

Proof.
At the beginning of the game, D is empty, so out(V ′) = 0 and peb(V ′) = kn′ ≥ l. Consider the last time an
edge e = uv incident to V ′ was inserted or reoriented by the algorithm. The following cases may occur:

• If both endpoints u and v are in V ′, then at least l pebbles must be on u and v after the insertion, so
peb(V ′) ≥ l.

• If e went between V ′ and V \ V ′ and it is oriented away from V ′, then a pebble was removed from V ′

and an outgoing arc was added.

• If e went between V ′ and V \ V ′ and it is oriented towards V ′, then both the number of pebbles and
the number of outgoing arcs remained unchanged.

• If e were reoriented, then it would either bring in a pebble inside V ′ and decrease the number of outgoing
arcs, or vice versa.

All the above cases preserve the invariants, which had to be proved. 2

Now we focus on showing some important corollaries.

Corollary 3.2.7
During the whole execution of Algorithm 1,

i(V ′) ≤ kn′ − l

holds for each subset V ′ of V , where |V ′| = n′, such that n′ ≥ 1 in the lower range and n′ ≥ 2 in the upper
range.

Proof.
As a result of Lemma 3.2.5 and Lemma 3.2.6, the following holds:

i(V ′) = kn′ − (peb(V ′) + out(V ′)) ≤ kn′ − l.

2

15

Corollary 3.2.8
A subset V ′ of V with n′ vertices, such that, n′ ≥ 1 in the lower range and n′ ≥ 2 in the upper range, induces
a block if and only if peb(V ′) + out(V ′) = l.

Corollary 3.2.9
Under-constrained pebble game graphs are sparse, well-constrained ones are tight, over-constrained ones are
spanning.

This corollary proves that the output classifications of Algorithm 1 are well-defined, so the first direction of
Theorem 3.2.1 is proved. We only have to prove that the algorithm identifies the sparse, tight and spanning
graphs correctly.

Now we need another notation:
Definition 3.2.10
Let D be the inner digraph at any point of the execution. The reachable region of a vertex v in D is the
set of vertices that can be reached from v in D. It is referred to as Reach(v).

Lemma 3.2.11
If e = uv is a free edge (but not yet inserted) and the total number of pebbles on the endpoints u and v is at
most l, then a pebble can be brought to one of u or v.

Proof.
Denote the union of reachable regions Reach(u) ∪ Reach(v) by V ′. Observe that there must be a vertex in
V ′ \ {u, v}, otherwise, with at most l pebbles in u and v, V ′ would be a component, therefore, e would not
be free. By assumption, e is free, so i(V ′) < k|V ′|− l. As no arcs leave the reachable region, out(V ′) = 0. By
Lemma 3.2.6 and using that V ′ does not form a block, peb(V ′) > l and by assumption, peb(u) + peb(v) ≤ l.
It follows that there exists a vertex w ∈ V ′ \ {u, v} with at least one free pebble, so it can be collected on
either u or v. 2

Corollary 3.2.12
An edge is accepted by Algorithm 1 if and only if it was free in D.

Proof.
Assume that the edge is denoted by e = uv. Apply Lemma 3.2.11 at most l + 1 times. As a corollary, l + 1
pebbles can be collected on the endpoints u and v, so e can be inserted . 2

The following lemma is the main theorem, which justifies that Algorithm 1 classifies each graph correctly. It
shows the other direction of Theorem 3.2.4.

Lemma 3.2.13
The pebble game returns under-constrained for sparse, but not tight graphs, well-constrained for tight ones,
over-constrained for spanning graphs and other for graphs that are neither spanning nor sparse.

Proof.
As we mentioned in Theorem 2.3.1, the sparse graphs form a matroid, so the greedy algorithm works: their
edges can be processed in an arbitrary order. Assume that the input graph G has n vertices and m edges
and D denotes the inner digraph when the algorithm terminates. We use the result of the previously-proved
invariant, described in Lemma 3.2.5. The following types of graphs should be classified:

• Assume that G is (k, l)-sparse, but not tight. Then by the above-mentioned lemma

kn− l
def.
> m = i(V)

Lemma
= kn− peb(V)− out(V) = kn− peb(V),

from where peb(V) > l and the output is under-constrained .

• If G is (k, l)-tight, then the number of pebbles is exactly l and the output is well-constrained .

• If G is (k, l)-spanning, then it contains a tight subgraph, which is inserted into D with a remainder of
l pebbles. After that state, there is not enough pebbles for the further insertions, and some edges will
be rejected. It follows that the result of the game is over-constrained .

• If G is neither sparse nor spanning, then there must be more than l pebbles in the final game, and some
edges are rejected as well. The output of the algorithm is other .

2

16

4
∣∣ Component Pebble Game

In this chapter, we investigate some of the applications of the components. In particular, an improved peb-
ble game algorithm will be given in the Unweighted Pebble Game in Section 4.2 whose running time is
O(n2 +m), which improves upon the performance of the Algorithm 1 for dense graphs. The main ingredient
of this enhanced algorithm is that the rejection of an edge can be performed by checking if it is induced by
a component, which will involve no pebble collections. This chapter partially builds on [1].

As an introduction to the topic, we prove two frequently-used lemmas:

Lemma 4.0.1
The number of the components during the whole execution of Algorithm 1 is O(kn).

Proof.
As a straightforward corollary of the definition of sparsity , the total number of edges during the whole
execution has an upper bound of kn− l, because the inner graph is always (k, l)-sparse. Since the formation
of a component is always preceded by an edge insertion and each edge insertion leads to the formation of at
most one component, the number of them is also linear. 2

We will also need the following lemma, which we prove based on personal communication with András
Mihálykó.

Lemma 4.0.2
The total size of the vertex sets of the components during the whole execution of Algorithm 1 is O(kn).

Proof.
Denote the number of i-element components by Ci. The number of components consisting of a single vertex
is at most n, because two components with the same vertex set may not exist, so C1 ≤ n. Observe that
i ≤ 2(ki− l) is met for each i ≥ 2, because the range of l ≤ 2k−1 implies that 2l ≤ 2(2k−1) ≤ (2k−1)i, from
where the observation follows. Now the multiplicity of the vertices in the components can be determined:

n∑
i=1

iCi = C1 +

n∑
i=2

iCi ≤ n+ 2

n∑
i=2

(ki− l)Ci ≤ n+ 2(kn− l) = O(kn),

where the last inequality holds because each Ci induces exactly ki− l edges and every edge is included in at
most one component. 2

Corollary 4.0.3
The number of intersections of the components is O(n).

Proof.
Suppose that it is not linear. Then the total size of the vertex sets of the components would not be linear,
which would contradict Lemma 4.0.2. 2

Now we introduce the Basic Component Pebble algorithm in Section 4.1 , then we describe a special case
called Unweighted Pebble Game in Section 4.2 .

4.1 Basic Component Pebble Game

In this section, we summarize the results of [1] and make same observations on their results regarding
component maintenance in the upper range from [10].

17

Data structures for constant queries

This paragraph describes a data structure to determine in constant time whether two vertices belong into
the same component. By Corollary 2.2.6 and Lemma 2.2.7, components may intersect in different ways for
different ranges, therefore we must take l into account:

• If l = 0, then there is at most one component, which can be maintained by a marking scheme: a
vertex is marked if and only if it is in the component. Maintain an indicator container, called marked,
which assigns true for a vertex v if and only if it is in the component.

• If 0 < l ≤ k, then the components are vertex-disjoint, so they may b maintained by a labeling scheme:
each vertex is labeled with the id of the component to which it belongs. Denote the id of a vertex v be
idv. Maintain an integer container, called labeled, which assigns a value k for a vertex v if and only
if v is in the component with id k.

• If k < l < 2k, then the components may overlap in at most one vertex. Maintain an indicator matrix
M indexed by the vertices: let M[u][v] be true if and only if u and v belong into the same component.

In addition, we also maintain a list of components for the upper range in which we store the vertex sets
of the components.

Description

The algorithm is the following:

Algorithm 2: Basic Component Pebble Game

Input: An undirected multigraph G = (V,E), possibly with parallel edges and loops.
Output: Well-constrained , under-constrained , over-constrained or other .
Initialization: Initialize the inner digraph and the pebbles similar to Algorithm 1 . In
addition, maintain the list of components and the constant time data structures depending
on the ranges. Initialize them according to the followings:

• If l = 0, then let marked(v) be false for each vertex v.

• If 0 < l ≤ k, then let labeled(v) be −1 for each vertex v.

• If k < l < 2k, then let M[u][v] be false for each pair u and v of vertices.

Same component: Let u and v be two (not necessarily different) vertices in D. Then the
condition of u and v being in the same component is the following:

• If l = 0, and both marked(u) and marked(v) are true or

• If 0 < l ≤ k, and labeled(u)=labeled(v) and they are non-negative or

• If k < l < 2k, and either M[u][v] or M[v][u] is true.

Method: Play Algorithm 1 with the following modifications. Let e = uv be the current edge.

• If u and v are in a same component, or u = v and l ≥ k, then e is rejected.

• Otherwise, e is free, therefore it is insertable. Run pebble collection (to find the proper
orientation of D) until the condition of the edge insertion is met, then insert it. Detect
new components by Algorithm 3 , if some are formed, and perform necessary component
maintenance by Algorithm 4 .

The complexity analysis of this algorithm is presented below.

We note that if e is an incident edge of u and it is a loop, then the used data structures would not indicate
correctly that e is non-free in the case of l ≥ k, because of their initializations. At the beginning of the
algorithm, no components contain u, so e seems like an insertable edge, however, it is not by Corollary 2.1.4.
Hence, this case is specifically prohibited for loops by the further condition of u = v and l ≥ k.

18

Component detection

Algorithm description

The following algorithm is called right after an insertion of edge e = uv and uses a BFS algorithm on the
reversed digraph of D to find the component of u and v.

Algorithm 3: Component detection

Input: The inner digraph D = (V,A), into which edge e = uv has just been inserted.
Output: The vertex set V ′ of the new component induced by e, if one was formed; ∅, otherwise.
Method:

• If more than l pebbles are present on u and v, then return ∅, because the new edge is free.

• Otherwise, compute Reach(u, v), the vertex set of reachable vertices from u and v in D.

– If any w ∈ Reach(u, v) has at least one free pebble, then return ∅, because as a result
of a pebble collection from w, the edge may be free.

– Otherwise, create D′ by reversing the direction of each arc of A. From each vertex
w ∈ V \Reach(u, v) with at least one free pebble, perform a BFS in D′. Return the
set of non-visited vertices.

Complexity analysis

Checking the condition of the pebbles can be done in constant time. Determining the reachable region of u
and v requires O(n+ma) = O(kn) time, and their pebbles are checked in linear time. Producing the reversed
digraph takes time O(ma) = O(kn), and the other BFS is in time O(kn), therefore, the overall time is also
O(kn).

Illustration

The following illustration shows an example of Algorithm 3 for a (1, 0)-sparse graph. Assume that edge uv
has just been inserted into D.

u v

(a) The inner digraph D.

u v

(b) The reversed digraph D′.

Figure 4.1: The component detection algorithm first determines that uv is non-free, then creates D′ by
reversing each arc of D (see Figure (b)). It starts a BFS algorithm in D′ from each vertex w ∈ V \ {u, v}
with at least one free pebble to detect the maximal block (therefore component) containing u and v. In this
example, there is no vertex w with the above properties, so every vertex is non-reached and the algorithm
returns with the whole set of V . Note that the figure shows a (1, 0)-tight graph, so the detection succeeded.

Updating the components

The following lemma is used in Algorithm 4 below.

Lemma 4.1.1
Assume that Algorithm 3 has just run to detect the components. Then a component C := {v1, . . . , vt} is
induced by the detected vertices if and only if t = 1 and v1 is detected, or t > 1 and there exist indices p, q
such that 1 ≤ p 6= q ≤ t and both vp and vq are detected.

Proof.
The necessity is trivial, we show the sufficiency. If t = 1 and v1 is detected, then C is induced. If t > 1, then
by assumption, both vp and vq are detected. By Corollary 2.2.6, components may overlap in at most one
vertex, so any two vertices determine obviously a component. 2

19

Data structures

Assume that Algorithm 3 has just been run and the id of the found component is i. As we use different data
structures, the updates are also accomplished separately:

• If l = 0, then the process can easily be done by setting marked true for the newly detected vertices in
time O(n).

• If 0 < l ≤ k, then the process contains about rewriting labeled for the detected vertices by i, such
that, idu = i for each detected vertex u in time O(n).

• If k < l < 2k, then the updating process is described by Algorithm 4 .

Algorithm description

For the following algorithm, assume that there exists an ordering between the vertices of V by the id of the
vertices, such that u < v if and only if idu < idv. This algorithm is our own method that describes the
updating process of the components in the upper range in time O(n3). It also contains some tricks to speed
it up in practice, however, the best bound we could prove on the worst case running time is O(n3). The
results of this algorithm in [1] and in [10] are further analyzed in the part of observation of a problem below.

The main problem with the following algorithm is the total number of overwrites, that is, the true-to-true
markings in some entries of matrix M. No matter how hard we tried, we could not figure out either a better
algorithm for updating or a more precise upper bound for the total number of overwrites.

Algorithm 4: Updating of the components in the upper range

Input: The detected vertices from Algorithm 3 , the indicator matrix M and the list of

components.
Output: The updated matrix M and list of components.
Method: If no detected vertex has been found, then the algorithm is terminated.

1. Create two containers to store the detected vertices, called detected and frees,
depending on whether a vertex v was free before the insertion, that is, whether v was not
induced by any components.

2. Mark the entries of matrix M for each pair u and v of vertices, such that, u < v as true,
that is, set M[u][v] true.

3. Also create a container, called marked components which is a collection of the induced
components. As an application of Lemma 4.1.1, it can be accomplished by checking only
the first two vertices of each component (or in one-sized components the first one).

4. Initialize another container for each vertex v, called first component, by iterating
backwards on each vertex v of the marked components C, and setting the first

component of v to the id of C. Note that the backwards iteration assures that if a vertex
belongs into more than one component, then the first component contains exactly the
first one.

5. Start merging the components: for each vertex vi of the marked component Ci mark all
vertices u of frees in M[u][vi] as true, then check if Ci is the first component of vi:

• If not, then vi has a more recent component than Ci, where the update of M is
accomplished. Continue with the next vertex of Ci.

• Otherwise, pick each marked component Cj such that i < j is met. For each vertex
vj ∈ Cj , set the entry of the matrix M[vi][vj] to true.

Complexity analysis

Note that these updates are executed if and only if a new component is detected after an edge insertion, so
it is called at most O(kn) times.

20

1. The containers are created in time O(n), because every vertex is scanned exactly once, so overall O(kn2)
times.

2. During the whole execution, the total number of free vertices is O(n), so the marking process of the
pairs is O(n2).

3. Creating marked components is accomplished in time O(n), so in total O(kn2) time.

4. The first components can also created in time O(n) because the number of stored vertices in each
component is linear by Lemma 4.0.2.

5. The process of Descartes production has a worst case of O(n3): it is trivial that the number of one-to-
one-overwrites in the matrix M is at most n for each pair of entries, so the total time is O(n3).

Illustration

The following figure shows an example for Algorithm 4 . After the insertion of edge e, Algorithm 3 identifies
the newly formed component C. Afterwards, the update is called

C1 C2

e

C

Figure 4.2: An update process in a (2, 3)-sparse graph, in which components C1 and C2 are treated as
marked components, and the entries of M are set to true for each pair of vertices v1 ∈ C1 and v2 ∈ C2,
such that, v1 < v2.

Correctness

Now we are going to prove the correctness of Algorithm 2 via Algorithm 1 .

Theorem 4.1.2
The graphs recognized by Algorithm 2 are the same as graphs recognized by Algorithm 1, and components are
correctly computed.

Proof.
The main difference between the Basic Pebble Game and the Component Pebble Game is the maintenance
of the components, and the rejection of non-free edges in constant time. First, observe that Algorithm 2
detects a maximal connected subgraph G′ = (V ′, E) with no outgoing edges in which exactly l pebbles are
present. By Lemma 3.2.5, the invariant of peb(V ′) + i(V ′) + out(V ′) = kn′ is met, from where G′ is a block ,
because it induces exactly kn′ − l edges. By Lemma 2.2.7, the followings hold:

• If l = 0, then there may be at most one component, because the union of two blocks also forms a block,
and the algorithm detects it.

• If l > 0, then components are connected, and it is also detected.

The visited vertices in Algorithm 3 are the ones that can reach a pebble on a vertex different from u and v,
and form the complement of the unique component containing e. 2

Complexity analysis of Algorithm 2

The non-free edges are rejected in constant time. The free ones are inserted right after the successful pebble
collections. Denote the number of inserted edges by ma. After each insertion, Algorithm 3 and updat-
ing of the components are called. Since each detection requires a BFS call, the running times of them are
O(n+ma) = O(kn). As the updating process has a worst case of O(n3 +m), the running time of Algorithm 2

21

in the worst case is O(n3 +m).

The space complexity of the lower range is O(n) and in the upper range is O(n2), due to its indicator matrix.

Observation of a problem

In [1] and [10], the authors claimed that their algorithm runs in time O(n2), however, their proof regarding
the data structure they used is based on the following incorrect assumption. Their solution in [10] uses the
so-called bounded union pair-find method which requires the bounded property: |Ci ∩Cj | ≤ 1 for each i 6= j.
However, when we take the union of more than two components, this property may be violated. The following
figure illustrates an example for the problem:

C1

C2

C3

C4
e

Figure 4.3: A (2, 3)-sparse graph in which the inserted edge e provokes the union of the components.

In Figure 4.3, inserting edge e into the (2, 3)-sparse graph involves the union of four components. Assume
that the union method described in [10] is called in the order of the components indices. Denote the union
of C1, C2 and C3 by C. After creating C, the intersection of C and the remainder component C4 consist of
two vertices, which violates the bounded property. As a result, the given running time of O(n2) does not
follow from the argument given in [10].

4.2 Unweighted Pebble Game

In this section, we design the Unweighted Pebble Game algorithm for the whole range of 0 ≤ l < 2k with a
space complexity of O(n) and a running time of O(n2+m). It uses the basic subalgorithms of the Component
Pebble Game, which are referenced from Section 4.1. We only introduce the algorithms that differ in any ways
from the ones used within the Component Pebble Game. Note that this algorithm can solve each of the funda-
mental problems, except the optimization problem, because this algorithm inserts the edges in a special order.

We note that there exists a similar algorithm in [10] which also solves the same fundamental problems in
a space complexity of O(n + m). However, their algorithm stores the sets of the induced edges of each
component, unlike ours, which only stores the vertex sets of them.

The data structure

The principal idea consists in iterating on each vertex and their incident edges. To implement, use the
following special data structure.

Definition 4.2.1
Let xu be the characteristic vector of the union of the components containing the vertex u being
processed.

By definition, xu determines whether vertices u and v are in the same component, so an incident edge uv
of u may be rejected or inserted in constant time. The updating process of this data structure is different
from the so-called union pair-find in [10], because we store the vertex sets of the components instead of their
induced edge sets. Note that xu is essentially the row of the vertex u of the matrix M in the upper range of
the Component Pebble Game in the previous section.

22

Algorithm description

The following description gives an overview of the algorithm.

Algorithm 5: Unweighted Pebble Game

Input: An undirected multigraph G = (V,E), possibly with parallel edges and loops.
Output: Well-constrained , under-constrained , over-constrained or other .
Initialization: Initialize the inner digraph and the pebbles similar to Algorithm 1 . In
addition, maintain the list of components, the special vector x and a further variable called
processed for each edge to indicate whether it is already processed.
Method: Play Algorithm 1 with the following modifications. When considering a new vertex
u, define xu by Algorithm 6 and start processing each incident edge uv of u. First check
whether uv is already processed. If so, then continue with the next edge (and possibly with
the next vertex); otherwise, mark uv as processed, and check if u and v are in the same
component using xu(v):

• If xu(v) is true or u = v and l ≥ k, then uv is rejected.

• Otherwise, start pebble collection while the condition of the edge insertion is met, then
insert it. The success of the collections is proved below . After the insertion, detect new
components by Algorithm 3 , if some are formed, and perform necessary maintenance by
Algorithm 7 .

The correctness of the algorithm and the complexity analysis are shown later.

Updating processes

The following algorithms take care of updating vector x before a new vertex u is considered and updating
the components and xu after each insertion.

Algorithm 6: Defining x

Input: The new vertex u, the list of components and the indicator vector xu.
Output: The well-defined vector xu.
Method: For defining xu, first let xu(v) be false for each vertex v. Then iterate through all
list of components to find the ones that contain u and mark all vertices of them as true.

Complexity analysis

The false updates are done in time O(n). By Lemma 4.0.2, the iteration on each vertex of all components
takes O(n) time, so the time complexity of the whole algorithm is also O(n).

Algorithm 7: Updating of the list of components and x

Input: The indicator vector xu and the detected vertices from Algorithm 3 . Assume that edge
uv has just been inserted into D.
Output: The updated list of components and indicator xu.
Method: First iterate through the list of components and check whether they contain a
detected vertex. If so, then delete the whole list of component. Afterwards, for each detected
vertex v set xu(v) to true. Finally, add the detected vertices as a new set into list of

components.

Complexity analysis

By Lemma 4.0.2, the iteration on each vertex of each component is in time O(n), the deletions of some
components are accomplished in time O(n). Also, setting x to true and creating the new component is in
time O(n), so the algorithm runs in linear time.

23

The success of the pebble collections

The following lemma proves that pebble collections succeed in Algorithm 5 .

Lemma 4.2.2
Denote the vertex being processed by u and an incident edge of u by e = uv. Assume that xu(v) is false
and if e is a loop, then l < k. Then the pebble collections for the insertion of e are guaranteed to succeed in
Algorithm 5.

Proof.
It is sufficient to show that the edge is insertable. By Corollary 2.2.6, e is insertable if and only if it is free.

• If e is the first edge of u, then:

– If e is not a loop, then as corollary of the limited interval of l ∈ [0, 2k), first non-loop edges are
always insertable.

– If e is a loop, then by assumption, l < k. This requirement implies that the condition of insertion
holds, because it is the first incident edge of u and it initially has k pebbles, therefore e is insertable
immediately.

• If e is not the first one, then there are already inserted incident edges of u. It means that Algorithm 3
have been accomplished at least once, and x is up to date. As xu(v) is false, u and v are not parts of a
same component, so e is free, and therefore insertable.

2

The correctness

Now we prove that Algorithm 5 also classifies the graphs well.

Theorem 4.2.3
Algorithm 5 and Algorithm 2 recognize the same graphs and computes the same components.

Proof.
The only differences between the algorithms are the order of the processed edges, and the used data struc-
tures. The special order of edges allows us to maintain only the actual row of M and consider it as a vector
x. It is trivial that the matrix structure can be used in all ranges, so the correctness for lower range is also
provided. Now it is sufficient to show that the updating processes are accomplished similarly to the matrix
structure.

Algorithm 6 updates the newly considered vertices by scanning along all components, so x is really the
characteristic vector of the union of the components containing the vertex begin processed as its definition
claims. After the insertion of an edge, Algorithm 7 is called to update the list of components and x. If
a new component C is formed, then both the list of components and x are updated by deleting the old
components which are merged into C, inserting C to the list of the components, and marking the vertices
v of C as true in xu(v) to indicate that u and v is now in the same component. This process correctly
updates each data structure. As the algorithms are similar in every other way, we reference to the proof of
Theorem 4.1.2. 2

Complexity analysis

Algorithm 6 for a vertex u is accomplished in time O(n), so the overall time is O(n2). Each edge insertion
requires at most l pebble collections in time O(kln). After that, a component detection is done in time O(kn),
and the updating processes are accomplished in time O(n). As a summary, for each inserted edge, the time
is O(k2ln2), therefore the whole algorithm has a time complexity of O(k2ln2 +m), which is O(n2 +m) with
constant k, l parameters.

Since we only used the additional data structure x , the algorithm requires O(n) space.

24

5
∣∣ Applications

In this chapter, we give a short summary about some applications of (k, l)-sparsity. First, we give an efficient
algorithm for finding edge-disjoint forests covering the edge set of a given graph G via Basic Pebble Game,
then we describe the concept of arboricity and finally we show some rigidity applications.

Throughout this chapter, all graphs are assumed to be loopless.

5.1 Covering with edge-disjoint forests

In this section, we sum up an algorithm for finding k edge-disjoint forests whose union covers the whole edge
set of a given graph. The approach consists of two main parts: the Pebble Game algorithm and an algorithm
for finding disjoint arborescences. We proceed with the latter in the following section.

5.1.1 Disjoint arborescences

Definitions and notations

Now we describe the basic definitions for directed graphs. The followings are from [11].

A directed graph is a rooted tree if the underlying undirected graph is a tree, and has a special root from
which every other vertex is reachable in directed sense. A directed graph is a rooted forest if the underlying
undirected graph is a forest whose components are rooted trees.

An s− t cut C = (S, T) in a digraph D = (V,A) is a partition of V into two disjoint subsets S and T such
that s ∈ S and t ∈ T . The cut-set of an s − t cut C = (S, T) in a digraph is the set of arcs uv such that
u ∈ S and u ∈ T .

The followings are the mainly used definitions in this section.

Definition 5.1.1
An arborescence of a digraph D = (V,A) is a set B of arcs such that (V,B) is a rooted tree. An r-
arborescence is an arborescence with a root r. A partial r-arborescence B of a digraph D = (V,A) is a
set B of arcs if B is an r-arborescence in the subgraph induced by V (B).

Definition 5.1.2
A branching in a digraph D = (V,A) is a set B of arcs such that (V,B) is a rooted forest.

Solvability theorem

The following theorem claims that k edge-disjoint r-arborescences may be found in polynomial time:

Theorem 5.1.3
In a given digraph D = (V,A), k edge-disjoint r-arborescences can be found in time O(k2m2).

Before proving this theorem by showing an algorithm, we introduce some notations and lemmas.

Definition 5.1.4
For a digraph D = (V,A), a vertex set U ⊆ V and an arc set H ⊆ A, let δinH (U) consists of those arcs uv ∈ H
for which u ∈ V \ U and v ∈ U . Let dinH (U) denote the cardinality of δinH (U). If the subscript H is omitted,
then H is considered as the whole arc set A.

25

Theorems of branchings

The following theorem of Jack Edmonds characterizes the existence of edge-disjoint branchings with pre-
scribed root sets in a digraph:

Theorem 5.1.5 (Edmonds’ disjoint branchings theorem)
Let D = (V,A) be a digraph and let R1, . . . , Rk be subsets of V . Then there exist disjoint branchings
B1, . . . , Bk such that Bi has root set Ri for each 1 ≤ i ≤ k if and only if for each nonempty U ⊆ V

din(U) ≥
∣∣{i : Ri ∩ U = ∅}

∣∣.
We will need the weak form of this theorem in which each Ri = r, when we want to find k edge-disjoint
r-arborescences.

Theorem 5.1.6
Let D = (V,A) be a directed graph with a specified root r ∈ V , and k be a positive integer. Then D has k edge-
disjoint r-arborescences if and only if D is rooted k-edge-connected, that is, for each nonempty U ⊆ V \ {r}

din(U) ≥ k.

Now we focus on describing another theorem about covering with r-arborescences due to Vidyasankar, which
will also be used in Algorithm 10 for covering with k edge-disjoint forests via Pebble Game.

Theorem 5.1.7 (Vidyasankar)
Let D = (V,A) be a digraph, the root be r ∈ V , and k be a positive integer. Then A can be covered by k
r-arborescences if and only if the following two conditions hold:

degin(v) ≤ k for each v ∈ V and degin(r) = 0 (5.1)∑
v∈H(U)

(k − degin(v)) ≥ k − din(U) for each nonempty subset U ⊆ V \ {r}, (5.2)

where H(U) denotes the set of outneighbours of V \ U .

Note that if degin(v) = k for each v ∈ V \ {r}, then condition (5.2) coincides with the condition in Theo-
rem 5.1.6, because it simplifies to din(U) ≥ k for each nonempty subset U of V \ {r}. This observation will
also be useful for Algorithm 10 .

Algorithm for finding disjoint arborescences

The algorithm for finding k edge-disjoint r-arborescences in a loopless digraph is the following:

Algorithm 8: Finding k edge-disjoint r-arborescences

Input: A directed loopless multigraph D = (V,A).
Output: A classification of the arcs into at most one of the k r-arborescences if it exists.
Method: First, we try to find a B r-arborescence such that for each nonempty U ⊆ V \ {r}

dinA\B(U) ≥ k − 1. (∗)

Initialize B for B := ∅ and start searching an arc a leaving the vertex set VB of B for which there
does not exist U ⊆ V \ {r} such that a ∈ δin(U) and dinA\B(U) = k − 1. The condition for an arc

a can be tested with Algorithm 9 defined below. The growing process of the current partial
r-arborescence B is terminated in the following cases:

• If Algorithm 9 returns with fewer than k − 1 paths for all arc a leaving VB. In this case, no
arcs can be inserted into B, meaning that there do not exist k edge-disjoint r-arborescences
(see [11, Page 918]).

• If VB covers the whole vertex set V . In this case, mark the edges of B by k and iterate for
the decreased k − 1 value on A \ B (until k > 0). Note that this recursive iteration is
assured by (∗).

26

Complexity analysis

As each arc is considered at most once, processing an arc requires at most one call of Algorithm 9 , which
runs in O(km) time. Adding at most m arcs into one of the arborescences takes time O(km2), therefore the
overall time is O(k2m2).

The minimum cut algorithm

Note that an arc a = uv can be inserted into the partial r-arborescence B if and only if dinA\B(U) ≥ k for all

U ⊆ V \ {r} which is entered by a. In other words, it means that there exist at least k − 1 edge-disjoint
paths from the root r to each vertex v, excluding a. The following algorithm determines the number of these
paths. The correctness of this algorithm is discussed by Lemma 5.1.8.

Algorithm 9: Minimum cut

Input: Digraph D and an arc a = uv to possibly insert into B.
Output: The total number of edge-disjoint rv paths in D.
Method: Maintain an indicator vector for each arc, called reversed, and initialize it to false.
To determine the total number of edge-disjoint paths without a, first erase a, then search r → v
paths in D by BFS, reverse them until one exists and their total number is fewer than k, and
negate the indicator reversed for each arc of the paths. Finally, if no more paths can be found,
reverse all arcs with true reversed value and if the number of found paths is fewer then k − 1,
insert back a. Return with the total number of found paths.

Complexity analysis

Each path is found with BFS in time O(m+ n) = O(m). As the algorithm finds at most k paths in D, the
complexity is O(km).

Lemma 5.1.8
Assume that Algorithm 9 algorithm has just run in digraph D with root r to determine the minimum cut.
Then arc a = uv can be inserted into B keeping property (∗) if and only if the algorithm found at least k − 1
edge-disjoint paths from r → v, excluding a.

5.1.2 Covering with k edge-disjoint forests

In this section, theorems of Nash-Williams and Edmonds are presented. They gave equivalent conditions for
covering the edge set with k edge-disjoint forests and finding k edge-disjoint arborescences with (k, k)-sparsity.

Nash-Williams theorem

First, we define the basic notations on undirected graphs for the following theorem.

A tree is an undirected graph that is connected and has no circuits. A forest is an undirected graph that
has no circuits, in other words, whose components are trees.

The following theorem of Nash-Williams was published in [3].

Theorem 5.1.9 (Nash-Williams)
An undirected loopless multigraph G = (V,E) is the union of k edge-disjoint forests if and only if for all
nonempty X ⊆ V

i(X) ≤ k|X| − k.

Now we introduce an algorithm with Pebble Game as an application of Algorithm 8 .

27

Algorithm 10: Covering with k edge-disjoint forests via Pebble Game

Input: An undirected loopless multigraph G = (V,E).
Output: A classification of the edges into exactly one of the k edge-disjoint forests, if it exists.
Method:

1. Run Algorithm 5 on G for (k, k)-sparsity to determine the inner directed graph D = (V,A).
If G is (k, k)-sparse, then by Nash-Williams theorem (see Theorem 5.1.9), E can be
partitioned into k edge-disjoint forests; otherwise the algorithm is terminated by false.

2. Add a further root r, and for each vertex w ∈ V \ {r} add arc wr with multiplicity
k − degout(w).

3. Run Algorithm 8 on the reversed digraph D′ = (V,A) of D. Note that as a corollary of
Vidyasankar’s theorem, arc set A can be covered by k edge-disjoint r-arborescences. Delete
root r and the further added arcs from D′, and forget the classifications of these arcs.
Then the edges of the underlying undirected graph of D′ has the correct classifications.

Complexity analysis

The execution time of Algorithm 5 is O(k3n2 + m) if l = k. As Algorithm 8 runs on the inner digraph
D = (V,A), the number of arcs is linear: |A| = ma = O(kn). The running time of Algorithm 8 on D is
O(k4n2 +m), therefore the overall time of thisn algorithm is O(k4n2 +m).

This approach can be easily modified to find k-disjoint (minimum cost) spanning trees in a graph: in the
first step of Algorithm 10 , we find a (minimum cost) (k, k)-tight subgraph with the Pebble Game algorithm.
In the weighted case, we need to find a minimum cost (k, k)-tight subgraph, which takes O(k2mn) time, and
hence the total running time of the algorithm is O(k4n2 + k2mn).

Note that the root set of the forests can also be produced during the third step of Algorithm 10 by checking
the outgoing arcs from the further root r.

5.2 Arboricity

In this section, we make a summary of arboricity in undirected, loopless multigraphs. Note that it differs
from r-arborescences and branchings in directed graphs in Section 5.1.

Basic notations and definitions

Now we describe the most important concepts for arboricity.

Definition 5.2.1
A spanning tree of a multigraph G = (V,E) is a subtree of G (subgraph of G which is a tree) and spans the
whole set V .

Ruth Haas characterized the arborescences in undirected graphs in [12]. He mainly analyzed the following
two types of graphs with the parameters k and l in Theorem 5.2.4 and 5.2.5.

1. For which adding some l edges produces a graph which is decomposible into k spanning trees.

2. For which adding any l edges produces a graph which is decomposible into k spanning trees.

The following definition describes the concept of qTk-graphs which is useful in classifying the graphs. Their
significance is further discussed by Theorem 5.2.4 and 5.2.5.

Definition 5.2.2
Let qTk be a decomposition of the edges of a loopless multigraph G into q edge-disjoint trees such that each
vertex is in exactly k trees. Let a multigraph G be a qTk-graph if there exist a qTk-decomposition in G.

28

By [5], the special case of 3T2-graphs correspond to rigid graphs in the plane, because they are the (2, 3)-
tight ones. The equivalence of rigid frameworks and (2, 3)-tight graphs is claimed by Theorem 5.3.5 in the
following section.

Definition 5.2.3
The arboricity of a loopless multigraph G = (V,E) is the least number of edge-disjoint forests whose union
covers the whole edge set E.

Nash-Williams showed in [13] that the arboricity of a graph G can be determined by

k := max

{
|E′|
|V ′| − 1

}
,

where the maximum is taken over all subgraphs G′ = (V ′, E′) on at least two vertices.

Main theorems

The following theorems give equivalent conditions for the decomposition from [12]. The first one characterizes
the case of some, and the second one the case of any.

Theorem 5.2.4
The followings are equivalent for a loopless multigraph G = (V,E) and integers k > 0 and l > 0.

1. |E| = k(|V | − 1)− l, and for subgraphs H = (V ′, E′) ⊂ G with at least 2 vertices |E′| ≤ k(|V ′| − 1).

2. There exist some l edges which when added to G result in a graph that can be decomposed into k
spanning trees.

3. G is a (k + l)Tk-graph.

Also, there are equivalent conditions for the decomposition of the case of any:

Theorem 5.2.5
The followings are equivalent for a loopless multigraph G = (V,E) and integers k > 0 and l > 0.

1. |E| = k(|V | − 1)− l, and for subgraphs H = (V ′, E′) ⊂ G with at least 2 vertices |E′| ≤ k(|V ′| − 1).

2. Adding any l edges to G (including parallel edges) results in a graph that can be decomposed into k
spanning trees.

3. G is a (k + l)Tk-graph.

5.3 Rigidity

Laman described the wide theory of generically rigid graphs in the plane in [5]. He gave equivalent condi-
tions for generic minimally rigid frameworks using sparsity, which is shown below. Afterwards, Jacobs and
Hendrickson transformed the Pebble Game algorithms regarding the theory of rigidity in [8]. Now we make
a short summary of the theory of rigidity from [5].

Definitions and characterization

In rigidity theory, the ordinary notations of graph theory are extended. Now we introduce these notations
from [5].

The vertices of an undirected multigraph G correspond to sites and the edges of G to bonds. In this section,
these concepts are used.

Definition 5.3.1
A framework p(G) is a multigraph G = (V,E) along with a mapping P : V → R2 which assigns each site
to a point in the plane.

29

In a framework, the bonds are always straight between the sites. The main question is whether a framework
can be flexed such that the lengths of all bonds remain unchanged and the bonds also remain straight.

The followings define the rigid frameworks in the plane:

Definition 5.3.2
Two frameworks p(G) and q(G) are congruent if d(p(u), p(v)) = d(q(u), q(v)) holds for each pair u, v ∈ V ,
where d denotes the Euclidean distance between the sites in the plane.

Definition 5.3.3
A motion of a framework p(G) to q(G) in the plane is a continuous function fv : [0, 1]→ R2 for each site v
such that

• fv(0) = p(v) and fv(1) = q(v) for each site v ∈ V .

• d(fv(t), fu(t)) = d(p(v), q(u)) for each bond uv ∈ E and for each t ∈ [0, 1].

In the following definition, a framework is said to be rigid in the plane if there is no motion that can change
the distance d between any pairs of sites.

Definition 5.3.4
A framework p(G) is rigid if every motion takes it into a congruent framework q(G).

For the algorithmic decision of whether a framework is rigid, Laman gave an equivalent condition using
sparsity :

Theorem 5.3.5 (Laman)
A multigraph G is a rigid framework if and only if it is (2, 3)-tight.

Higher dimension

Unfortunately, there is no known generalization of Laman’s theorem in higher dimensions. Although, a
necessary condition of 3D rigidity can be described.

Theorem 5.3.6
If a multigraph G is a rigid framework in 3D, then it is (3, 6)-tight.

Note that the range of 0 ≤ l < 2k does not contain the parameters k = 3 and l = 6. The special case l = 2k
is later discussed in Section 6.1.3.

To show that the other direction does not hold, see the following example graph from [14], called double
banana:

Figure 5.1: The double banana, which is also (3, 6)-tight, however, it is not rigid in 3D because the two
halves may rotate independently.

The characterization of rigid graphs in three dimensions is still an open problem.

30

6
∣∣ Generalizations

In this chapter, we introduce some practical generalizations for sparsity and its applications. We show new
definitions and prove computational hardness for the classification of the graphs with a respect to the new
definition. Afterwards, we extend the range of k, l with l = 2k on simple graphs, and l < 0 on multigraphs.

6.1 Excluding small violating vertex subsets

In this section, we introduce a practical generalization for (k, l)-sparsity. First, we show the definitions and
that the fundamental problems for general sparsity is NP-hard in Section 6.1.2. Afterwards, we describe an
algorithm for extending the basic range of 0 ≤ l < 2k with l = 2k on simple graphs. Note that this section
is based on our own idea, as we did not find any references with these concepts and theories.

6.1.1 Basic definitions

Now we are ready to come up with a practical generalization of (k, l)-sparsity for this section. The original
definitions regarding (k, l)-sparsity in Section 1.3 are simply expanded by the lower bound of the size of the
subset X.

Definition 6.1.1
A multigraph G is (j, k, l)-sparse if any subset X of vertices with at least j vertices induces at most
max{0, k|X| − l} edges.

Definition 6.1.2
A multigraph G = (V,E) is (j, k, l)-tight if it is (j, k, l)-sparse and has exactly k|V | − l edges.

Definition 6.1.3
A multigraph G = (V,E) is (j, k, l)-spanning if it contains a (j, k, l)-tight subgraph that spans the entire
vertex set V .

Note that it is trivial to see that the cases of j = 0 and j = 1 are the same. The original definitions are
exactly the case of j = 0, and therefore j = 1, but the further cases are not easy to characterize.

6.1.2 NP-hardness

The decision of fundamental problems for general (j, k, l)-sparsity is quite difficult, unlike the basic case of
j = 1. Now we briefly introduce its NP-hardness by a reduction from the clique problem:

Definition 6.1.4
A clique in a multigraph G is a complete subgraph G′ = (V ′, E′) of G such that every two vertices in V ′ are
adjacent. In addition, G′ is an α-clique if it is a clique and |V ′| = α.

Theorem 6.1.5
The identification of (j, k, l)-sparse graphs for general j is NP-hard.

Proof.
It is well-known that the clique-problem is NP-complete, as it is one of Richard M. Karp’s original 21 problems
in [15], which asks if there exists an α-clique in a graph. Now we show a reduction from the (j, k, l)-sparsity
to the clique problem. It is trivial that this problem remains hard when we assume that α is odd. The proof
of the following equivalence also proves the theorem:

31

Lemma 6.1.6
Let α > 1 be an odd integer and l > 0 be an integer. Then a multigraph G is

(
α, α−12 , l

)
-sparse if and only if

G does not contain an α-clique.

Proof.
First, we prove that if G contains an α-clique, then it is not sparse. Denote the vertex set of the clique by
X. Then |X| = α, so X violates the sparsity because(

α

2

)
=

(
|X|
2

)
= i(X) > k|X| − l =

α− 1

2
|X| − l =

(
α

2

)
− l.

For the other direction, let X be a vertex subset of V with at least α elements, that is, |X| ≥ α. Then from
sparsity

i(X) ≤ k|X| − l =
α− 1

2
|X| − l ≤ |X| − 1

2
|X| − l =

(
|X|
2

)
− l <

(
|X|
2

)
holds, so X cannot be an α-clique. 2

We proved that finding an α-clique in a multigraph is equivalent with testing
(
α, α−12 , l

)
-sparsity, which

completes the proof. 2

6.1.3 A note on l = 2k

In this section, we describe an algorithm in the special case of l = 2k for k > 0. In this range, the (k, l)-sparse
edge sets do not form the independent sets of a matroid, unlike in the basic range of 0 ≤ l < 2k, therefore the
extraction problem is not assured to be solved optimally with a greedy edge order. The proposed algorithm
finds only an inclusion-wise sparse subgraph for simple input graphs. As an application, it forms the base of
3D rigidity with the parameters of k = 3, l = 6, which was described in Section 5.3.

For j = 1, this range is basically characterized by Lemma 2.1.1, because only the empty graph is (1, k, 2k)-
sparse for all k ≥ 0. In the rest of this section, we assume that j = 3, which ensures that the trivial violating
two-element vertex subsets are ignored in the case of l = 2k.

Note that the rules of Basic Pebble Game cannot be extended for general j values on multigraph with fewer
than j vertices. By the definition of (j, k, l)-sparsity , they must be classified separately at the beginning of
the algorithm as sparse, regardless of the number of their edges.

Now we describe the best known algorithm so far, due to Csaba Király (personal communication), which
runs in time O((k + n)knm), then we present our improved algorithm which takes O(k2nm) steps.

The best known algorithm

Algorithm 11: Pebble Game for l = 2k

Input: An undirected simple graph G = (V,E) on at least three vertices.
Output: Well-constrained , under-constrained , over-constrained or other .
Method: Play Algorithm 1 with the following modifications. Assume that an edge e = uv is
not accepted yet, and the pebble collections has already gathered exactly the total of l = 2k
pebbles on the endpoints u and v. Denote the reachable region of u and v by X := Reach(u, v).

• If there exists a vertex in X \ {u, v}, then X forms a block by Lemma 6.1.9 (part a), so e
is rejected.

• Otherwise, check if a pebble can be gathered for each vertex w ∈ V \ {u, v}. Start a pebble
collection for each vertex w to check if one can be gathered on them without reversing the
current path or moving any pebbles.

– If every collection above succeeds, then e can be accepted .

– Otherwise, X ∪ {w} forms a block with a vertex w ∈ V \ {u, v} such that peb(w) = 0
by Lemma 6.1.9 (part a), so e is rejected.

32

Complexity analysis

Processing each edge requires at most l invocations of pebble collections in time O(lkn) = O(k2n), and
the further collections for at most n − 2 vertices in time O(nkn), therefore each edge is processed in time
O((k + n)kn). As the graph has m edges, the running time of this algorithm is O((k + n)knm), which is
O(n2m) if we consider k as a constant.

Correctness

To prove the correctness of the algorithm, we introduce the orientation lemma from [16], which is used with
γ = 0 in the algorithm:

Lemma 6.1.7 (Orientation lemma)
Let G = (V,E) be an undirected graph, g : V → Z+ an upper-bound function, and γ ≥ 0 an integer. It is
possible to remove at most γ edges from G in such a way that the remaining graph G′ has an orientation with
out-degree function out satisfying out(v) ≤ g(v) for every vertex v if and only if

∑
v∈X

g(v) + γ ≥ iG(X) holds

for every X ⊆ V .

The proof of the following lemma justifies the correctness:

Lemma 6.1.8
The classification of Algorithm 11 coincides with tight, sparse, spanning and nor sparse nor spanning graphs,
respectively.

Proof.
Note that the pebble collections are assured to gather exactly l pebbles by the orientation lemma. An edge
e = uv is inserted if and only if every vertex subset X containing vertices u, v and w has more than l pebbles,
because the endpoints u and v have exactly l, and an additional pebble may be collected on each w. Before
the insertion, all subsets containing u, v and another vertex are checked, so the condition of the definition of
(j, k, l)-sparsity is fulfilled, and the edge is inserted if and only if every subset X is not tight. 2

The improved algorithm

We realised that in Algorithm 11 the actual pebble collections for each vertex w are not required to check
the condition of the two-element reachable region X. Instead of n pebble collection, execute only one BFS
for all the vertices with at least one pebble in the reverse graph, and check if all vertices of V are reached.
Reaching a vertex w indicates if there exists a reorientation of D in which X ∪ {w} has l + 1 pebbles, but
the collections are not actually executed. This condition is checked for all vertices in V \ {u, v} at once, in
time O(n). The concrete algorithm is the following:

Algorithm 12: Pebble Game for l = 2k, improved version

Input: An undirected simple graph G = (V,E).
Output: Well-constrained , under-constrained , over-constrained or other .
Method: Play Algorithm 11 with the following modifications. If X := Reach(u, v) only
contains u and v, then we check if a pebble can be gathered for each w ∈ V \ {u, v} with a
simple search: in the reversed digraph start a BFS from all the vertices (different from the
endpoints u and v) with at least one free pebble.

• If each vertex (different from u and v) is reached, then all vertices may have a pebble and e
can be inserted , by Lemma 6.1.9 (part b).

• Otherwise {u, v, w} violates with a non-reached vertex w and e is rejected, by Lemma 6.1.9
(part a).

Complexity analysis

Processing each edge requires at most the basic l pebble collections in time O(lkn) = O(k2n), and the
further BFS in time O(kn), so overall O(k2n). As the graph has m edges, the running time of this algorithm
is O(k2nm), which is O(nm) if we consider k as a constant.

33

The correctness

The following lemma shows the correctness of Algorithm 12 .

Lemma 6.1.9
Assume that edge e = uv is not yet accepted and no more pebbles can be collected on u and v. Let X :=
Reach(u, v) be the reachable region of u and v.

(a) If X has an additional vertex w different from u and v, then X forms a block.

(b) Otherwise, if X only contains u and v, and in the BFS (from all the sources containing at least one
pebble in the reversed digraph) each vertex w ∈ V \ {u, v} is reached, then e is insertable.

Proof.
(a) By assumption, e is not accepted , so peb(u) + peb(v) ≤ l = 2k. As each vertex w ∈ X \ {u, v} can be

reached from u or v, peb(w) = 0; otherwise the pebbles of w could have been collected on u and v, so
peb(X) ≤ 2k. As X has at least j = 3 vertices,

peb(X) + i(X) + out(X) = k|X|,

and X is a reachable region, so no arcs leave it: out(X) = 0. It follows that

i(X) = k|X| − peb(X) ≥ k|X| − 2k = k|X| − l,

from where, by the sparsity of X, it is tight and therefore a block.

(b) Let X ′ := X ∪ {w} be a subset with an arbitrary vertex w ∈ V \ {u, v}. By assumption, each w is
reached, so they may have a pebble. It follows that there exists a reorientation of the graph in which
each subset X ′ has exactly l + 1 pebbles, and therefore e is insertable.

2

6.2 A note on l < 0

In this section, we make a summary of the case of k > 0, l < 0 in multigraphs. Note that this algorithm
cannot solve all fundamental problems, only the decision problem. The idea of the following algorithm was
developed by Csaba Király, in [17]. However, we change the original description to remain consistent: we use
the concept of pebbles, similarly to Basic Pebble Game.

Note that the correctness of the following algorithm is assured by the orientation lemma with γ = −l.
However, as we mentioned, we keep consistency and use the idea of pebbles to describe the algorithm in
details.

Maintenance

The algorithm uses the following data structures:

• An inner digraph D = (V,A) from the vertices of the input graph. It is initialized to be empty.

• A subset of vertices X which has an outdegree of zero and contains vertices with outdegree of k in D
throughout the algorithm. It is also empty at the beginning of the algorithm.

• The number of rejected edges which has an upper bound of γ = −l, called nγ . Initialize it to zero.

The description

Now we introduce the algorithm:

34

Algorithm 13: Pebble Game test for negative l values

Input: A multigraph G = (V,E), k > 0 and l < 0 integers.
Output: Either sparse or not.
Method: Play Algorithm 1 with the following modifications. Denote the actual edge by
e = uv.

• If both endpoints u and v are in X, then e is rejected. Furthermore, if the number nγ of
rejected edges is at least −l, then a violating subset is found and the algorithm is
terminated by not sparse; otherwise nγ is increased by one.

• Otherwise, start a pebble collection in D to gather a pebble on u or v. If it can be
accomplished, then insert the edge, otherwise reject and add the reached vertices into X.

Complexity analysis

The algorithm processes each edge at most once and requires at most one BFS search in time O(n+ma) =
O(kn). Even if G is not sparse, the algorithm terminates after inserting O(kn) edges, so the overall running
time of the algorithm is O(k2n2).

Lemma 6.2.1
The Algorithm 13 correctly recognizes the (k, l)-sparse graphs for all parameters k > 0 and l < 0.

35

7
∣∣ Implementations

In this chapter, we present some implementation details and some charts showing the running time of our
implementations of most of the discussed algorithms.

Now we recall the concrete algorithms which have been implemented.

1. Basic Pebble Game.

2. Basic Component Pebble Game.

3. Unweighted Component Pebble Game.

4. Finding k edge-disjoint r-arborescences.

5. Covering with k edge-disjoint forests.

We hereby note that all these algorithms will be proposed to be part of the LEMON [18] optimization library
until the end of the summer of 2022. The repository of our work is regularly updated and can be found
in [19].

7.1 Implementation details

In this section, we discuss some tricks for the implementations of the algorithms enumerated above and make
some observations on further heuristic ideas.

BFS algorithm

It is easy to see that in the Pebble Game algorithms, most of the time is spent collecting the pebbles, which
use BFS algorithms on the inner digraph. Therefore, the BFS algorithms should be sped up in order to
improve the total running time of the Pebble Game algorithms.

In our implementation, we used a minimalist BFS which only maintains the most important variables. The
comparison between the BFS implementation of LEMON and the minimalist BFS is shown by Figure 7.1.

Note that for accepting an edge, more than one collection may be required. Observe that in this case, the
additional BFS calls may take some unnecessary steps, because there can be some reachable regions of the
inner digraph D from the endpoints u and v that despite they do not contain a vertex with a free pebble,
they are also reached from the previous BFS algorithms. It is trivial that the pebbles can only be moved onto
the endpoints, therefore it is sufficient to detect these regions only once. Nonetheless, the cardinality of these
regions proved to be small in practice, therefore this method may not speed the algorithms up significantly.
Thus, it is not included in our improvements.

7.2 Tests

In this section, we analyze the running time of the previously enumerated algorithms for different input
parameters (k, l) and input graphs G. The following tests were executed on random multigraphs with fixed
maximal possible edge multiplicity.

36

We considered Erdős-Rényi random multigraphs [20]. The model depends on the following parameters: the
number n of vertices, the maximal possible multiplicity q of edges or loops, and the probability p of an edge
or a loop being present.

Our method using Erdős-Rényi model was the following.

Algorithm 14: Erdős-Rényi random graph generation

Input: An interval [a, b], a multiplicity q of edges and loops, and the expected number of
required edges r.
Output: A random generated multigraph G with r edges in expectation, that is, E(m) = r.
Method: Select the number n of vertices of G with discrete uniform distribution U ∼ [a, b] at
random. Note that n > 0 is required. Then define multiplicity q := 10, meaning at most 10
parallel copies of each edge and loop may be present in G. As the graph may have at most((
n
2

)
+ n

)
q edges or loops, define p := r

((n
2)+n)q

for generating r edges in expectation. Add

exactly n vertices to G, then repeat the following process q times. For any two not-necessarily-
distinct vertices u and v, determine a random number c with continuous uniform distribution
U ∼ (0, 1) and if c < p, then insert edge uv.

In the following tests, each algorithm solves the extraction problem, which implicitly includes the spanning-
and the decision problems. On each figure, the horizontal axis is the number n of vertices of the multigraphs
and the vertical axis is the corresponding average running times of the algorithms. In our tests, we investigated
three classes of graphs depending on the expected value of the number of their edges: n, n

3
2 and n2, which

are shown in Figure (a), (b) and (c), respectively. We tested the following intervals regarding the number
of vertices: [0, 100], [100, 200], . . . , [900, 1000]. Plus, we repeated Algorithm 14 exactly 100 times in each
interval, and the illustrated values represent the average running times in each interval. All these tests were
executed with AMD Ryzen 9 3950X Processor, and Linux operation system.

Terminating condition

Now we note that in the description of Basic Pebble Game in [1], the evident terminating condition when
the total number of pebbles is at most l is not mentioned. Our description in Algorithm 1 contains it, which
makes the running time of the game significantly shorter when the graph has many edges. The following
figure shows a comparison between the average running times of the algorithm using the condition of sum ≤ l
or not. Note that every case was tested for all values 1 ≤ k ≤ 5 and 0 ≤ l < 2k.

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

0.10

0.12

0.14

0.16

0.18

0.20
·10−3

With sum ≤ l
Without sum ≤ l

(a) m ≈ n edges.

0 200 400 600 800 1,000
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
With sum ≤ l
Without sum ≤ l

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1,000
0

1

2

3

4

5

6

7

8

9

10
With sum ≤ l
Without sum ≤ l

(c) m ≈ n2 edges.

Figure 7.1: Comparison between using and skipping the terminating condition sum ≤ l. Figure (a) almost
always results in (k, l)-sparse graphs, therefore, the condition is not effective (the points overlap). Figure (b)
has quite a lot spanning graphs, therefore, the running times differ significantly. Finally, Figure (c) means
loads of further edges, which are unnecessary to process, therefore, there are huge differences in the running
times.

37

BFS

The following figure shows the difference between the running time of Algorithm 1 with normal and minimalist
BFS. In practice, we also realized that it is more efficient to use a global BFS object and initialize it over
and over, than creating a local BFS object every time it should be called. The Minimalist BFS version
is implemented in the more efficient way, not like the Normal BFS, which results the following essential
difference between their running times.

0 200 400 600 800 13000
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
·10−3

Minimalist BFS
Normal BFS

(a) m ≈ n edges.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Minimalist BFS
Normal BFS

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Minimalist BFS
Normal BFS

(c) m ≈ n2 edges.

Figure 7.2: Comparison between BFS and Minimalist BFS.

7.2.1 Comparison of the algorithms in different ranges

In this section, each figure investigates different ranges of l for fixed k = 7 value, and compares the perfor-
mance of the algorithms.

0 200 400 600 800 1,000
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
·10−3

Basic
Unweighted
Lower

(a) m ≈ n edges.

0 200 400 600 800 1,000
0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30
Basic
Unweighted
Lower

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1,000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Basic
Unweighted
Lower

(c) m ≈ n2 edges.

Figure 7.3: Running times when l = 0.

0 200 400 600 800 1,000
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
·10−3

Basic
Unweighted
Lower

(a) m ≈ n edges.

0 200 400 600 800 1,000
0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40
Basic
Unweighted
Lower

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1,000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Basic
Unweighted
Lower

(c) m ≈ n2 edges.

Figure 7.4: Running times when l = k.

38

0 200 400 600 800 1,000
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
·10−2

Basic
Unweighted
Upper

(a) m ≈ n edges.

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Basic
Unweighted
Upper

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1,000
0

5

10

15

20

25

30

35
Basic
Unweighted
Upper

(c) m ≈ n2 edges.

Figure 7.5: Running times when l = 2k − 1.

0 200 400 600 800 1,000
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
·10−3

Basic
Unweighted
Lower

(a) m ≈ n edges.

0 200 400 600 800 1,000
0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40
Basic
Unweighted
Lower

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1,000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Basic
Unweighted
Lower

(c) m ≈ n2 edges.

Figure 7.6: Running times in the lower range.

0 200 400 600 800 1,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·10−2

Basic
Unweighted
Upper

(a) m ≈ n edges.

0 200 400 600 800 1,000
0

1

2

3

4

5

6
Basic
Unweighted
Upper

(b) m ≈ n
3
2 edges.

0 200 400 600 800 1,000
0

25

50

75

100

125

150

175

200

225
Basic
Unweighted
Upper

(c) m ≈ n2 edges.

Figure 7.7: Running times in the upper range.

In each case, the following observations can be made. In Figure (a), the running time of the Basic Pebble
Game (Algorithm 1) is proved to be the fastest because there are fewer components in these graph, therefore,
maintaining the components is unnecessary. In Figure (b), the running time of the Basic Pebble Game turns
out to be the slowest because the graphs have lots of edges which may be rejected in constant time with the
concept of components. In these graphs, the running times of the Unweighted Pebble Game (Algorithm 6)
and the Component Pebble Games (Algorithm 2) are almost the same. In Figure (c), the running times in
the lower range is similar to that in Figure (b), however, as these results come from our own algorithm for
the updating process (Algorithm 4), the running time of this algorithm in the upper range is not clear (see,
Figure 7.5 (c)).

39

7.3 Future plans

In this section, we briefly discuss the further plans in our project. As we mentioned, our implementation will
be proposed to be part of the LEMON library.

During this summer, we will work on the user interface for all of our algorithms. Our user-friendly intentions
regarding the classes that can be used are the following:

1. Basic Pebble Game algorithm, which can also simply handles the optimization problem.

2. A unit of Component Pebble Game algorithms consisting of Algorithm 2 in the weighted case and
Algorithm 5 in the unweighted case.

3. Covering edge set E with k edge-disjoint forests algorithm with Finding k edge-disjoint r-arborescences
and Pebble Game algorithms.

Each is planned to provide many options, such as, execution control and easy-to-use query functions.

Furthermore, we are also planning to work on a better updating process in the upper range (Algorithm 4)
for Component Pebble Game. In Figure 7.5 (c), the running times in this case are quite unexpected, but
the reasons remain unclear. Thus, we would also like to make further tests with more and bigger graphs to
understand it.

In addition, we want to examine how the order of the edges affects the running time of the discussed
algorithms. As the Basic Pebble Game processes the edges in an arbitrary order, this order can be chosen,
except when it solves the optimization problem. We will also try to give a heuristics to find an effective order.

40

Bibliography

[1] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics 308, 2008.

[2] M. Loréa. On matroidal families. Discrete Mathematics 28, 1979.

[3] C. S. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London Mathe-
matical Society, 1961.

[4] W. T. Tutte. On the problem of decomposing a graph into n connected factors. Journal of the London
Mathematical Society, 1961.

[5] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics,
1970.

[6] A. Recski. A network theory approach to the rigidity of skeletal structures i. Discrete Applied Mathe-
matics 7, 1984.

[7] D. J. Jacobs, A. Rader, M. Thorpe, and L.A. Kuhn. Protein flexibility predictions using graph theory.
Proteins 44, 2001.

[8] D. J. Jacobs and B. Hendrickson. An algorithm for two-dimensional rigidity precolation: the pebble
game. Journal of Computational Physics 137, 1997.

[9] L. Szegő. On constructive characterizations of (k, l)-sparse graphs. EGRES Technical Report 2003-10,
2003.

[10] A. Lee, I. Streinu, and L. Theran. Finding and maintaining rigid components. Canadian Conference on
Computational Geometry, 2005.

[11] A. Schrijver. Combinatorial optimization. Springer, 2004.

[12] R. Haas. Characterizations of arboricity of graphs. Smith College, 2002.

[13] C. S. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London Mathematical
Society, 1964.

[14] B. Servatius J. Graver and H. Servatius. Combinatorical rigidity. American Mathematical Society, 1993.

[15] R. M. Karp. Reducibility among combinatorical problems. University of California at Berkeley, 1972.

[16] A. Frank. Connections in combinatorial optimization. Oxford University Press, 2011.

[17] Cs. Király. An efficient algorithm for testing (k, l)-sparsity when l < 0. EGRES Technical Report
2019-04, 2019.

[18] D. Balázs, A. Jüttner, and P. Kovács. Lemon - an Open Source C++ Graph Template Library. Electron.
Notes Theor. Comput. Sci., 2011.

[19] LEMON: Library for Efficient Modeling and Optimization in Networks. Repository of sparse graphs:
https://lemon.cs.elte.hu/repos/sparseGraphs.

[20] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae., 1959.

41

https://lemon.cs.elte.hu/repos/sparseGraphs

	Acknowledgement
	Introduction
	Historical overview
	Fundamental problems
	Basic notations and definitions

	Properties of sparse graphs
	Basic characterization
	Blocks and components
	Matroidal aspects
	Partitioning

	Basic Pebble Game
	Description of the algorithm
	Coincidence with sparse graphs

	Component Pebble Game
	Basic Component Pebble Game
	Unweighted Pebble Game

	Applications
	Covering with edge-disjoint forests
	Disjoint arborescences
	Covering with k edge-disjoint forests

	Arboricity
	Rigidity

	Generalizations
	Excluding small violating vertex subsets
	Basic definitions
	NP-hardness
	A note on l=2k

	A note on l<0

	Implementations
	Implementation details
	Tests
	Comparison of the algorithms in different ranges

	Future plans

	Bibliography

