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1 Introduction
When we add, subtract, multiply or divide the real numbers used in everyday life, we always get
another real number. Three generalizations of real numbers are also behave in this way. These
four number systems are called ‘normed division algebras’. The real number system is but one
example. The set of all real numbers forms a line, so we say that the collection of real numbers
is one-dimensional. Conversely, the line is one-dimensional because specifying a point on it
requires one real number.
The next most familiar division algebra is the system of complex numbers. The square root of
−1 was introduced as a kind of secret weapon to solve more complex forms of equations by the
Italian mathematician and physicist, Gerolamo Cardano. Mathematicians followed in Cardano’s
footsteps and began working with complex numbers, numbers of the form 0 + 18, where 0 and
1 are ordinary real numbers. The rules for addition, subtraction, multiplication, and division of
complex numbers were developed by the Italian mathematician Rafael Bombelli. The complex
numbers are two-dimensional, one more than the reals. This is because it takes two real numbers
to specify a point on a plane, one more than it takes to specify a point on a line. So the complex
numbers behave like coordinates on a two-dimensional plane. The extra dimension comes from
having another number: the number 8. It was Jean-Robert Argand who popularized the idea that
complex numbers describe points on the plane around 1805. He also showed how to think of the
operations of complex numbers as geometric manipulations on the plane.
The signifcance of complex numbers for two-dimensional geometry led the mathematician and
physicist William Rowan Hamilton to seek a similar system of numbers to play the same role in
three-dimensions. This problem vexed him for many years, and Hamilton’s breakthrough came
only when he began to think of even higher dimensions. He discovered how to treat complex
numbers as pairs of real numbers in 1835. Hamilton noted that we are free to think of the number
0+18 as just a peculiar way of writing a list of two real numbers, for instance (0, 1). This notation
makes it very easy to add and subtract complex numbers; just add or subtract each number in
the second (complex) list to the corresponding number in the first (real) list. Hamilton also came
up with rules for how to multiply and divide complex numbers so that they maintained the nice
geometrical meaning discovered by Argand.
After Hamilton invented this algebraic system for complex numbers that had a geometric mean-
ing, he tried for many years to invent a bigger algebra of triplets that would play a similar role
in three-dimensional geometry. He figured out a solution on the 16th of October, 1843. He was
walking with his wife along the Royal Canal to a meeting of the Royal Irish Academy in Dublin
when he had a sudden revelation. Rotations in three dimensions couldn’t be described with just
three numbers. He needed a fourth number, thereby generating a four-dimensional set called
quaternions that take the form 0 + 18 + 2 9 + 3: . Like the complex numbers which owe their
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two-dimensions to 1 and a single square root of −1, the quaternions owe their four dimensions
to 1 and three unique square roots of −1, called 8, 9 and : respectively. And in a famous act of
mathematical vandalism, he carved these equations into the stone of the Brougham Bridge:

82 = 92 = :2 = 8 9 : = −1.

Just as we think of the complex numbers as points in a two-dimensional plane, we can also
think of the quaternions as points in a four-dimensional space. So the quaternions behave like
coordinates in four-dimensional space.
One reason this story is so well-known is that Hamilton spent the rest of his life obsessed with
the quaternions, and found many practical uses for them. Today, in many of these applications
the quaternions have been replaced by their simpler cousins: vectors, which can be thought of
as quaternions of the special form 08 + 1 9 + 2: (the first number is just zero).
The quaternions are noncommutative:

GH ≠ HG.

Which means that the order of multiplication matters. Order is important because quaternions
describe rotations in three dimensions, and for such rotations the order makes a difference to the
outcome.
Inspired by Hamilton’s work, his friend John Graves went on to discover the fourth and most
mysterious of the division algebras: the octonions. This is an 8-dimensional number system, with
seven square roots of −1. They behave like coordinates in eight-dimensional space. However,
the octonions break two familiar law of arithmetic: not only are they noncommutative, but also,
they are nonassociative:

(GH)I ≠ G(HI).

Meanwhile the young Arthur Cayley, fresh out of Cambridge, published a paper where as an
afterthought, he attached a brief description of the octonions. In fact, this paper was so full of
errors that it was omitted from his collected works, except for the part about octonions. Since
Cayley preceded Graves in publication, we often refer to the octonions as Cayley numbers.
While somewhat neglected due to their nonassociativity, octonions stand at the crossroads of
many interesting fields of mathematics. They are still closely related to the geometry of 7 and 8
dimensions, and we can still describe rotations in those dimensions using the multiplication of
octonions. It’s just that, because rotations are associative and octonions are not, the relationship
is more subtle than it is for the other division algebras.
There was some speculation that the octonions could be extended further, but a celebrated
theorem by Hurwitz concluded that the sequence of normed division algebras over the real
numbers contains only the reals, R, themselves; the complexes, C; the quaternions, H; and the
octonions, O.
It would take the development of modern particle physics, and string theory in particular, to see
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how the octonions might be useful in the real world. And indeed, if string theory is a correct
representation of the universe, they may explain why the universe has the number of dimensions
it does. [1–3]
To put it differently, there is a certain hierarchy of algebras. Its very foundation is the algebra
of real numbers. Its closest neighbor is the algebra of complex numbers in which multiplication
retains themost important properties of themultiplication of real numbers such as commutativity,
associativity, invertibility (this is an allusion to the possibility of division), and the existence
of a multiplicative identity. Then comes the algebra of quaternions, in which multiplication is
no longer commutative. Then comes the algebra of octonions, in which the multiplication is
alternative rather than associative, but which is still a division algebra with a multiplicative
identity. Other algebras do not enjoy such a "minimal package" of properties. [4]
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2 Preliminaries
Definition. A setV ≠ 0 is a vector space over a field F , if the following axioms are satisfied.

• V is equiped with an operation called addition, such that for all D, E ∈ V there exist an
element inV, denoted by D + E.

• Addition is associative: (D + E) + F = D + (E + F) for all D, E, F ∈ V.

• Addition is commutative: D + E = E + D for all D, E ∈ V.

• There exists an element called the zero element, 0 ∈ V, such that E + 0 = 0 + E = E for all
E ∈ V.

• For every element E ∈ V, there exists an element −E ∈ V, called the additive inverse of
E, such that E + (−E) = (−E) + E = 0.

• F andV are equiped with an operation called scalar multiplication, such that for all _ ∈ T
and D ∈ V there exist an element inV, denoted by _D.

• (_ + `)E = _E + `E for all _, ` ∈ F and E ∈ V

• _(D + E) = _D + _E for all _ ∈ F and D, E ∈ V

• (_`)E = _(`E) for all _, ` ∈ F and E ∈ V

• There exists an element called the the multiplicative identity in F , 1 ∈ F , such that 1E = E
for all E ∈ V.

Definition. E1, . . . E= ∈ V vectors are linearly independent, if _1E1 + . . . + _=E= = 0, where
_1, . . . , _= ∈ T , if and only if, every _8 = 0, where 8 = 1, . . . , =.
Definition. A set of vectors E1, . . . E= ∈ V is a generating set in V if every element of V is a
linear combination of the vectors E8, where 8 = 1, . . . , =.
Definition. A set of vectors in a vector space is a basis if its a linearly independent generating
set. [5]
Definition.An algebraA is a vector space that is equipped with a bilinear map< : A×A → A
called ’multiplication’ and a nonzero element 1 ∈ A called the ’identity of A’ or ’unit’ such
that <(1, 0) = <(0, 1) = 0. As usual, we abbreviate <(0, 1) as 01.
Given an algebra, we can think of real numbers as elements of this algebra via the map U→ U1.
[6]
To see why an =-dimensional algebra is completely determined by its ’multiplication table’, here
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is an equivalent definition:
Definition. By an =-dimensional algebra we mean the set of expressions of the form

0181 + 0282 + . . . + 0=8=

(where 01, . . . , 0= are arbitrary real numbers and the set of 81, . . . , 8= vectors form a basis) with
the following operations:

• Multiplication by a real number: : (0181 + . . . + 0=8=) = :0181 + . . . + 0=8=.

• Addition: (0181 + . . . + 0=8=) + (1181 + . . . + 1=8=) = (01 + 11)81 + . . . + (0=8=)8=.

• Multiplication given in terms of a table of products: 8U8V = ?UV,181 + . . . + ?UV,=8=, where
U and V are integers from 1 to =.

The multiplication table is used to find the product

(0181 + . . . + 0=8=) (1181 + . . . + 1=8=).

So the choice of =3 numbers ?UV,W, which are the elements of the multiplication table, completely
determines an =-dimensional algebra. [4]
Therefore we can say that an =-dimensional algebra is an =-dimensional vector space with a
multiplication table of the basis elements.
Definition. An algebra is commutative if for any two of its elements 0 and 1 we have

01 = 10.

Definition. An algebra is associative if for any three of its elements 0, 1, 2 we have

(01)2 = 0(12).

Definition. An algebra A is called a division algebra if each of the equations

0G = 1

and
H0 = 1,

where 0 and 1 are any elements of A and 0 ≠ 0, is uniquely solvable.
Definition. Equivalently,A is a division algebra if the operations of left and right multiplication
by any nonzero element are invertible.
Definition. Equivalently, A is a division algebra if 01 = 0 implies that either 0 or 1 is zero.
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Definition. A normed division algebra is an algebraA that is also a normed vector space with
| |01 | | = | |0 | | · | |1 | |.
This implies that A is a division algebra and that | |1| | = 1.
Definition. A set P of elements of an algebra A is called subalgebra of A if

• P is a subspace of the vector space A;

• P is closed under the multiplication in A, that is, if 0 ∈ P and 1 ∈ P, then 01 ∈ P.

There are three levels of associativity.
Definition. An algebra is power-associative if the subalgebra generated by any one element is
associative.
Definition. An algebra is alternative if the subalgebra generated by any two elements is asso-
ciative.
Definition. An algebra is associative if the subalgebra generated by any three elements is asso-
ciative.
Theorem. By a theorem of Emil Artin, an algebraA is alternative, if and only if for all 0, 1 ∈ A
we have

(11)0 = 1(10), (10)1 = 1(01), (01)1 = 0(11).

Any two of these equations implies the remaining one, so we can take the first and last as the
definition of ‘alternative’. [6]
Properties of the scalar product:

(G, G) ≥ 0. (G, G) = 0 only if G = 0;

(G, H) = (H, G);

(G, :H) = : (G, H) or (:G, H) = : (G, H), where : is any real number;

(G, H + I) = (G, H) + (G, I) or (G + H, I) = (G, I) + (H, I).

Definition. Suppose that with any two vectors G and H in the space A= there is associated a
number (G, H) such that the above properties hold. Then (G, H) is the scalar product of the vectors
G and H.
Let

81, 82, . . . , 8=

be a basis in A=. With any two vectors

G = G181 + G282 + . . . + G=8=,

H = H181 + H282 + . . . + H=8=,
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in A= we associate the number

(G, H) =
∑
9 ,:

G 9 H: (8 9 , 8: )

where (G, H) is the scalar product of the vectors G and H.
Definition. The length, or norm, of an =-dimensional vector is the number

|G | =
√
(G, G).

Definition. Two vectors, G and H are perpendicular, or orthogonal, in symbols G ⊥ H, if their
scalar product is zero, (G, G) = 0.
Theorem. Let

H1, H2, . . . , H?

be ? given vectors in the spaceA=. If ? < =, then there exists a nonzero vector G perpendicular
to all the given vectors.
Corollary. If P is a subspace of the space A= and P ≠ A=, then there exists a nonzero vector
G ∈ A= orthogonal to all vectors in P.
Assertion. Let 8 be a nonzero vector. Any vector a can be decomposed into a sum of two vectors
of which one is a multiple of 8 and the other is perpendicular to 8.

0 = :8 + D, D ⊥ 8.

Proof. To prove this, we must prove the existence of a number : such that the vector D = 0 − :8
is orthogonal to 8, that is, such that

(0 − :8, 8) = 0.

Equivalently,
(0, 8) = : (8, 8).

But then
: =
(0, 8)
(8, 8) .

(Note that 8 ≠ 0, so that (8, 8) ≠ 0.) �

Definition. A basis
81, 82, . . . , 8=

is said to be orthonormal if any two of its vectors are orthogonal,

(8 9 , 8: ) = 0 ( 9 , : = 1, ..., =; 9 ≠ :),

and each of its vectors has length 1,

(8 9 , 8 9 ) = 1 ( 9 = 1, ..., =).
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If the basis is orthonormal, then the expression

(G, H) =
∑
9 ,:

G 9 H: (8 9 , 8: )

for the scalar product of two vectors reduces to

(G, H) = G1H1 + G2H2 + . . . + G=H=

that is, the scalar product of two vectors expressed in an orthonormal basis reduces to the sum
of the products of the corresponding coordinates of the two vectors. [4]
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3 Constructions
What are the division algebras and how can we construct them?

3.1 Multiplication table and Fano plane

Complex multiplication
Think of the real numbers as one-dimensional vectors. Interpret ordered pairs of real numbers
as complex numbers.
Definition. For real 0 and 1,

(0; 1) = 0 + 18.

Definition. For real 01, 02 and 11, 12, complex multiplication is defined by:

(01; 02) · (11; 12) = ( [0111 − 0212]; [0112 + 0211]).

And it satisfies
| | (01; 02) · (11; 12) | | = | | (01; 02) | | · | | (11; 12) | |.

In the case of the complex numbers the multiplication table consists of the single equality

8 · 8 = −1 + 08.

Quaternion multiplication
Think of the complex numbers as two-dimensional vectors. Interpret ordered pairs of complex
numbers as quaternions.
Definition. For complex 2 = 01 + 028 and 3 = 11 + 128,

(2; 3) = 2 + 3 9

= 01 + 028 + 11 9 + 128 9

= 01 + 028 + 11 9 + 12:.

where 8 9 = : .
Definition. For complex 2 = 01 + 028, 2̄ = 01 − 028 is the conjugate of 2.
Definition. For complex numbers 21 = 01 + 028, 22 = 03 + 048, 31 = 11 + 128 and 32 = 13 + 148,
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quaternion multiplication is defined by:

(21; 22) · (31; 32) = (0111 − 0212 − 0313 − 0414)

+ (0112 + 0211 + 0314 − 0413)8

+ (0113 − 0214 + 0311 + 0412) 9

+ (0114 + 0213 − 0312 + 0411):

= (0111 − 0212) + (0112 + 0211)8

− [(0313 + 0414) + (−0314 + 0413)8]

+ [(0113 − 0214) + (0114 + 0213)8] 9

+ [(0311 + 0412) + (−0312 + 0411)8] 9

= (2131 − 223̄2) + (2132 + 223̄1) 9

= ( [2131 − 223̄2]; [2132 + 223̄1]).

And it satisfies
| | (21; 22) · (31; 32) | | = | | (21; 22) | | · | | (31; 32) | |.

Quaternion multiplication is completely determined by this table for the multiplication of 8, 9 ,
and ::

8 9 :

8 −1 : − 9
9 −: −1 8

: 9 −8 −1

Proposition. Quaternion multiplication is not commutative, since 8 9 = : and 98 = −: .
Proposition. Quaternion multiplication is associative. That is

(@1 · @2) · @3 = @1 · (@2 · @3). (1)

Proof. Each of the quaternions @U (U = 1, 2, 3) is the sum of four terms (@U = 0U + 1U8 + 2U 9 +
3U:). It follows that the left side of the previous equation is the sum of 4 x 4 x 4 = 64 terms of
the form

(D1D2)D3, (2)

where D1 is one of the summands in @1, D2 in @2 and D3 in @3. Similarly, the right side is the sum
of 64 terms

D1(D2D3). (3)

If we can show that each of the terms (2) is equal to some term (3), then we’ll have proved (1).
Thus, to verify (1) it suffices to verify it for the special case when @1, @2, @3 are any three of the
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four quaternions 0, 18, 2 9 , 3: . Since we can pull out numerical coefficients, we need only verify
(1) for the four quaternions 1, 8, 9 , : . For example, instead of showing that

((18) (2 9)) (1′8) = (18) ((2 9) (1′8)),

it suffices to show that
(8 9)8 = 8( 98).

If one of the quaternions @1, @2, @3 is 1, then (1) is true. Thus it suffices to verify (1) when
@1, @2, @3 are any of the quaternions 8, 9 , : .
There are 27 such equalities. Using the multiplication table we can check all of them. This proves
the associativity of the multiplication of quaternions. �

Since the quaternions,H, are a 4-dimensional algebra with basis 1, 8, 9 , : , to describe the product
instead of a multiplication table, it is easier to remember that:

• 1 is the multiplicative identity,

• 8, 9 , and : are square roots of −1,

• we have 8 9 = : , 98 = −: , and all identities obtained from these by cyclic permutations of
(8, 9 , :).

We can summarize the last rule by using Fano plane:

Figure 1: Fano plane for quaternion multiplication

When we multiply two elements going clockwise around the circle we get the next one: for
example, 8 9 = : . But when we multiply two going around counterclockwise, we get minus the
next one: for example, 98 = −: . Here, it is even easier to see that this multiplication rule is not
commutative; the outcome depends on the order of the factors.



3 CONSTRUCTIONS 17

Octonion multiplication
Think of the quaternions as four-dimensional vectors. Interpret ordered pairs of quaternions as
octonions.
Definition. For quaternions @ = 01 + 028 + 03 9 + 04: and A = 11 + 128 + 13 9 + 14: ,

(@; A) = @ + A;

= 01 + 028 + 03 9 + 04:

+ 11; + 128; + 13 9 ; + 14:;

= 01 + 028 + 03 9 + 04:

+ 11; + 12� + 13� + 14 .

where 8; = �, 9 ; = �, and :; =  .
Definition. For quaternion @ = 01 + 028 + 03 9 + 04: , @̄ = 01 − 028 − 03 9 − 04: is the conjugate
of @.
Remark. If @′ is a "pure imaginary" quaternion, that is, if @′ = 18 + 2 9 + 3: , then

@′2 = 1(12 + 22 + 32) ≤ 0.

Conversely, if the square of a quaternion is real and less than or equal to zero, then that quaternion
is pure imaginary. (In fact, if @ = 0 + 18 + 2 9 + 3: , then @2 = (0 + @′) (0 + @′) = 02 + @′2 + 20@′ =
02 − 12 − 22 − 32 + 20@′. If the last expression were a real number and 0 ≠ 0, then @′ = 0. But
then @ = 0 and @2 is not ≤ 0.)
It follows that quaternions of the form 18+2 9+3: , and only such quaternions, can be characterized
by the condition that their squares are real numbers ≤ 0. With this in mind, we can give the
following alternate description of the operation of conjugation:
Let @ be a quaternion and let @ = 0 + @′ be its unique representation such that @′2 is real and
≤ 0. Then @̄ = 0 − @′.
Definition. For quaternions @1, @2, A1 and A2, octonion multiplication is defined by:

(@1; @2) · (A1; A2) = (@1 + @2;) · (A1 + A2;)

= (@1A1 − Ā2@2) + (A2@1 + @2Ā1);

= ( [@1A1 − Ā2@2]; [A2@1 + @2Ā1]).

And it satisfies
| | (@1; @2) · (A1; A2) | | = | | (@1; @2) | | · | | (A1; A2) | |.

Octonion multiplication is completely determined by this table for the multiplication of 8, 9 , : , ;,
�, � and  , which describes the result of multiplying the element in the =-th row by the element
in the <-th column:
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8 9 : ; � �  

8 −1 : − 9 � −; − �

9 −: −1 8 �  −; −�
: 9 −8 −1  −� � −;
; −� −� − −1 8 9 :

� ; − � −8 −1 −: 9

�  ; −� − 9 : −1 −8
 −� � ; −: − 9 8 −1

Proposition. Since the octonions contain the quaternions, octonion multiplication is also not
commutative.
Proposition. Octonian multiplication is not associative, since ; · (� · �) =  and (; · �) · � = − .
Proposition. The octonions are alternative.

Proof. We will show that the following equalities hold for any two octonions D, E:

(DE)E = D(EE), (4)

and
E(ED) = (EE)D. (5)

We can regard formulas (4) and (5) as a weak form of associativity. Systems in which these two
formulas hold are called alternative systems.
Remark. Instead of proving (4) and (5) it suffices to prove

(DE)Ē = D(EĒ), (6)

and
Ē(ED) = (ĒE)D. (7)

Indeed, if we replace Ē in these equalities by −E + 20, where 0 is the real part of the octonion E,
then we can obtain (4) and (5).
Lemma. We prove (6). Put D = @1 + @24, E = A1 + A24. Then

(DE)Ē = ((@1 + @24) (A1 + A24)) (Ā1 − A24)

= ((@1A1 − Ā2@2) + (A2@1 + @2Ā1)4) (Ā1 − A24)

= ((@1A1 − Ā2@2) + Ā2(A2@1 + @2Ā1))

+ ((−A2) (@1A1 − Ā2@2) + (A2@1 + @2Ā1)A1)4

= ( |A1 |2 + |A2 |2)@1 + (|A1 |2 + |A2 |2)@24

= ( |A1 |2 + |A2 |2) (@1 + @24) = |E |2D.
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On the other hand, EĒ = |E |2, so that

D(EĒ) = |E |2D.

This implies (6). A similar proof establishes (7). �

Since the octonions are an 8-dimensional algebra with basis 8, 9 , : , ;, �, � and  , to describe the
product instead of a multiplication table, it is easier to use the Fano plane:

Figure 2: Fano plane for octonion multiplication

The Fano plane is a nice mnemonic with 7 points and 7 lines. The ‘lines’ are the sides of the
triangle, its altitudes, and the circle containing all the midpoints of the sides. Each pair of distinct
points lies on a unique line. Each line contains three points, and each of these triples has has a
cyclic ordering shown by the arrows. If 48, 4 9 , and 4: are cyclically ordered in this way then

484 9 = 4: , 4 948 = −4: .

Together with these rules:

• 1 is the multiplicative identity,

• 8, 9 , : , ;, �, � and  are square roots of −1,

the Fano plane completely describes the algebra structure of the octonions. [4, 6, 7]
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3.2 The Cayley-Dickson Construction

Definition. As Hamilton noted, the complex number 0 + 18 can be thought of as a pair (0, 1) of
real numbers. Addition is done component-wise, and multiplication goes like this:

(0, 1) (2, 3) = (02 − 31, 03 + 21).

Definition.We can also define the conjugate of a complex number by:

(0, 1) = (0,−1).

Definition. We can define the quaternions in a similar way. A quaternion can be thought of as a
pair of complex numbers. Addition is done component-wise, and multiplication goes like this:

(0, 1) (2, 3) = (02 − 31̄, 0̄3 + 21).

If we included them in the previous formula nothing would change, since the conjugate of a real
number is just itself.
Definition.We can also define the conjugate of a quaternion by:

(0, 1) = (0̄,−1).

Definition.We can define an octonion to be a pair of quaternions. As before, we add and multiply
them using the two formulas above.
This trick for getting new algebras from old is called the Cayley–Dickson construction. It
explaines why each one fits neatly inside the next. It makes it clear why H is noncommutative
and O is nonassociative. It gives an infinite sequence of algebras, doubling in dimension each
time, with the normed division algebras as the first four.
The Cayley-Dickson construction is also called the doubling procedure. Here is why:
Definition. Let A be an algebra of dimension = whose elements are expressions of the form:

D = 00 + 0181 + 0282 + . . . + 0=8=

Definition.We call the element

D = 00 − 0181 − 0282 − . . . − 0=8=

the conjugate of D.
Definition. We define A (2) , the doubled A, as the algebra of dimension 2= whose elements are
expressions of the form

D1 + D24,

where D1 and D2 are arbitrary elements in A and 4 is a new symbol.
The elements of A (2) are added according to the natural rule

(D1 + D24) + (E1 + E24) = (D1 + E1) + (D2 + E2)4,
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and multiplied in accordance with the rule

(D1 + D24) (E1 + E24) = (D1E1 − E2D2) + (E2D1 + D2E1)4.

The usual form of an element of A (2) is

00 + 0181 + 0282 + . . . + 0=8= + 0=+18=+1 + . . . + 02=+182=+1

This determines the pair of elements D1, D2 in A given by

D1 = 00 + 0181 + 0282 + . . . + 0=8=,

D2 = 0=+1 + 0=+281 + . . . + 02=+18=,

and thus the element D1 + D24, and conversely. [4, 6]
Now that we have defined the doubling procedure it is easy to see that what we did in the previous
subsections is obtain the complex numbers by doubling the real numbers, obtain the quaternions
by doubling the complex numbers and obtain the octonions by doubling the quaternions.
But as we saw, when we double the dimensions in every step we lose a property. Real numbers
can be ordered from smallest to largest, for instance, whereas in the complex plane there’s no
such concept. Next, quaternions lose commutativity, that is swapping the order of elements
changes the answer. This makes sense, since multiplying higher-dimensional numbers involves
rotation, and when you switch the order of rotations in more than two dimensions you end up in
a different place. Much more bizarrely, the octonions are nonassociative, which means it matters
how they are grouped. [3]
If we keep applying the Cayley–Dickson process to the octonions we get a sequence of algebras
of dimension 16, 32, 64, and so on. The first of these is called the sedenions, presumably alluding
to the fact that it is 16-dimensional. It follows from the above results that all the algebras are not
division algebras, since an explicit calculation demonstrates that the sedenions, and thus all the
rest, have zero divisors. [4]
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4 Division
So far we have defined three of the four arithmetic operations, namely, addition, subtraction, and
multiplication in each of these number systems. But what about the fourth?
Definition. An algebra A is called a division algebra if each of the equations

0G = 1

and
H0 = 1,

where 0 and 1 are any elements of A and 0 ≠ 0, is uniquely solvable.

4.1 Division of Complex Numbers

Definition. Let I1 and I2 be any two complex numbers and I2 ≠ 0. The quotient I1/I2 is the
solution of the equation

I2G = I1.

Proposition. The complex numbers are a division algebra.

Proof. Multiplying both sides of this equation by Ī2 we obtain Ī2I2G = Ī2I1, so that

|I2 |2G = Ī2I1.

Multiplying both sides of the last equation by 1/|I2 |2 we have

G =
1
|I2 |2

Ī2I1.

Substitution shows that this expression is a solution. �

4.2 Division of Quaternions

Definition. Let @1 and @2 be any two quaternions and @2 ≠ 0. Since multiplication of quaternions
is noncommutative, it is necessary to consider two equations:

@2G = @1

and
G@2 = @1.

We call the solution of the first of these equations the left quotient of @1 by @2 and denote it
by G; . Similarly, we call the solution of the second equation the right quotient of @1 by @2 and
denote it by GA .
Proposition. The quaternions are a division algebra.
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Proof. Multiplying both sides of the first equation on the left by @̄2 and then by 1/|@2 |2 we have

G =
1
|@2 |2

@̄2@1.

Substitution shows that this expression is a solution. Hence

G; =
1
|@2 |2

@̄2@1.

Similarly,
GA =

1
|@2 |2

@1@̄2.

�

4.3 Division of Octonions

Definition. Let D and E be any two octonions and E ≠ 0. The left quotient of D by E is the solution
of the equation

EG = D,

and the right quotient of D by E is the solution of the equation

GE = D.

Proposition. The octonions are a division algebra.

Proof. Just as in the case of the quaternions, we multiply both sides of the first equation on the
left by Ē. This yields

Ē(EG) = ĒD,

or, in view of (7),
|E |2G = ĒD.

Hence
G = ĒD/|E |2.

Substitution and the use of (7) shows that this value of G satisfies the first equation. In other
words, the left quotient of D by E is

G; = ĒD/|E |2.

A similar argument shows that the right quotient is

GA = DĒ/|E |2,

using the formula (6). �

[4]
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4.4 Frobenius’ Theorems

One of the classical problems of the theory of algebras is finding all division algebras. In spite
of the fundamental nature of the problem, it is still not completely solved. An important result
was obtained rather recently. It is to the effect that the dimension of such an algebra must be
equal to one of the numbers 1, 2, 4, 8. While this shows that the dimensions of division algebras
are small, we still have no complete overview of these algebras.
A considerably simpler problem is that of finding the division algebras satisfying additional
natural conditions. In 1878, the German mathematician, Ferdinand Georg Frobenius established
the following remarkable result.

Frobenius’ Theorem. Every associative division algebra is isomorphic to one of the following:
the algebra of real numbers, the algebra of complex numbers, and the algebra of quaternions.

The Generalized Frobenius’ Theorem. Every alternative division algebra is isomorphic to one
of the following four algebras: the real numbers, the complex numbers, the quaternions, and the
octonions.

Since every associative algebra is alternative, the Frobenius’ Theorem follows from the Gen-
eralized Frobenius Theorem. On the other hand, the algebra of octonions is alternative but not
associative, so that the two theorems are different. [4]
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5 The Problem of The Sum of Squares
For what values of = are there identities stating that "the product of a sum of = squares by a sum
of = squares is a sum of = squares"?
For = = 1 we have the immediate answer

0212 = (01)2.

But what about = = 2, 3, 4, 5, 6 and so on?
German mathematician Adolf Hurwitz showed in 1898 that identities of the required kind exist
for = = 1, 2, 4, 8 and for no other values of =.
Exploiting the connection between these identities and multiplicative norms, this result can be
turned around to show that normed algebras only exist for dimension = = 1, 2, 4, 8. An example
of an algebra in each dimension is given by R, C, H and O respectively.

5.1 General Formulation of The Problem of the Sum of Squares

Let 01, 02, . . . , 0= and 11, 12, . . . , 1= be two set of numbers. By a bilinear form of these numbers
we mean a sum such that each summand is a product of a number from the first set and a number
from the second set.
"The problem of the sum of squares" can be stated precisely as follows. For what values of =
one can find = bilinear forms q1, q2, . . . , , q=, where

q1(01, 02, . . . , 0=; 11, 12, . . . , 1=),

q2(01, 02, . . . , 0=; 11, 12, . . . , 1=),

.

.

.

q= (01, 02, . . . , 0=; 11, 12, . . . , 1=)
such that

(01
2 + 02

2 + . . . + 0=2) (11
2 + 12

2 + . . . + 1=2) = q1
2 + q2

2 + . . . + q=2. (8)

5.2 The Connection between The Problem of the Sum of Squares and a
Certain Algebra

Proposition.With every identity (8) there is associated a certain algebra defined in the following
manner: We consider the =-dimensional vector space whose elements are the vectors

0181 + 0282 + . . . + 0=8=.
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Definition. The product of two elements

0 = 0181 + 0282 + . . . + 0=8= and 1 = 1181 + 1282 + . . . + 1=8=

in that space is defined by the formula

01 = q181 + q282 + . . . + q=8=. (9)

In view of the linearity of the forms q1, q2, . . . , q= with respect to the variables 01, 02, . . . , 0=

as well as the variables 11, 12, . . . , 1= the following equalities hold:

:0 · 1 = : (01) 0 · :1 = : (01),

(01 + 02)1 = 011 + 021, 0(11 + 12) = 011 + 012.

But then the multiplication rule (9) defines a certain algebra (see in Preliminaries). Let this
algebra be denoted by A. Thus, it follows that the algebra A is completely determined by the
identity (8).

5.3 Introducing a Norm in the Algebra

We wish to find out what property of the algebra A is a reflection of the fact that forms
q1, q2, . . . , q= are not entirely arbitrary but satisfy the identity (8).
Definition. We introduce in the algebra A a scalar product (0, 1) defined in terms of the
coordinates of the vectors 0 and 1 relative to the basis 81, 82, . . . , 8= by means of the rule

(0, 1) = 0111 + 0212 + . . . + 0=1=.

In particular,
(0, 0) = 01

2 + 02
2 + . . . + 0=2.

Remark. By defining the scalar product in this way we make the basis 81, 82, . . . , 8= orthonormal.
Indeed,

(8U, 8U) = 1,

(8U, 8V) = 0,

for U, V = 1, . . . , =, U ≠ V. This is so because the only nonzero coordinate of the vector 8U is its
U-th coordinate (it has the value 1), and the only nonzero coordinate of 8V is its V-th coordinate.
Corollary. Using the scalar product we can write (8) as

(01, 01) = (0, 0) (1, 1) (10)

Definition. The norm of an element 0 is

|0 | =
√
(0, 0).
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Corollary. (10) can be rewritten as
|01 | = |0 | |1 | (11)

Definition. We say that an algebra A is normed if we can define in it a scalar product such that
the identity (10) holds.
Examples of normed algebras are the complex numbers, the quaternions, and the octonions.
That these are normed algebras follows from the fact that formula (11) holds in them.
In order to satisfy all the requirements of the definition of a normed algebra we need only
introduce a scalar product such that |0 | =

√
(0, 0).

5.4 The identity of Two-Squares

The Absolute Value of a Complex Number
Definition. Let I = 0 + 18 be any complex number. The nonnegative real number

√
02 + 12 is

called the absolute value or norm of I and is denoted by |I |, that is,

|I | =
√
02 + 12.

Corollary. We have
IĪ = (0 + 18) (0 − 18) = 02 + 12 = |I |2.

Proposition. The absolute value of a product of complex numbers is the product of the absolute
values of the factors.

Proof. Let I1 and I2 be two complex numbers, then

|I1I2 |2 = (I1I2) (I1I2) = I1I2 Ī1 Ī2 = I1 Ī1 · I1 Ī2 = |I1 |2 |I2 |2,

so that
|I1I2 |2 = |I1 |2 |I2 |2, (12)

and therefore
|I1I2 | = |I1 | |I2 |.

�

The identity of Two-Squares
Let

I = 0 + 18, I′ = 0′ + 1′8.

Then
II′ = (0 + 18) (0′ + 1′8) = (00′ − 11′) + (01′ + 0′1)8.
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Proposition. The product of a sum of two squares by a sum of two squares is a sum of two
squares.

Proof. Rewriting equation (12) as:

(02+12) (0′2+1′2) = |I |2 |I′|2 = |II′|2 = | (00′ − 11′) + (01′ + 0′1)8 |2 = (00′ − 11′)2+(01′ + 0′1)2.

�

If we would prefer to use the general form we have to make a minor change of notation:
Let

I = 01 + 028, I′ = 11 + 128.

Then the previous equation can be rewritten as

(01
2 + 02

2) (11
2 + 12

2) = (0111 − 0212)2 + (0112 + 0211)2.

5.5 The identity of Four-Squares

The Absolute Value of a Quaternion
Definition.Let @ = 0+18+2 9+3: be any quaternion. The nonnegative number

√
02 + 12 + 22 + 32

is called the absolute value or norm of @ and is denoted by |@ |, that is,

|@ | =
√
02 + 12 + 22 + 32.

Corollary. We have

@@̄ = (0 + 18 + 2 9 + 3:) (0 − 18 − 2 9 − 3:) = 02 + 12 + 22 + 32 = |@ |2.

This formula is the same as the one for complex numbers.
Proposition. The absolute value of a product of quaternions is the product of the absolute values
of the factors.

Proof. Let @1 and @2 be two quaternions, then

|@1@2 |2 = (@1@2) (@1@2) = (@1@2) (@̄2@̄1) = @1(@2@̄2)@̄1 = |@1 |2 |@2 |2,

so that
|@1@2 |2 = |@1 |2 |@2 |2, (13)

and therefore
|@1@2 | = |@1 | |@2 |.

�
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The identity of Four-Squares
Let

@ = 0 + 18 + 2 9 + 3:, @′ = 0′ + 1′8 + 2′ 9 + 3′:.

Then

@@′ = (00′ − 11′ − 22′ − 33′) + (01′ + 10′ + 23′ − 32′)8

+ (02′ + 20′ + 31′ − 13′) 9 + (03′ + 30′ + 12′ − 21′):.

Proposition. The product of the sum of four squares by a sum of four squares is a sum of four
squares.

Proof. Rewriting equation (13) as:

(02 + 12 + 22 + 32) (0′2 + 1′2 + 2′2 + 3′2) = |@ |2 |@′|2 = |@@′|2

= | (00′ − 11′ − 22′ − 33′) + (01′ + 10′ + 23′ − 32′)8

+ (02′ + 20′ + 31′ − 13′) 9 + (03′ + 30′ + 12′ − 21′): |2

= (00′ − 11′ − 22′ − 33′)2 + (01′ + 10′ + 23′ − 32′)2

+ (02′ + 20′ + 31′ − 13′)2 + (03′ + 30′ + 12′ − 21′)2.

�

If we would prefer to use the general form we have to make a minor change of notation:
Let

@ = 01 + 028 + 03 9 + 04:, @′ = 11 + 128 + 13 9 + 14:.

Then the previous equation can be rewritten as

(01
2 + 02

2 + 03
2 + 04

2) (11
2 + 12

2 + 13
2 + 14

2) =

(0111 − 0212 − 0313 − 0414)2 + (0112 + 0211 + 0314 − 0413)2

+ (0113 + 0311 + 0412 − 0214)2 + (0114 + 0411 + 0213 − 0312)2.

5.6 The identity of Eight-Squares

The Operation of Conjugation of Octonions
Definition. Let

D = 0 + 18 + 2 9 + 3: + �; + �� + �� + � 

be any octonion. By its conjugate we mean the octonion

D̄ = 0 − 18 − 2 9 − 3: − �; − �� − �� − � .
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Definition. Equivalently, if we use the short representation

D = @1 + @24, (14)

where
@1 = 0 + 18 + 2 9 + 3:, @2 = � + �8 + � 9 + �:,

then the conjugate octonion is given by

D̄ = @̄1 − @24.

The Absolute Value of an Octonion
Definition. Let D = 0+18+2 9 +3:+�;+��+��+� be any octonion. The nonnegative number√
02 + 12 + 22 + 32 + �2 + �2 + �2 + �2 is called the absolute value or norm of the octonion D

and is denoted by |D |, that is,

|D | =
√
02 + 12 + 22 + 32 + �2 + �2 + �2 + �2

Note that if D is given in the form (14), then

|D | =
√
|@1 |2 + |@2 |2.

Corollary. The product of any octonion D and its conjugate D̄, just as in the case of complex
numbers and quaternions, is a real number (that is, an octonion of the form 0+08+0� + . . .+0 ).
In fact,

DD̄ = (@1 + @24) (@̄1 − @24) = (@1@̄1 + @̄2@2) + (−@2@1 + @2@1)4 = @1@̄1 + @2@̄2 = |@1 |2 + |@2 |2.

Remark. Since the squares of the absolute values of the octonionss D and D̄ are equal, then we
have

D̄D = |D |2 = DD̄.

Proposition. The absolute value of the product of octonions is the product of the absolute values
of the factors.

Proof. Let D = @1 + @24 and E = A1 + A24 be two octonions, then

DE = (@1 + @24) (A1 + A24) = (@1A1 − Ā2@2) + (A2@1 + @2Ā1)4.

Let’s compute |DE |2 and |D |2 |E |2:

|DE |2 = (@1A1 − Ā2@2) (@1A1 − Ā2@2) + (A2@1 + @2Ā1) (A2@1 + @2Ā1)

= (@1A1 − Ā2@2) (Ā1@̄1 − @̄2A2) + (A2@1 + @2Ā1) (@̄1Ā2 + A1@̄2),

|D |2 |E |2 = (@1@̄1 + @2@̄2) (A1Ā1 + A2Ā2).
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If we compare the two expressions, then we see that they differ by the sum ( of four terms,

( = A2@1A1@̄2 + @2Ā1@̄1Ā2 − @1A1@̄2A2 − Ā2@2Ā1@̄1.

Therefore we must show that ( = 0 for any four quaternions @1, @2, A1, A2.

If A2 is real, ( = 0.
On the other hand, if A2 is a pure imaginary quaternion, then Ā2 = −A2 and

( = A2(@1A1@̄2 + @2Ā1@̄1) − (@1A1@̄2 − @2Ā1@̄1)A2.

The expressions in parentheses are a sum of two conjugate quaternions and therefore equal to
some real number 2. Hence

( = A22 − 2A2 = 0.

If ( = 0 for A2 = 0 and A2 = 1, then it is also 0 for A2 = 0 + 1. Since every quaternion is a sum of
a real number and a pure imaginary quaternion and for each of these ( = 0, it follows that ( is
always equal to zero.
Therefore

|DE |2 = |D |2 |E |2, (15)

so that
|DE | = |D | |E |.

�

The identity of Eight-Squares
Let

D = 0 + 18 + 2 9 + 3: + �; + �� +�� +� , E = 0′ + 1′8 + 2′ 9 + 3′: + �′; + �′� +�′� +�′ .

Then
DE = q1 + q28 + q3 9 + q4: + q5; + q6� + q7� + q8 .

Proposition. The product of the sum of eight squares by a sum of eight squares is a sum of eight
squares.

Proof. Rewriting equation (15) as

(02 + . . . + �2) (0′2 + . . . + �′2) = |D |2 |E |2 = |DE |2 = q1
2 + q2

2 + . . . + q8
2.
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Expressing q1, q2, . . . , q8 in terms of 0, . . . , �, 0′, . . . , �′, we get the identity:

(02 + 12 + 22 + 32 + �2 + �2 + �2 + �2)

· (0′2 + 1′2 + 2′2 + 3′2 + �′2 + �′2 + �′2 + �′2)

= (00′ − 11′ − 22′ − 33′ − ��′ − ��′ − ��′ − ��′)2

+ (01′ + 10′ + 23′ − 32′ − �′� + �′� + �′� − �′�)2

+ (02′ + 20′ − 13′ + 31′ − �′� + �′� − �′� + �′�)2

+ (03′ + 30′ + 12′ − 21′ − �′� + �′� + �′� − �′�)2

+ (�′0 − �′1 − �′2 − �′3 + �0′ + �1′ + �2′ + �3′)2

+ (�′1 + �′0 + �′3 − �′2 − �1′ + �0′ − �3′ + �2′)2

+ (�′2 + �′0 − �′3 + �′1 − �2′ + �0′ + �3′ − �1′)2

+ (�′3 + �′0 + �′2 − �′1 − �3′ + �0′ − �2′ + �1′)2.
�

If we would prefer to use the general form we have to make a minor change of notation:
Let

D = 01+028+03 9+04:+05;+06�+07�+08 , E = 11+128+13 9+14:+15;+16�+17�+18 .

Then the previous equation can be rewritten as

(01
2 + 02

2 + 03
2 + 04

2 + 05
2 + 06

2 + 07
2 + 08

2)

(11
2 + 12

2 + 13
2 + 14

2 + 15
2 + 16

2 + 17
2 + 18

2)

= (0111 − 0212 − 0313 − 0414 − 0515 − 0616 − 0717 − 0818)2

+ (0112 + 0211 + 0314 − 0413 − 1506 + 1605 + 1708 − 1807)2

+ (0113 + 0311 − 0214 + 0412 − 1507 + 1705 − 1608 + 1806)2

+ (0114 + 0411 + 0213 − 0312 − 1508 + 1805 + 1607 − 1706)2

+ (1501 − 1602 − 1703 − 1804 + 0511 + 0612 + 0713 + 0814)2

+ (1502 + 1601 + 1704 − 1803 − 0512 + 0611 − 0714 + 0813)2

+ (1503 + 1701 − 1604 + 1802 − 0513 + 0711 + 0614 − 0812)2

+ (1504 + 1801 + 1603 − 1702 − 0514 + 0811 − 0613 + 0712)2.

5.7 Conclusion

All =-tuples of forms q1, q2, . . . , q= satisfying the identity (8) can be obtained in the following
manner: We take any normed =-dimensional algebra A and choose in it an orthonormal basis
81, 82, . . . , 8=. Then we write down the law of multiplication in the algebra A in the form (9).
It follows that the problem of determining all identities (8) reduces to two problems:
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• Finding all normed algebras.

• Writing down the multiplication law for each of these algebras relative to all orthonormal
bases.
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6 Hurwitz’s Theorem
In the previous chapter, we concluded that in order to find all identities (8), we need to determine
all normed algebras. Turns out that the algebras R, C, H and O are the only algebras with an
identity in which it is possible to define a scalar product such that the norm of a product is the
product of the norms of the factors. [4]
Hurwitz’s Theorem. Every normed algebra with an identity is isomorphic to one of following
four algebras: the real numbers (R), complex numbers (C), quaternions (H), and octonions (O).
Definition.We recall that a normed algebra is an algebra in which one can define a scalar product
such that

(01, 01) = (0, 0) (1, 1). (16)

Let A be a normed algebra with an identity denoted by 1.
Proposition. Every element 0 ∈ A can be uniquely represented as a sum of two terms one of
which is proportional to 1 and the other orthogonal to 1. Thus

0 = :1 + 0′,

where : is a real number and 0′ ⊥ 1.
Definition.We introduce in the algebra an operation of conjugation:

0̄ = :1 − 0′.

In particular, if 0 is proportional to 1, then 0̄ = 0, and if 0 is orthogonal to 1, then 0̄ = −0. We
note,

¯̄0 = 0

and
0 + 1 = 0̄ + 1̄.

LetU be a subalgebra of the algebra A containing 1 and different from A.
Let 1, 81, 82, . . . , 8= be a basis ofU such that 81, 82, . . . , 8= are orthogonal to 1. Then the conjugate
of an element 001 + 0181 + . . . + 0=8= is the element 001 − 0181 − . . . − 0=8=. This shows that if D
is an element of A, then so is its conjugate D̄.
Remark. There exists a nonzero vector orthogonal to U (see Preliminaries). And a suitable
numerical multiple of it is a unit vector 4. We show that the set of elements of the form

D1 + D24 (D1 ∈ U, D2 ∈ U) (17)

is closed under multiplication, and thus a subalgebra ofU. LetU +U4 denote this subalgebra.
Assertion 6.1 The representation of an element ofU +U4 in the form (17) is unique.
Assertion 6.2 The product of two elements of the form (17) is given by

(D1 + D24) (E1 + E24) = (D1E1 − Ē2D2) + (E2D1 + D2Ē1)4. (18)
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Juxtaposing these facts and the doubling procedure, we arrive at the conclusion that the subal-
gebraU +U4 is isomorphic to the doubled subalgebraU.
Corollary. SinceA contains an identity element 1, it contains the subalgebra of elements of the
form :1. This subalgebra is isomorphic to the algebra of real numbers. We denote it by R. If in
the preceding argument we replaceU by R, then 4 will be a unit vector orthogonal to 1.
By formula (18)

42 = (0 + 14) (0 + 14) = −1.

This implies that the square of a vector 0′ orthogonal to 1 is _1, where _ ≤ 0. Conversely, if the
square of an element is _1 and _ ≤ 0, then this element is orthogonal to 1. Thus the elements
orthogonal to 1 , and only these elements, are characterized by the fact that their squares are
equal to _1, where _ ≤ 0.
This enables us to give the following alternative description of conjugation in A:
Definition. Let

:1 + 0′, where 0′2 = _1, _ ≤ 0,

be the unique representation of an element 0 ∈ �. Then 0̄ = :1 − 0′.
Proposition. If the subalgebra R ≠ A, then there is a unit vector 4 orthogonal to R. Consider
the subalgebra C = R + R4, the result of doubling R. This algebra isomorphic to the algebra of
complex numbers. From the characterization of conjugation inA it follows that for the elements
of C conjugation coincides with the conjugation of complex numbers.
Proposition. If the subalgebra C ≠ A, then there is a unit vector 4′ orthogonal to C. Consider
the subalgebra H = C + C4′, the result of doubling C. This algebra is isomorphic to the algebra
of quaternions. From the characterization of conjugation inA it follows that for the elements of
H conjugation coincides with conjugation in the algebra of quaternions.
Proposition. If the subalgebraH ≠ A, then there is a unit vector 4′′ orthogonal toH. Consider the
subalgebra O = H + H4′′, the result of doubling H. This algebra is isomorphic to the octonions.
Since multiplication of octonions is not associative, the subalgebra O must coincide with the
whole algebraA. Conversely, if the algebraA is not isomorphic to one of the algebras R, C, H,
then it is isomorphic to the algebra O.
Assertion 6.3 Every subalgebra containing 1 and not equal to A is associative.
Hurwitz’s theorem will have been proved if we prove the Assertions 6.1, 6.2 and 6.3.
Lemma 6.1 The following identity holds in any normed algebra:

(0111, 0212) + (0112, 0211) = 2(01, 02) (11, 12). (19)

We note that this identity connects four elements 01, 02, 11, 12 of the algebra A.

Proof. Put for 0 in (16) the sum 01 + 02.
We have

(011 + 021, 011 + 021) = (01 + 02, 01 + 02) (1, 1)
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or

(011, 011) + (021, 021) + 2(011, 021) = (01, 01) (1, 1) + (02, 02) (1, 1) + 2(01, 02) (1, 1).

By (16), the first and second terms on the left are equal, respectively, to the first and second
terms on the right. Hence

(011, 021) = (01, 02) (1, 1). (20)

To obtain the required result we replace 1 in (20) by 11 + 12.
Then we have

(0111 + 0112, 0211 + 0212) = (01, 02) (11 + 12, 11 + 12),

or

(0111, 02, 11) + (0112, 0212) + (0111, 0212) + (0112, 0211)

= (01, 02) (11, 11) + (01, 02) (12, 12) + 2(01, 02) (11, 12).

By (20), the first and second summands on the left are equal, respectively, to the first and second
summands on the right. Cancellation yields the identity (19). �

Lemma 6.2 The following identity holds in a normed algebra:

(01)1̄ = (1, 1)0. (21)

In other words, the element (01)1̄ is always proportional to 0 and the proportionality coefficient
is (1, 1).

Proof. We note that it suffices to prove the identity (21) for the case when 1 ⊥ 1.
Let 1′ be an element of the algebra �. If we represent it in the form

1′ = :1 + 1,

with 1 ⊥ 1, then 1̄ = −1, and

(01′)1̄′ = (0(:1 + 1)) (:1 − 1) = :20 − (01)1 = :20 + (01)1̄.

If we assume that formula (21) holds for the vector 1, then we have

(01′)1̄′ = :20 + (1, 1)0 = [:2 + (1, 1)]0 = (1′, 1′)0,

that is, formula (21) holds for 1′.
Now we prove (21) under the assumption that 1 ⊥ 1 (or, equivalently, 1̄ = −1). We write _ for
(1, 1).
Consider the element

2 = (01)1̄ − _0.
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We must show that 2 = 0 or, equivalently, that

(2, 2) = 0.

In view of the properties of scalar products we have

(2, 2) = ((0, 1)1̄, (01)1̄) + _2(0, 0) − 2_((01)1̄, 0). (22)

The right side is a sum of three terms. Using the fundamental identity (16) we can simplify the
first summand:

((01)1̄, (01)1̄) = (01, 01) (1̄, 1̄) = (0, 0) (1, 1)2 = _2(0, 0).

To simplify the third summand we use the identity (19). First we write it as

(0111, 0212) = 2(01, 02) (11, 12) − (0112, 0211).

In the last identity we put

01 = 01, 11 = 1̄, 02 = 0, 12 = 1

and obtain
((01)1̄, 0) = 2(01, 0) (1̄, 1) − (01, 01̄).

Since 1 ⊥ 1, the first summand on the right is zero, and the second is

−(01, 01̄) = (01, 01) = (0, 0) (1, 1) = _(0, 0).

Hence
((01)1, 0) = _(0, 0).

Now we can rewrite (22) and obtain

(2, 2) = _2(0, 0) + _2(0, 0) − 2_2(0, 0) = 0,

which is what we wished to prove. �

A Consequence of Lemma 6.2. We now deduce from the identity (21) another identity that will
use in what follows.
If we replace 1 in (21) by G + H, then we obtain

(0(G + H)) (Ḡ + H̄) = (G + H, G + H)0,

or
(0G)Ḡ + (0H) H̄ + (0G) H̄ + (0H)Ḡ = (G, G)0 + (H, H)0 + 2(G, H)0.
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In view of (21), the first and second summands on the left are equal, to the first and second
summands on the right. Hence

(0G) H̄ + (0H)Ḡ = 2(GH)0. (23)

This is the identity we wished to establish.
Putting 0 = 1 in (21) we obtain

11̄ = (1, 1)1.

This and (21) yield
(01)1̄ = 0(11̄).

Hence
(01)1 = 0(11).

A similar argument proves that
1(10) = (11)0.

The last two formulas show that the algebra A is alternative.
Proposition. The subspaces U and U4 are orthogonal, that is, D1 ⊥ D24 for any two elements
D1 ∈ U, D2 ∈ U, whereU denotes a subalgebra of the algebra A that contains 1 and does not
coincide with A, and 4 is a unit vector orthogonal toU.

Proof. We use Lemma 6.1. If we put in (19) 01 = D1, 11 = D2, 02 = 4, 12 = 1, then we obtain

(D1D2, 4) + (D1, D24) = 2(D1, 4) (D2, 1).

SinceU is a subalgebra, so that D1, D2 is inU, D1 ⊥ 4, D1D2 ⊥ 4. It now follows from the last
equality that

(D1, D24) = 0,

that is, D1 ⊥ D24. This means that the subspacesU andU4 are orthogonal. �

It remains to prove the Assertions 6.1, 6.2 and 6.3.

Proof. Assertion 6.1. The representation of any element in U + U4 in the form D1 + D24 is
unique. Suppose that

D1 + D24 = D
′
1 + D

′
24.

Then
D1 − D′1 = (D′2 − D2)4.

This means that the element E = D1 − D′1 is in the subspacesU andU4.
Since these subspaces have just been shown to be orthogonal, (E, E) = 0, and therefore E = 0.
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This implies that D1 − D′1 = 0, and (D′2 − D2)4 = 0. Also, in view (16), 01 = 0 implies that 0 = 0
or 1 = 0. In our case (D′2 − D2)4 = 0 and 4 ≠ 0 imply that D′2 − D2 = 0.
Hence D1 = D′1 and D2 = D′2. �

Proof. Assertion 6.2.The correctness of formula (18).We shall prove that if D and E are elements
of the subalgebraU, then

(D4)E = (DĒ)4, (24)

D(E4) = (ED)4, (25)

(D4) (E4) = −ĒD. (26)

With these relations we can prove formula (18). In fact,

(D1 + D24) (E1 + E24) = D1E1 + (D24) (E24) + (D24)E1 + D1(E24).

If we transform the last three terms on the right in accordance with the formulas (24), (25), and
(26), then we obtain the equality

(D1 + D24) (E1 + E24) = (D1E1 − Ē2D2) + (E2D1 + D2Ē1)4,

that is, formula (18).
To prove (24), (25), and (26) we use the identity (23):

(0G) H̄ + (0H)Ḡ = 2(G, H)0.

To prove (24), put in (23)
0 = D, G = 4, H = Ē,

and bear in mind that Ē ⊥ 4, then we have

(D4)E + (DĒ)4̄ = 0.

Since 4̄ = −4 (for 4 ⊥ 1), we obtain the formula (24).
To prove (25), put in (23)

0 = 1, G = D, H = E4.

Since E4 = −E4 (E4 ⊥ U, so that E4 ⊥ 1), it follows that

D(E4) − (E4)D̄ = 0.

Using (24) we obtain
D(E4) = (E4)D̄ = (ED)4.

To prove (26), we use the following remark:
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Remark. If (26) holds for E = 2 and E = 3, then it also holds for E = 2 + 3. Since every element E
can be written as a sum of two terms one of which is proportional to 1 and the other orthogonal
to 1, it suffices to prove (26) in two cases: when E = :1 and when E ⊥ 1.
If E = :1, then formula (26) becomes

: (D4)4 = −:D,

an identity whose validity is implied by the identity (21).
If E ⊥ 1, so that E = −E, putting in (23)

0 = D, G = 4, H = −E4,

we have
(D4) (E4) − (D(E4))4̄ = −2(4, E4)D.

By the identity (20), (4, E4) equals (1, E) (4, 4), that is, zero. Further, by (25), the second term
on the left equals −((ED)4)4̄ = −ED = ĒD. But then

(D4) (E4) = −ĒD,

which is what we wished to prove. �

Proof. Assertion 6.3. Every subalgebra U of the algebra A that contains 1 and is not A is
associative, that is,

(DE)F = D(EF)

for any three elements D, E, F inU.
Putting in (23)

0 = E4, G = F̄, H = D̄4,

we have
((E4)F̄) (−D̄4) + ((E4) (D̄4))F = 0,

or, using (24) and (26),
D(EF) − (DE)F = 0.

�
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7 Applications
7.1 Using the Quaternions to Perform Three-dimensional Rotations

Introduction to Group Theory
A group collects all transformations that should not change the theory if the symmetry is
respected.
Definition. A group is a set � ≠ 0 with an operation ∗ such that:

• Associativity: For all 0, 1, 2 ∈ �, we have (0 ∗ 1) ∗ 2 = 0 ∗ (1 ∗ 2).

• Identity element: There is an element 4 ∈ � such that 4 ∗ 0 = 0 ∗ 4 = 0 for all 0 ∈ �.

• Inverse element: For each element 4 ∈ �, there is an element 0−1 such that 0 ∗ 0−1 =

0−1 ∗ 0 = 4.

Definition. Let � be a group. If � is a subset of � and � also forms a group under the operation
of �, then � is called a subgroup of �.
Definition. The symmetric group ((=) is the group of bĳections from a set with = elements, to
itself. An element of this group is called a permutation.
Definition. Let � be a field and = ≥ 1. Then the group of =×= invertible matrices over � together
with the operation of matrix multiplication, is called the general linear group. We denote it by
�! (=, �).
Definition. Let be = ≥ 1 ∈ Z. Then $ (=) denotes the orthogonal matrices that form a subgroup
in �! (=, �). That is $ (=, �) = {� ∈ �! (=, �), where �) � = ��) = �}.
Definition. The special orthogonal group, denoted by ($ (=), is a subgroup of orthogonal
matrices in the general linear group �! (=, �) with determinant 1. That is $ (=, �) = {� ∈
�! (=, �), where �) � = ��) = � and 34C� = 1} = {� ∈ $ (=), where 34C (�) = 1}.
Remark. ($ (=) is also called the rotation group because:

• When = = 2: ($ (2)’s elements are the usual rotations around a point on a plane.

• When = = 3: ($ (3)’s elements are the usual rotations around an axis through the origin
in space.

Definition. The matrices with determinant 1 form a subgroup in �! (=, �). We call this the
special linear group and denote it by (! (=, �).
Definition. A complex square matrix � is unitary if its conjugate transpose �∗ is also its inverse,
that is, if

�∗� = ��∗ = ��−1 = �,
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where � is the identity matrix.
Definition. The unitary group, denoted by* (=), is a subgroup of unitary matrices in the general
linear group �! (=,C).
Remark. When = = 1: * (1) is the group of all complex numbers with absolute value 1, that is
* (1) = {I ∈ C, where |I | = 1}.* (1) is also called the circle group because it is the rotations of
a circle about its axis. Here we can easily see that it is a group because adding angles together,
which represents rotations, is associative. There is an identity element, the rotation of 0 degrees.
And there is an inverse element, the rotation in the opposite direction.
Definition. The special unitary group, denoted by (* (=), is a subgroup of unitary matrices in
the general linear group �! (=,C) with determinant 1.
Remark.

• When = = 1: (* (1) is the trivial group.

• When = = 2: (* (2) is isomorphic to the group of quaternions of norm 1, that is (* (2) =
{� ∈ "0CA8G2×2(C), where 34C� = 1 and �∗� = 1}. It is also called the isospin group.

• When = = 3: (* (3) = {� ∈ "0CA8G3×3(C), where 34C� = 1 and �∗� = 1}. It is the
group of unitary transformations in 3-dimensions with determinant 1.

Definition. A ring is a set ' equipped with an operations + called addition, and an operation ×
called multiplication with the following properties:

• ' is an abelian group under addition. Meaning that: the operation + is associative and
commutative. There is an element 0 in ' such that 0 + 0 = 0 for all 0 ∈ '. And every
element has an inverse.

• ' is a monoid under multiplication. Meaning that: the operation × is associative.

• Multiplication is distributivewith respect to addition.Meaning that: 0×(1+2) = 0×1+0×2
and (1 + 2) × 0 = 1 × 0 + 2 × 0 for all 0, 1, 2 ∈ '.

Definition. A subset � of a ring ' is called a left ideal, if it is an additive subgroup of ' and for
every 0 ∈ �, A ∈ ', the product A0 ∈ �.
Definition. Similarly, a subset � is called a right ideal of ', where ' is a ring, if it is an additive
subgroup of ' and for every 0 ∈ �, A ∈ ', the product 0A ∈ �.
Definition. � is an ideal if it is a left ideal that is also a right ideal. [8]
An interesting connection between groups and the quaternions
The group of rotations ($ (2) is isomorphic to the group * (1) of complex numbers 48\ =

2>B\ + 8B8=\ of unit length. This follows from the observation that * (1) is the unit circle. We



7 APPLICATIONS 43

can identify the plane R2 with the complex plane C, letting I = G + 8H ∈ C represent (G, H) ∈ R2.
Then every plane rotation '\ by an angle \ is represented by multiplication by the complex
number 48\ ∈ * (1), in the sense that for all I, I′ ∈ C, I′ = '\ (I) if and only if I′ = 48\I. And
since 48\ = 2>B(\) + B8=(\)8, I′ = 2>B(\) + B8=(\)8I.
In some sense, the quaternions generalize the complex numbers in such a way that rotations
of R3 are represented by multiplication by quaternions of unit length. However, quaternion
multiplication is not commutative, and a rotation in ($ (3) requires conjugationwith a quaternion
for its representation. And also, instead of the unit circle, we need to consider the sphere in R4,
and* (1) is replaced by (* (2). [9]
Motivating Examples:
First Example. There is a point in 2-dimensional space, like ? = (4, 1), and we want to know
the new coordinates after rotating it 30 degrees around the origin.
Solution. Take the complex number that is 30 degrees off the horizontal with magnitude 1,
2>B(30◦)+B8=(30◦)8. Thenmultiply this by the point, represented as a complex number, ? = 4+18.
Keeping in mind that 82 = −1.

Figure 3: Rotating a point on a plane

The product

(2>B(30◦)+B8=(30◦)8) (4+18) = (42>B(30◦)−1B8=(30◦))+(12>B(30◦)+4B8=(30◦))8 ≈ 2.96+2.878

gives the coordinates of the new point, rotated 30 degrees away from the original. That is
(2.96,2.87).
Before giving an example of the rotations in three dimension, we introduce the necessary notions
of the quaternions.
Definition.The set of quaternions, togetherwith the twooperations of addition andmultiplication,
form a noncommutative ring. The standard orthonormal basis forR3 is given by three unit vectors
8 = (1, 0, 0), 9 = (0, 1, 0), : = (0, 0, 1). A quaternion @ is defined as the sum of a scalar @0 and
a vector @′ = (@1, @2, @3); namely,

@ = @0 + @′ = @0 + @18 + @2 9 + @3:.
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How can a quaternion, which lives in R4, operate on a vector, which lives in R3?
Proposition. First, we note that a vector E ∈ R3 is a pure quaternion whose real part is zero. Let
us consider a unit quaternion @ = @0 + @′. That @0

2 + ||@′2 | | = 1 implies that here must exist an
angle U such that

2>B2U = @0
2,

B8=2U = | |@′2 | |.

In fact, there exists a unique U ∈ [0, c] such that 2>BU = @0 and B8=U = | |@′| |. The unit
quaternion can now be written in terms of the angle U and the unit vector D = @′/| |@′| |:

@ = 2>BU + B8=UD.

Theorem. For any unit quaternion

@ = @0 + @′ = 2>B
\

2
+ B8=\

2
D,

and for any vector E ∈ R3, the rotation of the vector through an angle \ about D as the axis of
rotation is equivalent to @E@−1. [10]
Second Example. Determine the image of the point (3, 1,−2) under the rotation by an angle of
60 degrees about an axis in the GH-plane that is inclined at an angle of 45 degrees to the positive
x-axis.
Solution.The unit vector u in the direction of the axis of rotation is 2>B45◦8+B8=45◦ 9 =

√
2

2 8+
√

2
2 9 .

The quaternion (or vector) corresponding to the point ? = (3, 1,−2) is ? = 38 + 9 − 2: . To find
the image of ? under the rotation, we calculate @?@−1 where @ is the quaternion 2>B \2 + B8=

\
2D

and \ the angle of rotation, which is 60◦. The resulting quaternion has no constant term and
therefore we can interpret it as a vector, which gives us the image of ?. So we have

@ = 2>B
60◦

2
+ B8=60◦

2
D = 2>B30◦ + B8=30◦D

=

√
3

2
+ 1

2
D =

√
3

2
+
√

2
4
8 +
√

2
4
9

=
1
4
(2
√

3 +
√

28 +
√

2 9)

Since @ is by construction a unit quaternion, its inverse is its conjugate:

@−1 =
1
4
(2
√

3 −
√

28 −
√

2 9).

Now we compute @? and @?@−1:

@? =
1
4
(2
√

3 +
√

28 +
√

2 9) (38 + 9 − 2:)

=
1
4
(6
√

38 + 2
√

3 9 − 4
√

3: + 3
√

282 +
√

28 9 − 2
√

28: + 3
√

2 98 +
√

2 92 − 2
√

2 9 :)

=
1
4
(6
√

38 + 2
√

3 9 − 4
√

3: − 3
√

2 +
√

2: + 2
√

2 9 − 3
√

2: −
√

2 − 2
√

28)

=
1
4
(−4
√

2 + (6
√

3 − 2
√

2)8 + (2
√

3 + 2
√

2) 9 + (−4
√

3 − 2
√

2):)
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@?@−1 =
1
4
(−4
√

2 + (6
√

3 − 2
√

2)8 + (2
√

3 + 2
√

2) 9 + (−4
√

3 − 2
√

2):)
1
4
(2
√

3 −
√

28 −
√

2 9)

=
1
8
(−8
√

2
√

3 + 88 + 8 9

+(36 − 4
√

2
√

3)8 − (6
√

3
√

2 − 4)82 − (6
√

3
√

2 − 4)8 9

+(12 + 4
√

2
√

3) 9 − (2
√

3
√

2 + 4) 98 − (2
√

3
√

2 + 4) 92

−(24 + 4
√

2
√

3): + (4
√

2
√

3 + 4):8 + (4
√

3
√

2 + 4): 9)

=
1
8
(−8
√

2
√

3 + 88 + 8 9

+(36 − 4
√

2
√

3)8 + (6
√

3
√

2 − 4) − (6
√

3
√

2 − 4):

+(12 + 4
√

2
√

3) 9 + (2
√

3
√

2 + 4): + (2
√

3
√

2 + 4)

−(24 + 4
√

2
√

3): + (4
√

2
√

3 + 4) 9 − (4
√

3
√

2 + 4)8)

=
1
8
(−8
√

2
√

3 + 88 + 8 9

+368 − 4
√

2
√

38 + 6
√

2
√

3 − 4 − 6
√

2
√

3: + 4:

+12 9 + 4
√

2
√

3 9 + 2
√

2
√

3: + 4: + 2
√

2
√

3 + 4

−24: − 4
√

2
√

3: + 4
√

2
√

3 9 + 4 9 − 4
√

2
√

38 − 48)

=
1
8
(−8
√

2
√

3 + 6
√

2
√

3 − 4 + 2
√

2
√

3 + 4

+88 + 368 − 4
√

2
√

38 − 4
√

2
√

38 − 48

+8 9 + 12 9 + 4
√

2
√

3 9 + 4
√

2
√

3 9 + 4 9

−6
√

2
√

3: + 4: + 2
√

2
√

3: + 4: − 24: − 4
√

2
√

3:)

=
1
8
(0 + 408 − 8

√
2
√

38 + 24 9 + 8
√

2
√

3 9 − 8
√

2
√

3: − 16:)

=
1
8
((40 − 8

√
2
√

3)8 + (24 − 8
√

2
√

3) 9 − (16 + 8
√

2
√

3):)

The point corresponding to the vector on the right hand side in the above equation is the image
of (3, 1,−2) under the given rotation. That point is

(40 − 8
√

2
√

3
8

,
24 + 8

√
2
√

3
8

,
−(16 + 8

√
2
√

3)
8

) = (5 −
√

2
√

3, 3 +
√

2
√

3,−(2 +
√

2
√

3)).

Third Example. Find which quaternion corresponds to a 270 degree turn of a sphere around the
I axis in the counter clockwise direction as you face it from above.
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Figure 4: Rotating a point on a plane

Solution. First set the axis to be fully in the I direction, 08 + 0 9 + 1: . Then change the angle to
270/2 = 135 degrees.

Figure 5: Setting the specified axis and angle

Now look at the quaternionic representation instead of the angle representation. It has equal
parts real and : .

Figure 6: Quaternionic represerntation for a 270 degree rotation

But there is another way we can orient this sphere like this. So far we have roated it three quaters
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of a turn counter clockwise. But we can also roated it −90 degrees with changing the angle to
−45 degrees.

Figure 7: Rotating the sphere to the other direction (360 − 270)/2 degrees

Now the quaternions are represented with equal parts real and : but the negative what we had
before.

Figure 8: Quaternionic represerntation for a 90 degree rotation

So we have two separate quaternions corresponding to the same orientation in 3-dimensional
space. In other words, each rotation can be represented as an orientation about an axis, or,
as a negative orientation about an axis pointing in the opposite direction. That is why the
quaternions are called a double cover for rotations in 3-dimenasional space. Continuing with the
group representation from the beginning of this section this means that the unitary group (* (2)
double covers the orthogonal group ($ (3).
Because of the angle doubling phenomenon, we can also think of the two separate quaternions as
two points on the opposite side of a hypersphere in 4-dimensions. Let’s look at the last example.
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Figure 9: Changing the angle to 180 degrees

As we change the angle up to a 180 degrees the orientation it corresponds rotates 360 degrees,
getting back to where it started.

Figure 10: Quaternionic represerntation before a 180 degree rotation

However the quaternion it is representing has rotated a 180 degrees around the hypersphere.

Figure 11: Quaternionic represerntation after a 180 degree rotation

In this case it went from being 1 to being -1. That is the reason for taking half the angle of the
rotation in the definition. [11]
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7.2 The Standard Model

Everything in the universe is found to be made from fundamental particles, governed by four
fundamental forces. Our best understanding of how these particles and three of the forces are
related to each other is encapsulated in The Standard Model of particle physics.

Figure 12: The periodic table of elementary particles

Matter particles
Matter particles, also called as fermions, occur in two types called quarks and leptons. Each
group consists of six particles, which are related in generation. The lightest particles make up
the first generation, and the heavier particles belong to the second and third generations. The six
quarks are paired in three generations, the up quark and the down quark form the first generation,
followed by the charm quark and strange quark, then the top quark and bottom quark. Quarks
also possess a kind of charge called color which makes it sensitive to the strong force. Leptons,
however, do not have color charge and do not interact via the strong force. This is the main feature
that distinguishes them from quarks. The six leptons are similarly arranged in three generations,
the electron and the electron neutrino, the muon and the muon neutrino, and the tau and the tau
neutrino. The electron, the muon and the tau all have an electric charge and a sizeable mass,
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whereas the neutrinos are electrically neutral and have very little mass.
Force particles
There are four fundamental forces in the universe: the strong force, the weak force, the elec-
tromagnetic force, and the gravitational force. Three of them result from the exchange of force
particles, which belong to the group called bosons. Particles of matter transfer discrete amounts
of energy by exchanging bosons with each other. Each fundamental force has its own corre-
sponding boson. The strong force is carried by the gluon, the electromagnetic force is carried
by the photon, and the W and Z bosons are responsible for the weak force. Although not yet
found, the graviton should be the corresponding force particle of gravity. [12] As the universe
cooled, an event known as electroweak symmetry breaking split the forces in two. This event
was marked by the sudden appearance of a field extending throughout space, known as the Higgs
field, which is associated with a particle called the Higgs boson. As a particle such as an electron
moves through space, it constantly interacts with Higgs bosons. These interactions slow down
the electron, and that’s what we mean by "mass". In general, the more a particle interacts with
the Higgs boson, the more mass it has. [13]

Figure 13: A 2-dimensional version of the Double-Simplex representation of The Standard
Model by Chris Quigg

7.3 The symmetries of The Standard Model

In the previous section we have discussed that the fermions of the strong nuclear force are
the quarks, of which we have found six. The different types or flavors of quarks are called
the up, down, strange, charm, bottom, and top quarks. The quarks’ interaction is mediated by
eight massless gluons, which are the bosons of the strong force. Their number follows from the
symmetry group of the strong force, which is (* (3). Quantum Chromo Dynamics is the theory
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that describes the quarks, the gluons and the interaction between them. Like the electromagnetic
force, the strong force responds to a kind of charge, but in this case there are three different
varieties of charge. While electric charge consists of only positive and negative, the charge of
the strong force, called color charge, consists of red, anti-red or cyan, blue, anti-blue or yellow,
green, and anti-green or magenta. The combination of all color, all anti-collor and a color with
its anti color gives a colorless particle. All observed particles are colorless. [14]
The remaining fermions do not participate in the strong interaction and are called leptons. Of
these we have also six. The different types or flavors of leptons are called the electron, muon,
and tau and their associated neutrinos, the electron neutrino, muon neutrino, and tau neutrino.
The electroweak interaction is mediated by the massless, neutral photon and by the massive
Z, W+, and W- bosons. The number of bosons follows from the symmetry group, which for
the electroweak interaction is (* (2) ×* (1). Electro-weak interaction is described by the thory
called Quantum Electro-Flavor Dynamics.
Therefore in The Standard Model, elementary particles are manifestations of three symmetry
groups, which are ways of interchanging subsets of the particles that leave the equations un-
changed. While particles with color are representations of the symmetry group (* (3), particles
with the internal properties of flavor and electric charge are representations of the symmetry
groups (* (2) and* (1), respectively.
To summarize, (* (3), (* (2) and * (1), correspond to the strong, weak and electromagnetic
forces, respectively, and they act on six types of quarks, two types of leptons, plus their anti-
particles, with each type of particle coming in three copies, or generations, that are identical
except for their masses. The fourth fundamental force, gravity, is described separately, and in-
compatibly, by Einstein’s general theory of relativity, which casts it as curves or bending in the
geometry of space-time.
The question is, why this symmetry group: (* (3) × (* (2) ×* (1)?
The conventional attitude toward such questions has been to treat The Standard Model as a bro-
ken piece of some more complete theoretical structure. The first attempt for a unified symmetry
used the group (* (5) because it is the smallest group that contains the symmetry groups of
The Standard Model. Unified forces like this, however, generically enable new interactions that
allow protons to decay. And if protons are unstable, so are all atomic nuclei. The next attempt
at unification used a larger group, ($ (10), in which the upper bound on the proton lifetime is
higher. Besides proton decay, grand unified theories also predict new particles because the large
groups contain more than what is in The Standard Model. These new particles, as usual, are
assumed to be too heavy to have been detected yet. And so theoretical physicists now have a
selection of unified theories that are safe from being experimentally ruled out in the foreseeable
future. [3, 15, 16]
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Furey’s model
"The real numbers are appearing ubiquitously. The complex numbers are providing the math of
Quantum Mechanics. The quaternions underlie the structure of Albert Enstein’s Special Theory
of Relativity. But in the 178 years since the octonions were discovered, they have not been found
to be central to any major theory in physics. Why would nature rely so heavily on the first 3 of
these number systems and yet that it would forget about the fourth?" [17]
Cohl Furey puts forward the proposal that the group representations of fundamental particles
could ultimately come from a single algebra acting on itself. Specifically, they are proposed to
arise fromR×C×H×O in the form of generalized ideals.R×C×H×O, the four number systems
combined, form a 64-dimensional abstract space. Within this space, particles are mathematical
ideals: elements of a subspace that, when multiplied by other elements, stay in that subspace,
allowing particles to stay particles even as they move, rotate, interact and transform. As the ideal
will pull any element into itself, it can be thought of as an algebra’s version of a black hole. In
other words, an ideal is a special subspace of an algebra because it can survive multiplication by
any element in A. Ideals persisting under multiplication bear a striking resemblance to particles
persisting under propagation.
This algebra splits cleanly into two parts: C×H and C×O. The symmetries associated with how
particles move and rotate in space-time come from the quaternionic part, C ×H. The symmetry
group (* (3)×(* (2)×* (1), associatedwith particles internal properties andmutual interactions
via the strong, weak and electromagnetic forces, come from the octonionic part, C × O. In this
case, the symmetries act on all three particle generations and also allow for the existence of
particles called sterile neutrinos, candidates for dark matter.
The (* (3) generators identified within C×O breaks down the remaining space into six singlets,
six triplets, and their antiparticles, with no extra particles beyond these. These representations
suggest the existence of exactly three generations and they relate particles to antiparticles by
using only the complex conjugate 8 ↦→ −8.
In conclusion, the division algebras not only represent The Standard model, but they also come
very close to deriving it. [3, 17–19]

7.4 Supersymmetry

So far we have found twenty-five different elementary particles. Supersymmetry completes this
collection with a set of still undiscovered partner particles, one for each of the known particles,
and some additional ones. This supersymmetric completion is appealing because the known
particles, as we have seen, are of two different types, fermions and bosons (named after the
Italian physicist Enrico Fermi and the Indian mathematician and physicist Satyendra Nath Bose,
respectively), and supersymmetry explains how these two types belong together.
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Supersymmetry postulates that the laws of physics will remain unchanged if we exchanged all
the matter and force particles. The possibility of exchanging bosons with fermions means that
every known bosonmust have a fermionic partner, and every known fermionmust have a bosonic
partner. But besides differing in their fermionic or bosonic affiliation, partner particles must be
identical. So supersymmetry states that at the most fundamental levels, the universe exhibits a
symmetry between matter and the forces of nature.
One of the main motivations for supersymmetry is that it avoids the need to fine-tune the mass
of the Higgs boson, one of the twenty-five particles of the standard model. The Higgs is the
only known particle of its type, and it suffers from a peculiar mathematical problem that the
other elementary particles are immune to: quantum fluctuations make a huge contribution to the
Higgs’s mass. Therefore the Higgs mass requires explanation. A number that seems to require
explanation is called fine-tuned, while a theory that has no fine-tuned numbers is called natural.
In The Standard Model, the Higgs mass is not natural, which makes it unpretty. Supersymmetry
much improves the situation because it prevents the overly large contributions from quantum
fluctuations to the Higgs’ mass. It does so by enforcing the required delicate cancellation of large
contributions, without the need to fine-tune. Instead there are only more moderate contributions
from the masses of the superpartners. Assuming all masses are natural then implies that the first
superpartners should appear at energies not too far away from the Higgs itself. That is because
if the superpartners are much heavier than the Higgs, their contributions must be canceled by
a fine-tuned term to give a smaller Higgs mass. And while that is possible, it seems absurd to
fine-tune supersymmetry, since one of the main motivations for it is that it avoids fine-tuning.
However, if we cannot find a natural explanation for a number, so the argument goes, then there is
not any. Just choosing a parameter is too unattractive. Therefore, if the parameter is not natural,
then it can take on any value, and for every possible value there is a universe. This leads to the
bizarre conclusion that if we do not see supersymmetric particles at the Large Hadron Collider,
then we live in a multiverse.
According to quantum mechanics, particles are also waves. To describe the motion of the wave
we use spinors, in case of matter particles, and vectors, in case of force particles. The properties
of vectors and spinors depends on the dimension of spacetime. But imagine a universe with no
time, only space. Then if this universe had dimension 1, 2, 4, or 8, both matter and force particles
would be waves described by a number in a division algebra. In other words, the vectors and
spinors coincide, and simplify: they are each just real numbers, complex numbers, quaternions
or octonions. Conversly, division algebras only exist when vectors and spinors coincide, and this
only happens in dimensions 1, 2, 4 and 8.
In this universe of dimension 1, 2, 4 or 8, the interaction of matter and force particles would be
described by multiplication in these number systems. In physics, such interactions are usually
drawn using Feynman diagrams, named for physicist Richard Feynman. We can use the same
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diagram to depict multiplication in a division algebra. So, in these universes with no time and
special dimensions, nature would have supersymmetry.
Even though physicists have not yet found any concrete experimental evidence in support of
supersymmetry, the theory is so beautiful, and has led to so much enchanting mathematics,
that many physicists hope and expect that it is real. Moreover, among field theoretical models
only a supersymmetric theory has the prospect of unifying the gravitational interaction with the
electroweak and strong interaction, since the mediating particles have differing spins. Such a
unification of interactions would incorporate a unification of General Relativity and Quantum
Field Theory, which are the cornerstones of our modern understanding of the physical world.
[15, 20]

7.5 String theory

At any moment in time a string is a 1-dimensional thing, like a curve or a line. But this string
traces out a two-dimensional surface as time passes. This changes the dimensions in which
supersymmetry naturally arises, by adding two, one for the string, and one for time. Instead of
supersymmetry in dimensions 1, 2, 4 or 8, we get supersymmetry in dimensions 3, 4, 6, or 10.
The idea is that a string traces out a 2-dimensional surface in spacetime, but it wiggles in 1, 2,
4, or 8 extra spatial dimensions. So for strings in dimensions 3, 4, 6 or 10, wiggling in 1, 2, 4,
or 8 spatial directions, the vibrations are described using a division algebra.
Different vibrations of the string describe different kinds of particles. In particular, one of the
vibrational modes fits the profile of the graviton, the hypothetical particle associated with the
force of gravity. So String theory succeeds in quantizing gravity, a problem to which not many
solutions are known. Therefore, it is often described as the leading candidate for the Theory of
Everything in our universe. A theory that unifies gravity with the rest of the fundamental forces.
However, string theory has made no testable predictions about the observable universe, many
researchers trust it anyway. Richard Dawid, a physicist-turned-philosopher, identified three non-
empirical arguments that generate trust in string theory among its proponents:

• There appears to be only one version of string theory capable of achieving unification
in a consistent way. It turns out that only the 10-dimensional string theory is consistent.
The rest suffer from glitches called anomalies, where computing the same thing in two
different ways gives different answers. This is the theory that uses octonions. So, if
superstring theory is right, the 10-dimensionality of spacetime arises from the octonions.
Furthermore, no other theory of everything capable of unifying all the fundamental forces
has been found, despite immense effort.

• String theory grew out of The Standard Model, the accepted and empirically validated
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theory incorporating all known fundamental particles and forces, apart from gravity, in a
single mathematical structure.

• String theory has unexpectedly delivered explanations for several other theoretical prob-
lems aside from the unification problem it was intended to address. It explains the entropy
of black holes, for example.

With these arguments Richard Dawid wants to show that to select a good theory, its ability to
describe observation is not the only criterion. [15, 20, 21]
However, different opinions also exist among researchers. Maybe most notably, Feynman ex-
pressed this other type of view in 1964: "If a new law disagrees with experiment, it’s wrong.
That simple statement is the key to science. It doesn’t make a difference how beautiful your
guess is, it doesn’t make a difference how smart you are, who made the guess or what his name
is. If it disagrees with the experiment, it’s wrong. That’s all there is to it."

7.6 M-theory

Strings naturally fit together with supersymmetry and while originally several different types
of string theory were found, these different theories turned out to be related to each other by
"duality transformations." Such duality transformations identify the objects described by one
theory with the objects described by another theory, thereby revealing that both theories are
alternative descriptions of what is really the same physics. This led the American mathematical
and theoretical physicist Edward Witten to conjecture that there are infinitely many string
theories, all related to each other and subsumed by a larger, unique theory, dubbed "M-theory."
Recently physicists have started to go beyond strings to consider membranes. Membranes have
one more dimension than strings. Thus when we’re dealing with membranes we would expect
supersymmetry to naturally emerge in dimensions 4, 5, 7 and 11. Researchers tell us that M-
theory has 11 dimensions. The reason is very much the same as in string theory, but now
these numbers are 3 more than 1, 2, 4 and 8. Which implies that it should naturally make use
of octonions. Since nobody understands M-theory well enough to even write down its basic
equation, M can also stand for mysterious.
We should emphasize that string theory and M-theory have as of yet made no experimentally
testable predictions. Although there’s a chance that evidence will turn up at the new particle
experiments at CERN. [1, 2]
However, a modern framework called Bayesianism, based on the 18th-century probability theory
of the English statistician and minister Thomas Bayes, allows for the fact that modern scientific
theories typically make claims far beyond what can be directly observed. For example no one has
ever seen an atom, and so today’s theories often resist a falsified-unfalsified dichotomy. Instead,
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trust in a theory often falls somewhere along a continuum, sliding up or down between 0 and
100 percent as new information becomes available. [15, 20]
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8 Summary
My thesis aimed to introduce normed division algebras, collect and summarize their properties
systematically and show why it is worthwhile to deal with this area of mathematics.
There are exactly four normed division algebras: the real numbers (R), complex numbers (C),
quaternions (H), and octonions (O). In Chapter 1, I looked at the history of these number systems.
The use of real numbers dates back at least to 500 BC. The set of all real numbers forms a line,
so we say that the real numbers are one-dimensional. Conversely, the line is one-dimensional
because specifying a point on it requires one real number. The complex numbers were introduced
by Gerolamo Cardano in the 16th century. They behave like coordinates on a plane. And since it
takes two real numbers to specify a point on a plane, the complex numbers are two-dimensional,
one more than the reals. The quaternions were invented by William Rowan Hamilton in 1843.
And just as we think of the complex numbers as points in a two-dimensional plane, we can also
think of the quaternions as points in a four-dimensional space. Not long after that, the octonions
were discovered independently by John Graves and Arthur Cayley. They behave like coordinates
in eight-dimensional space. Therefore the octonions form an 8-dimensional number system.
After introducing the necessary definitions and concepts, mainly from linear and abstract algebra
in Chapter 2, I considered the construction of these number systems.
Chapter 3 shows three methods for doing that. First, I introduced their multiplication table,
since every algebra is determined by that. Then I showed that to describe the product of the
basis elements, it is enough to remember a few properties where the most complicated one
can be expressed by using the Fano plane. I gave proof to the quaternions and the octonions
noncommutative properties, and also to the octonions nonassociative property. The last way I
showed how to create these algebras was through The Cayley-Dickson Construction which main
concept is that these algebras can be built from each other, forming a sequence of algebras.
In Chapter 4, I looked into one of the properties of these number systems, namely division. I
prove that division, except by zero, is always possible in each four of them. Then mentioned
The Generalized Frobenius’ Theorem, which states that every alternative division algebra is
isomorphic to one of the following four algebras: the real numbers, the complex numbers, the
quaternions, and the octonions.
In Chapter 5, I investigated the reason we can call these algebras normed. Essentially, I intro-
duced a norm in each of them and also converted the ’question of normability’ to the ’problem
of the sum of squares’.
Chapter 6 consists of the proof of Hurwitz’s Theorem, which states that every normed algebra
with an identity is isomorphic to one of the following four algebras: the real numbers (R),
complex numbers (C), quaternions (H), and octonions (O).
In the final chapter, I showed a few of the many applications these algebras have, like Super-
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symmetry and String theory, with a special focus on the group representation of The Standard
Model. And I further looked into how to rotate in 3-dimensions using the quaternions.

"We are still a long way from knowing if the octonions are of fundamental importance in un-
derstanding the world we see around us, or are merely a piece of beautiful mathematics. Of
course mathematical beauty is a worthy end in itself, but it would be even more delightful if
the octonions turned out to be built into the fabric of nature. And as the story of the complex
numbers and countless other pieces of mathematics demonstrate, it would hardly be the first time
that purely mathematical inventions later provided precisely the tools that physicists need." [6]
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