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Chapter 1

Introduction

In recent years, researchers devoted more attention to high-dimensional time series mod-

elling, as more data are available and more complex methods are needed to interpret

them. Although we can access information easily, dimensionality has become a common

issue. A model is high-dimensional if the number of time series is large relative to the

length of the time series (Wilms & Croux, 2016 ).

In the case of high-dimensional networks, vector autoregressive (VAR) models and

Granger causality analysis are applied in various papers. Important directions to handle

dimensionality in VAR models are factor models, bayesian methods and regularized or

penalized estimations of sparse VARs (Hecq, Margaritella & Smeekes, 2020 ).

Factor models (e.g. Stock & Watson, 2002 and Bernanke, Boivin & Elliasz, 2005 )

and bayesian VAR models (e.g. Banbura, Giannone & Reichlin, 2010 ) are used in many

papers, but their disadvantage is that the result of these models are difficult to interpret

compared to penalized methods. Lately, regularized methods have gained attention, like

the estimation of sparse VAR models. These are based on the lasso as a regression

shrinkage method (Tibshirani, 1996 ) and the elastic net (Zou & Hastie, 2005 ), which is a

data-driven method selecting a subset of the coefficients to zero in order to aim sparsity.

Methods which use regularized estimations have many advantages. On the one hand,

these are easier to interpret, as the irrelevant variables’ coefficient becomes exactly zero.

On the other hand, shrinkage methods are useful for variance reduction too, which im-

proves the forecast performance. Furthermore, sparse approaches can be used in case of
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CHAPTER 1. INTRODUCTION 2

high-dimensional datasets too, while standard, not penalized methods cannot be applied

when the number of time series exceeds the length of the time series (Wilms & Croux,

2016 ).

A lot of progress has been made related to the theory of high-dimensional VAR models.

Kock and Callot (2015 ) show for VAR models that under certain conditions, estimation

of the non-zero coefficients with adaptive lasso is asymptotically equivalent to the oracle

assisted least squares estimator. So the method finds the correct sparsity pattern and

makes the same estimations for the coefficient of the relevant variables as the OLS, in-

cluding only the relevant variables. Medeiros and Mendes (2016 ) extend the mentioned

result. Additionally, they show that adaptive lasso has the oracle property even with

non-Gaussian and conditionally heteroskedastic error terms. The method performs well

with highly correlated regressors and t-distributed errors, which is common in financial

and macroeconomic applications. Basu and Michailidis (2015 ) show that it is possible

to estimate consistently in high-dimensional settings via L1-regularization under sparsity

constraints for a large class of stable processes. Masini, Medeiros and Mendes (2019 )

demonstrate that in the case of weakly sparse VAR models, the lasso estimation has the

oracle property with heavy tailed, weakly dependent innovations too. It is essential, be-

cause many volatility processes used in financial applications of VAR models satisfy the

stated assumptions (Hecq et al., 2020 ).

High-dimensional VAR models became more popular, and various authors applied

these models (Song & Bickel, 2011, Audrino & Camponovo, 2018 andWong, Li & Tewari,

2020 ). For example, Nicholson, Matteson and Bien (2017 ) introduced a vector autore-

gression model with exogenous variables, where unmodeled variables are also allowed to

be included. Barbaglia, Croux and Wilms (2020 ) used a t-lasso VAR model to account

for the fat-tailed distribution of the error terms.

Authors working with high-dimensional models often focus on forecasting and do not

account for causality. The vector error correction model (e.g. Lütkepohl, 2007 ) is a tool for

estimating and testing for cointegration relationships. Wilms and Croux (2016 ) developed

a penalized maximum likelihood approach, designed for sparse estimation of cointegrating

vectors and they compare it to Johansen’s (1988 ) maximum likelihood method. The

latter has many limitations if the number of time series is large compared to the time

series length. If the number of time series exceeds the time series length, Johansen’s
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test cannot even be used. The authors show that their method outperforms Johansen’s

approach significantly in high-dimensional settings.

If the model is used for causality testing instead of forecasting, performing inference is

very important, but it is a non-trivial issue (Hecq et al., 2020 ). If we select the relevant

variables with a lasso estimator, and then apply an OLS model with the variables with

non-zero coefficients, we ignore the uncertainty of the first step selection procedure (Leeb &

Pötscher, 2005 ). Nowadays, several authors developed post-selection inference methods,

but Hecq et al. (2020 ) highlight some disadvantages of these models.

Skripnikov and Michailidis (2019 ) develop a joint regularized modelling framework to

estimate multiple Granger causal networks. They use a shrinkage method in a VAR frame-

work but focus on estimation instead of testing. Song and Taamouti (2019 ) investigate

the causal structure in a multivariate time series. They test indirect and spurious causal

effects with different statistical procedures. The paper is based on big data analysis, but

they focus on factor models instead of penalized methods. Krampe, Kreiss and Paparo-

ditis (2018 ) introduce bootstrap methods to infer the properties of sparse VAR models.

This method uses a model-based bootstrap procedure that generates pseudo time series

and de-sparsifies the VAR model. Chaudhry, Xu and Gu (2017 ) introduce an asymptot-

ically unbiased Granger causality estimator with corresponding test statistics and confi-

dence intervals. They also develop a false discovery rate control method that outperforms

previous techniques related to power in multiple testing. Hecq et al. (2020 ) develop a

post-double-selection procedure and present a valid post-selection Granger causality test

in high-dimensional VAR framework. They take the approach of Belloni, Chernozhukov

and Hansen (2014b) as a basis. With this post-double-selection method, one can get

sharper conclusions than by applying standard low-dimensional VAR techniques. How-

ever, in the case of regularized estimations, the method of tuning parameter selection is

very important. As the approach of Hecq et al. (2020 ) is very sensitive to the selection

of the tuning parameter, I decided to examine the method of Wilms, Gelper and Croux

(2016 ) in the simulation study.

In this paper, I apply a bootstrap Granger causality test in high-dimensional VAR

model, based on adaptive lasso (Zou, 2006 ) and developed by Wilms et al. (2016 ). Chat-

terjee and Lahiri (2011 ) developed a residual bootstrap procedure for high-dimensional

cross-section dataset. Wilms et al. (2016 ) extend the mentioned procedure to high-
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dimensional time series data. In the study, they identify those industry segments which

have statistically significant predictive power for future macroeconomic developments.

They identify these segments with a bootstrap test statistic based on adaptive lasso.

They compare their method with the standard Wald test. Based on the simulation, their

test statistic outperforms the Wald test statistic in high-dimensional settings.

I make a similar comparison of the mentioned bootstrap Granger causality test with

Wald test, but using different data generating processes, stated in Chapter 4. The con-

tribution of my paper to the study of Wilms et al. (2016 ) are the followings:

� The data generating processes I use are selected based on financial applications.

� I examine in detail the effect of the number of time series and the length of the time

series on the results with every combination of three-three different settings.

� I study how sensitive the simulations are for different covariance matrices of the

error terms. Based on Hecq et al. (2020 ) it is important to examine it.

� I analyse the effect of generating error terms from (fat-tailed) t-distribution, which

is common in financial applications.

The remainder of this paper is structured as follows. Chapter 2 introduces the high-

dimensional VAR models and Granger causality tests. In chapter 3 I propose the esti-

mation and the inferential framework and describe the bootstrap Granger causality test.

Chapter 4 establishes the simulation study and reports the results. Chapter 5 concludes.



Chapter 2

High-dimensional Granger causality

testing

Primarily, it is needed to define Granger causality. Let Ω be a given information set and

let X and Y be a variable. Both X and Ω are observed prior to Y . If we add X to Ω

and therefore the conditional distribution of Y alters, thus X improves the predictability

of Y , or in other words, X Granger cause Y with respect to Ω (Granger, 1969, 1980 ).

When building a model, we have to pay attention to spurious Granger causality. It

occurs when a variable Z Granger causes variable X and variable Y too, but we omit Z

from Ω and, therefore, X seems to Granger cause Y . To remedy this problem, when we

previously determine which variables should be in Ω, we should select all of the potentially

relevant variables. Thus, the more potentially relevant variable is included in Ω, the better,

although it can easily cause a high-dimensional dataset (Hecq et al., 2020 ).

In this paper I apply a bootstrap Granger causality approach in a VAR framework. If

we increase the number of variables in a VAR model, the number of parameters increases

quadratically with the number of time series included in the model. Considering an unre-

stricted VAR(p) model, where p is the lag-length and the number of time series included

is denoted with K, we have to estimate K2p coefficients. In empirical applications, the

time series length is usually relatively small. In this case, standard least squares and

maximum likelihood methods can easily overfit the data. In addition, standard statistical

methods cannot be used if the number of time series exceeds the length of the time series.

5



CHAPTER 2. HIGH-DIMENSIONAL GRANGER CAUSALITY TESTING 6

One possible solution is to apply penalized approaches (Hecq et al., 2020 ).

2.1 Granger causality testing in VAR framework

Let y1, ..., yT be a K-dimensional multiple weakly stationary time series process. I assume

that yt = (y1,t, ..., yK,t)
′ is generated by a VAR(p) process, where p is the lag-length

yt = A1yt−1 + ...+ Apyt−p + ut, t = p+ 1, ..., T, (1)

where I assume that all of the time series are mean centered, so intercept is not included.

A1, ..., Ap are K × K parameter matrices, and ut is a martingale difference sequence of

error terms.

Assumption 1. The VAR model in (1) satisfies the followings:

� {ut}Tt=1 is a weakly stationary martingale difference sequence with respect to Ft =

σ(yt, yt−1, yt−2, ...)ut such that E(ut|Ft−1) = 0 for all t and Σu = E(utu
′
t) is a positive

definite.

� All roots of det(IK−Σp
j=1Ajz

j) lie outside the unit disc, such that the lag polynomial

is invertible (Hecq et al., 2020 ).

To make it more simple, we can write model (1) in matrix notation (Wilms et al.,

2016 ) as

y = βX + u, (2)

where y is the (KT × 1) vector (y1,1, ..., yK,1, y1,2, ..., yK,2, ..., y1,T , ..., yK,T )
′. The matrix

X = (X1, ..., Xp), where Xj is (KT ×K), contains the values of the time series at lag j

in its columns, for 1 ≤ j ≤ p. β is the (pK ×K) matrix of the coefficients A1, ..., Ap.

I would like to test if the time series in the set J Granger cause the time series

in the set I in mean, conditional on the other variables in the VAR model (2), where

J, I ⊂ {1, ..., K} and J ∩ I = ∅. Let NI = |I| and NJ = |J | denote the number of time

series in the sets I and J , respectively. The researcher can determine NJ and NI based
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on the application, and often NJ = NI = 1, so both sets consist of one time series (Hecq

et al., 2020 ). In the simulation study, I also determine NJ = NI = 1.

It can be assumed that the lag-length (p) is small since, in the case of univariate

regressions or small systems, the need for a large p is generally caused by omitted variables

(Hecq, Laurent & Palm, 2016 ). As I mentioned, the omitted variable bias can be prevented

by adding all of the possibly relevant variables to the model. Thus, a smaller value for p

is realistic. It can result in a high-dimensional VAR model, but one can handle it with

regularized estimators. Although the value of p is usually unknown in practice, one can

give a small upper bound on p, which bound depends on the application. Then it is

possible to find the appropriate value of p with an algorithm. Otherwise, p has to be

estimated (Hecq et al., 2020 ).



Chapter 3

Post-selection inference

This chapter introduces the bootstrap Granger causality approach of Wilms et al. (2016 ),

but applied in a VAR model instead of AR framework. First, I present the Penalized

Maximum Likelihood estimator of the coefficients. Then, I discuss the post-selection

problems related to inference.

3.1 Penalized Maximum Likelihood estimation

If Kp > T , the Maximum Likelihood estimator is not computable, but we still can use

the Penalized Maximum Likelihood estimator. It is an important assumption that β is

sparse. Thus, it can be estimated with a coefficient vector, which has a significant portion

of the coefficients equal to zero. Since we assume sparsity, we can reduce the dimension

of the model with regularized methods without ruining the predictability (Hecq et al.,

2020 ).

We can obtain the Penalized Maximum Likelihood estimator of the regression coeffi-

cient β by minimizing the negative log-likelihood with a penalization on the elements of

β:

β̂λ = argmin
β

(
1

T
(y − βX)′(y − βX) + λ

p(1+k)∑
i=1

ŵi|βi|

)
, (3)

where λ > 0 is a non-negative sparsity parameter determining the strength of the penalty,

and ŵi are (non-negative) weights that belong to the i-th β (Wilms et al., 2016 ). In case of

8
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standard lasso, the weights would be one for the penalized and zero for the not penalized

parameters. There are more methods to determine which weights should be zero and

which should be one. Hecq et al. (2020 ) use information criteria to determine it. As

I use adaptive lasso (Zou, 2006 ), the weights are parameter specific and can take other

values too. Chatterjee and Lahiri (2011 ), show that with a bootstrap procedure, the

distribution and variance of the adaptive lasso estimator can be estimated consistently, so

I use adaptive lasso in the simulation. Although, in this application, the oracle property

is not so important because I do not need to identify all of the unnecessary variables. The

aim is to eliminate the effect of other unnecessary variables on the relation between the

variables tested for Granger causality (Hecq et al., 2020 ). Based on Wilms et al. (2016 )

we can get the weights as

ŵi =
1∣∣β̂ridge

i

∣∣ ,
where the Ridge estimator is the following:

β̂ridge
λ = argmin

β

(
1

T
(y − βX)′(y − βX) + λridge

p(1+k)∑
i=1

β2
i

)
,

The notation β̂λ in (3) highlights that the minimization problem’s solution depends on

the parameter λ. I select the sparsity parameter λ of (3) using the Bayesian information

criterion (BIC), and I also summarize the methods for tuning parameter selection in

Section 3.2.

3.2 Tuning parameter selection

There are more possibilities for selecting the appropriate λ and it is essential to achieve

a good model. Hecq et al. (2020.) compare some popular methods of tuning parameter

selection. They highlight three methods. One of these is the cross-validation. Although

it is a very popular method, it is not always effective in the case of time series, because of

the inherent serial correlation and the potential non-stationarity of the data (Bergmeir,

Hyndman & Koo, 2018 ).

Another method that I summarize briefly is to use estimates of theoretically optimal
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values (e.g. Belloni & Chernozhukov, 2013 ). For example, Hecq et al. (2020 ) estimate

the value of σ (the variance of the error term) based on Belloni et al. (2012 ). Firstly, they

get an initial least squares estimation of y (the response vector), and then, they update

the estimation iteratively.

The third method is to minimize an information criterion (IC) in order to determine

the appropriate λ, which is also a data-driven method. Hecq et al. (2020 ) compare three

IC in a simple way. Let Ŝ(λ) =
{
m ∈ {1, ..., Kp} :

∣∣β̂m(λ)
∣∣ > 0

}
denote the set of

variables with non-zero coefficient for given λ in the solution of lasso. If y is the generic

response vector and X is the predictor matrix, the value of λIC can be written as

λIC = argmin
λ

ln

(
1

T

∥∥y −Xβ̂(λ)
∥∥2
2

)
+

CT

T

∣∣Ŝ(λ)∣∣,
where CT is the penalty specific to each IC. In case of the Akaike information crite-

rion (AIC) (Akaike, 1974 ), CT = 2, in case of the Bayesian information criterion (BIC)

(Schwarz, 1978 ), CT = ln(T ), and in case of the Extended Bayesian information criterion

(EBIC) (Chen & Chen, 2008 ), CT = ln(T ) + 2γ ln(Kp), where γ = 0.5 based on (Chen

& Chen, 2012 ). They show that AIC and BIC cannot select the correct variables in

high-dimensional systems while EBIC remains consistent.

In the simulation study, I select the sparsity parameter λ using BIC. Although it is

not consistent in high-dimensional settings, I use it because I compare the Penalized Max-

imum Likelihood method with the Wald test, which is only applicable in low-dimensional

settings. I solve (3) over a range of values for λ, and I select the one with the minimal

BIC value.

3.3 Post-selection inference

In this section, I explain why post-selection inference is needed, and I summarize some

possible solutions. If we only apply a lasso or adaptive lasso procedure and set the

weights of the Granger causing variables to zero and then test whether the coefficient of

these variables is equal to zero (estimated again the model by least squares method on

the selected variables), we do not take account of the fact that the final model depends on

the data, so it is an overfitted model. Thus the selection step depends on the data, and it
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can occur that we omit weakly relevant variables that are difficult to detect, but cause too

large omitted variable bias that cannot be ignored asymptotically, so the inference is not

uniformly valid (Hecq et al., 2020 ). The post-selection estimators converge only point-wise

to the normal distribution, instead of uniformly (Leeb & Pötscher, 2005 ). Post-selection

based on oracle properties does not cause inferential problems in the case of ruling out

beta-min conditions before the estimation. By applying beta-min conditions (which refer

to the size of the coefficients), we can exactly separate the non-zero coefficients from the

zero ones (Van de Geer & Bühlmann, 2011 ). However, it is difficult to justify in empirical

analysis (Hecq et al., 2020 ).

Recently, researchers developed a couple of methods to valid post-selection inference

(e.g. Berk et al., 2013, Lee et al., 2016 and Van de Geer et al., 2014 ). Hecq et al.

(2020 ) extend the approach developed by Belloni, Chernozhukov and co-authors (2014a)

to dependent data.

Uniform inference for treatment effects in the case of partially linear, penalized models

with high-dimensional controls can be obtained using a post-double-selection approach

developed by Belloni, Chernozhukov and Kato (2015 ). It consists of two steps. They

estimate the coefficients of both the outcome and the treatment variables on all of the

control variables. Then they apply a post-selection least squares estimation of the outcome

on the treatment variable. All the control variables are selected at least once in the two

steps. This approach considerably reduces the omitted variable bias, and in the final

model, the errors are orthogonal with respect to the treatment variable. The procedure

is valid in the case of heteroskedastic and non-Gaussian error terms too.

The method of Belloni et al. (2015 ) is extended by Chernozhukov et al. (2020 ) with

(weak) temporal and cross-sectional dependency. They apply penalization iteratively in

the system, and they choose the overall penalty by a block multiplier bootstrap procedure.

The procedure’s oracle property and the bootstrap consistency are proved, and they obtain

simultaneous valid inference.

The method of Hecq et al. (2020 ) is similar to the approach of Chernozhukov et al.

(2020 ), but there are several differences. First, it can be applied faster and does not

consist of bootstrap methods. Second, it is developed specifically for VAR models and

Granger causality testing, while the method of Chernozhukov et al. (2020 ) is developed

for general systems of equations. Third, as Hecq et. al (2020 ) focus on applications
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related to financial econometrics, they consider different assumptions to establish a valid

method.

3.4 Bootstrap Granger causality test

If Xt,j is the vector of the j-th time series for t = 1, ..., p, with the coefficient at lag i of ai,j,

where i = 1, ..., p. As I already explained at the beginning of Chapter 2, the multivariate

time series Xt,j Granger cause Yt, if the former has incremental predictive power for the

latter. If the coefficients on all lags of Xt,j are equal to zero, Xt,j does not Granger cause

Yt. Thus a1,j = ... = ap,j = 0.

The adaptive lasso estimator in (3) is sparse if it has elements equal to zero beside

the non-zero ones. For larger values of λ the estimator is sparser (Wilms et al., 2016 ).

Based on the ”Granger lasso selection” approach (e.g. Bahadori & Liu, 2013 ), a time

series Xt,j Granger causes Yt if it has at least one non-zero estimated coefficient. j refers

to the j-th time series. The approach of Wilms et al. (2016 ) differs from it because they

infer Granger causality relations from a bootstrap testing procedure.

The null hypothesis is that Xt,j not Granger causes Yt:

H0 : Rjβ = 0, (4)

where Rj is a suitable pj × p(1 + K) matrix. The elements of Rj can be zero or one.

If the j-th element of Rj is equal to one, it means that the mentioned element is an

autoregressive parameter of a1,j, ..., ap,j. The corresponding Wald test statistic is given by

Q = (Rjβ̂)
′(RjCov(β̂)R′

j)
−1(Rjβ̂). (5)

I use a residual bootstrap procedure to bootstrap this test statistic, which consists of the

following three main steps (Kreiss & Lahiri, 2012 ):

1. Estimate model (1) under the null hypothesis with the time series Xt,j removed and

compute the centred residuals ût, for t = 1, ..., T .

2. For b = 1, ..., B, where B = 500 is the number of bootstraps:
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(a) Let y∗t the bootstrap time series. Construct y∗t from model (1) with the esti-

mated coefficients of the previous step and with bootstrap errors u∗
t = ûUt with

Ut for t = 1, ..., T an independent and identically distributed (i.i.d.) sequence

of discrete random variables uniformly distributed on 1, ..., T .

(b) Apply the PML estimator of equation (3) to the bootstrap sample and denote

the coefficients estimated with the bootstrap procedure by β̂∗
b .

(c) Compute the bootstrap test statistic Q∗
b = (Rjβ̂

∗
b )

′(RjCov(β̂)R′
j)

−1(Rjβ̂
∗
b ).

3. Compute mid p-Value which is equal to 1
B

∑B
b=1

(
I(Q∗

b < Q) + 1
2
I(Q∗

b = Q)
)
, with

Q∗
b B independent bootstrap test statistics, for b = 1, ..., B. I(.) is an indicator

function. If its argument is true, it takes on the value one, and zero otherwise

(Wilms et al., 2016 ).



Chapter 4

Simulation study

This chapter provides important information about the simulations and presents the re-

sults. First, I introduce the data generating processes I used in this paper. Second, I

present the effect of the length of the time series and the number of time series to the

results. Third, I show the results of the sensitivity analysis of the simulations with differ-

ent correlation of the error terms. Fourth, I present the results of the sensitivity analysis

of the simulations with different values of λridge. Last, I present the effect of generating

error terms from t-distribution.

4.1 Simulations

By means of the simulation study, I evaluate the finite-sample performance of the proposed

bootstrap Granger causality test. I evaluate the performance with a size and power

analysis (e.g. Wilms et al., 2016 and Hecq et al., 2020 ). The null hypothesis is that

the second time series does not Granger cause the response. I test the H0 and compare

the performance of the proposed bootstrap Granger lasso test to the standard Wald

test, where the second one is computed from the standard Maximum Likelihood (ML)

estimator, similarly to Wilms et al. (2016 ).

First, I study the size of the test statistic. After simulating N = 200 time series under

the H0, I compute the simulated size, thus I compute the proportion of simulations where

14
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the null hypothesis is rejected with the following formula:

1

N

N∑
j=1

I(pH0
j < α),

where pH0
j for j = 1, ..., N is the mid p-Value. It is obtained in the j-th simulation run.

α is the significance level, which is pre-specified, and I consider α = 0.01 and α = 0.05.

Second, I study the power of the test statistic with size-power curves. After construct-

ing two empirical distribution functions, I followed the next three steps:

1. Simulate N = 200 time series under the H0. Compute the mid p-Value pH0
j for

the j-th simulation run, where j = 1, ..., N . Calculate the empirical distribution

function of the mid p-Values with the following formula:

F̂H0(xi) =
1

N

N∑
j=1

I(pH0
j ≤ xi),

for a grid of values between zero and one of xi, for i = 1, ...,m.

2. Simulate N = 200 time series under the alternative hypothesis HA. Compute the

mid p-Value pHA
j for the j-th simulation run, where j = 1, ..., N . Calculate the

empirical distribution function of the mid p-Values with the following formula:

F̂HA(xi) =
1

N

N∑
j=1

I(pHA
j ≤ xi).

3. Plot F̂H0(xi) against F̂
HA(xi) for xi, where i = 1, ...,m (Wilms et al., 2016 ).

I consider two Data Generating Processes (DGPs) inspired by Hecq et al. (2020 ) and

Kock and Callot (2015 ).

DGP1 : yt =


0.5 0 . . . 0

0 0.5 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0.5

 yt−1 + ϵt,
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DGP2 : yt =


A 0 . . . 0

0 A . . . 0

. . . . . . . . . . . . . . . .

0 0 . . . A

 yt−1 + ϵt,with A︸︷︷︸
5x5

=


0.15 0.15 . . . 0.15

0.15 0.15 . . . 0.15

. . . . . . . . . . . . . . . . . . . . . . . . .

0.15 0.15 . . . 0.15

 .

As in the study of Hecq et al. (2020 ), DGP1 is a diagonal VAR and DGP2 is a

block-diagonal system. Both respect the sparsity assumptions. Thus both have zero

elements besides the non-zero ones. In the case of DGP1, each time series Granger cause

only themselves, while DGP2 is a block-diagonal system. This structure is motivated

by sectoral relations or quarterly macroeconomic models. For both designs, I consider a

DGP under H0 and under HA. While DGP1 satisfies the null hypothesis, that is, unit 2

does not Granger cause unit 1, DGP2 does not satisfy. For the power analysis of DGP1,

I set the coefficients of (2, 1) equal to 0.2. For DGP2, for the size analysis, I set the

same coefficient equal to zero instead of 0.15, which was previously set. Therefore, I can

evaluate the performance with a size and power analysis in the case of both DGPs.

I examine the case of having a single variable of interest for both the size and the

power test, so I choose I = {2} and J = {1}. As I already mentioned, I determine p = 1

lag, which is the same as in the DGPs (j = 1), since, in the case of univariate regressions

or small systems, the need for large p is generally caused by omitted variables (Hecq et

al., 2016 ). Thus, the equation is the following:

y2,t = βGCy1,t−1 +
K∑
j=2

βjyj,t−1 + ϵ2,t,

where the index GC refers to Granger causing. For both DGPs I test H0 : βGC = 0

against HA : βGC ̸= 0 using the bootstrap Granger causality and the standard Wald test.
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4.2 Results of the sensitivity analysis of the boot-

strap Granger causality test for the number and

length of the time series

Correlation = 0
T 100 200 400
K Wald Bootstrap Wald Bootstrap Wald Bootstrap

Size 10 0.035 0.01 0.025 0.01 0.05 0.005
1% 20 0.02 0.025 0.025 0.01 0.055 0.01

40 0.02 0.025 0.04 0.02 0.04 0.01
Size 10 0.15 0.065 0.08 0.04 0.13 0.035
5% 20 0.1 0.07 0.095 0.045 0.155 0.08

40 0.09 0.08 0.095 0.085 0.095 0.06
Power 10 0.65 0.635 0.91 0.88 0.985 0.985

20 0.54 0.58 0.875 0.875 0.995 0.995
40 0.35 0.53 0.775 0.875 0.995 0.995

Table 4.1: simulated sizes for the Wald and bootstrap Granger causality tests. (Source:
own calculation.)

Table 4.1 shows the size and power of the bootstrap Granger causality test and the

Wald test for N = 200 by using all of the nine combinations of the number of time series

K = (10, 20, 40) and time series length T = (100, 200, 400). The lag-length is fixed, p = 1.

The burn-in period contains 100 observations. The simulated sizes of the two tests are

similar to the results of Wilms et al. (2016 ) but not so close to the nominal size α in

every case as I expected, and somewhere the values do not increase with the number of

time series monotonically. Maybe because I only simulated N = 200 instead of N = 1000,

as in the study of Wilms et al. (2016 ), in order to reduce the computational time.

Although, almost for every given K and T value, the bootstrap Granger causality test

is closer to the nominal α than the Wald test, except for T = 100 and K = (20, 40). I can

observe a deterioration in the results with a fixed value of K and decreasing values of T

and also with a fixed value of T and increasing values of K, but not in every case. Both

tests have really similar results for power for T = 400, but the smaller the value of T ,

the bigger the difference between the bootstrap Granger causality test and the standard
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Wald test. The difference is even bigger if the value of K increases, as I expected. Thus,

the bootstrap Granger causality test achieves larger power than the Wald test.

Fig. 4.1 reports the size-power curves of the bootstrap Granger causality test and the

standard Wald test. In this figure, I demonstrate the effect of the length of time series

and the effect of the number of time series on the performance of the bootstrap Granger

causality and the standard Wald test. The larger the difference between the size-power

curve and the 45◦ line, the more power the test has (Wilms et al., 2016 ).

Figure 4.1: Size-power curves of the bootstrap Granger causality test (red line) and
the standard Wald test (blue line) for every combination of K = (10, 20, 40) and T =
(100, 200, 400). (Source: own construction.)

I can observe that for a fixed value of K and increasing values of T , both tests have

better results and also for a fixed value of T and decreasing values of K, as I expected.

For the most low-dimensional settings, thus for T = 400 and K = 10 and for T = 400

and K = 20 both tests perform very well. In these cases, both curves lie almost on the

left side and the top of the diagram, which would mean perfect performance without any

mistakes. Although, in these two cases, the methods have similarly good results, the
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bootstrap Granger causality test outperforms the Wald test in these settings too. For

the most high-dimensional setting, thus, for T = 100 and K = 40 none of the two tests

perform as well.

When the time series length is large relative to the number of time series, the difference

between the two tests is small. Although, the larger the number of time series relative

to the length of the time series, the bigger the difference between the power of the two

tests for the benefit of the bootstrap Granger causality test. Based only on the prior

results, the bootstrap Granger causality test is a better option than the standard Wald

test, mainly in high-dimensional settings but in low-dimensional settings too. Until this

point, I made a similar analysis as Wilms et al. (2016 ), but more in detail, and I got

really similar results.

4.3 Results of the sensitivity analysis of the boot-

strap Granger causality test for the correlation

of the error terms

Table 4.1 and Fig. 4.1 report results with correlation equal to zero. Although, covariance

matrices of the error terms have an impact on the efficiency of the lasso. Thus I compare

the power of the bootstrap Granger causality test in ten cases for the correlation. I

calculate the covariance matrix with a Toeplitz-version as Σi,j = ρ|i−j| as in the study of

Hecq et al. (2020 ) by using ten cases of correlation: ρ = {0, 0.1, 0.2, 0.3, ..., 0.9}. The

first case corresponds to the results of Table 4.1 and Fig. 4.1, that is no correlation. It is

equivalent to set Σ = IK . In the case of other values of ρ, the bigger the distance from

the diagonal of the covariance matrix, the smaller the value we get.

Fig. 4.2, fig. 4.3 and fig. 4.4 shows that the bigger the correlation of the error terms,

the worse the bootstrap Granger causality test’s performance relative to the Wald test’s

performance. For the lower-dimensional settings, thus for T = 100 and K = 10 and

K = 20, the standard Wald test outperforms the bootstrap Granger causality test even

for ρ = 0.3, and the difference between the efficiency of the two tests becomes larger for

larger values of ρ. For the higher-dimensional setting, thus for T = 100 and K = 40,

the bootstrap Granger causality test outperforms the Wald test when ρ = 0.3, but when
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Figure 4.2: Size-power curves of the bootstrap Granger causality test (red line) and the
standard Wald test (blue line) with ρ = 0.3 for K = (10, 20, 40) and T = 100. (Source:
own construction.)

Figure 4.3: Size-power curves of the bootstrap Granger causality test (red line) and the
standard Wald test (blue line) with ρ = 0.6 for K = (10, 20, 40) and T = 100. (Source:
own construction.)
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ρ = 0.6, it is hard to decide which test performs better based on the size-power curves.

Therefore, based on comparing the bootstrap Granger causality test with the Wald test for

the bigger correlation of the error terms, I would not use the bootstrap Granger causality

test in every application. For example, in low-dimensional settings, where the correlation

of the error terms is supposedly high, the Wald test can be a better option.

Figure 4.4: Size-power curves of the bootstrap Granger causality test (red line) and the
standard Wald test (blue line) with ρ = 0.9 for K = (10, 20, 40) and T = 100. (Source:
own construction.)

Fig. 4.5 shows the difference between the power of the bootstrap Granger causality

test with ρ = {0.2, 0.4, 0.6, 0.8} for every combination of T = {100, 200, 400} and K =

{10, 20, 40}. The sensitivity analysis of the bootstrap Granger causality test for the

correlation of the error terms shows that for bigger correlation, the test performs worse in

every setting of T and K with some exceptions. Maybe there are some exceptions because

I only used 200 simulations. For the most low-dimensional settings, the bootstrap Granger

causality test with ρ = 0.8 performs relatively bad compared to other, smaller settings of

the correlation. The figure shows that the test has worse performance for a fixed value of
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K and decreasing values of T . For a fixed value of T and increasing values of K, the test

has worse performance too.

Figure 4.5: Size-power curves of the bootstrap Granger causality test with ρ = 0.2 (red
line), with ρ = 0.4 (blue line), with ρ = 0.6 (green line) and with ρ = 0.8 (black line) for
every combination of K = (10, 20, 40) and T = (100, 200, 400). (Source: own construc-
tion.)

4.4 Results of the sensitivity analysis of the boot-

strap Granger causality test for the number and

length of the time series and the correlation of

the errors using DGP2

Fig. 4.6 reports the size-power curves of the bootstrap Granger causality test and the

Wald test with no correlation. While until this point I only examined DGP1, here the
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data was simulated using DGP2. I have the same observations as in the case of Fig. 4.1,

where we can see the same curves but simulated with DGP1.

As I expected, for a fixed valueK and increasing values of T and also for a fixed value of

T and decreasing values of K both tests have better results. For the most low-dimensional

settings both tests perform very well. For every combination of T = (200, 400) and

K = (10, 20), and for T = 100 and K = 10, the two tests’ performance is really similar.

For higher-dimensional settings, the bootstrap Granger Causality test outperforms the

Wald test, so I can observe that the difference between the two tests increases for the

benefit of the bootstrap Granger Causality test. For the most high-dimensional setting,

thus for T = 100 and K = 40 none of the two tests performs as well, the size-power curves

are close to the 45◦ line. The only difference compared to Fig. 4.1, where I simulated

with DGP1 is that both tests perform worse in all of these nine combinations of T and

K values without exception.

Figure 4.6: Size-power curves of the bootstrap Granger causality (red line) and the Wald
test (blue line) for every combination of K = (10, 20, 40) and T = (100, 200, 400) with no
correlation, simulated from DGP2. (Source: own construction.)
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Fig. 4.7 shows the effect of the number of time series and length of time series on

bootstrap Granger causality and Wald test simulating with DGP2, as Fig. 4.6, but the

correlation of the error terms is 0.7. Both tests have a deterioration of their performance

for a fixed value of T and increasing values of K and also for a fixed value of K and

decreasing values of T . Maybe the case of K = 20 of the bootstrap Granger causality test

is an exception if I look at the curves made with the three settings where T = 400, but it

can be caused by the low number of simulations.

Figure 4.7: Size-power curves of the bootstrap Granger causality (red line) and the Wald
test (blue line) for every combination of K = (10, 20, 40) and T = (100, 200, 400) with
correlation = 0.7, simulated from DGP2. (Source: own construction.)

I can observe that almost in every case of the nine size-power curves, both tests have

worse performance than in Fig. 4.6, where there was no correlation. The two exceptions

are the case of T = 100 and K = (20, 40), so the most high-dimensional cases. In these

two cases, the tests have very similar results as in the case of ρ = 0.

If I compare the performance of the bootstrap Granger causality test to the Wald test,

the curves show that in every case where K = (10, 20), so in lower-dimensional cases, the
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Wald test outperforms the bootstrap Granger causality test. Maybe an exception is

where T = 100, where the two tests have similar results. Although, in higher-dimensional

settings it is not obvious which test performs better, because in these simulations, the

two tests’ performance is quite similar in the case of T = 100 and K = 40, the Wald test

outperforms the bootstrap Granger causality test in case of T = 200 and K = 40, and

finally, the bootstrap Granger causality test outperforms the Wald test in the T = 400

and K = 40 setting. Thus, in case of strong correlation, I would rather use the Wald test

in lower-dimensional settings than the bootstrap Granger causality test, but in higher

dimensional settings the bootstrap Granger causality test can be a good choice too.

Based on the previous analysis, in case of no correlation of the error terms, the boot-

strap Granger causality test outperforms the standard Wald test in every combination of

T = (100, 200, 400) and K = (10, 20, 40) with both data generating processes. Although,

I can observe a deterioration of the performance of the bootstrap Granger causality test

compared to the Wald test if I set bigger correlation of the error terms, which was not

examined in the study of Wilms et al. (2016 ). Another observation is that the bigger

the correlation of the error terms, the worse the performance of the bootstrap Granger

causality test (thus, not just compared to the Wald test).

4.5 Results of the sensitivity analysis of the boot-

strap Granger causality test for different values

of λridge

While I simulate the data, the value of the λ parameter (used for the second step of

the adaptive lasso) is optimized in each simulation. Although, the value of the λridge

parameter (used for the first step of the adaptive lasso) is set as 0.1, as in the original

code, but it can be optimized between 0 and 10. I examine whether it improves the

performance of the bootstrap Granger causality test if I set other values for the λridge

parameter. I simulate time series N = 200 times, setting T = 100 and K = 10 and

examine the performance of the test with λridge = (0.1, 0.5, 1, 5, 10). Thus, with four

values besides the value 0.1, which is the original setting.

Fig. 4.8 shows the effect of setting different values of λridge on bootstrap Granger
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causality test for T = 100, K = 10 and ρ = 0.7. The performance of the test is similar in

every setting. It is difficult to decide, but maybe the test performs better with λridge =

(0.5, 1) than with λridge = (0.1, 5, 10), although I do not see a big difference. Based on this

result, the bootstrap Granger causality test is not so sensitive to the value of λridge (which

is used for the first step of the adaptive lasso), and this result corresponds to my previous

expectations. Also based on this result, I might exclude that the worse performance of

the bootstrap Granger causality test in case of stronger correlation of the error terms was

caused by using a wrong value for the λridge parameter.

Figure 4.8: Size-power curve of the bootstrap Granger causality test with the setting of
K = 10 and T = 100 with different values of λridge. (Source: own construction.)
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4.6 Results of the sensitivity analysis of the boot-

strap Granger causality test for t-distributed er-

rors

Adaptive lasso has the oracle property not just with Gaussian but also with non-Gaussian

and conditionally heteroskedastic error terms. Thus, the method performs well with highly

correlated regressors and t-distributed errors, which is common in financial applications

(Medeiros & Mendes, 2016 ).

Figure 4.9: Size-power curves of the bootstrap Granger causality test with t-distributed
error terms: df = 3 (red line), df = 5 (blue line) and df = 10 (green line) for every
combination of K = (10, 20, 40) and T = (100, 200, 400). (Source: own construction.)

Until this point, the error terms were simulated from multivariate normal distribution.

Now the error terms are simulated from multivariate t-distribution with different values

of degrees of freedom. These are the followings: df = (3, 5, 10). The smaller the value of

df , the more heavy-tailed the distribution of the error terms. The bigger the value of df ,
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the closer the distribution of the error terms to the normal distribution. For df → ∞ the

distribution is multivariate normal (Barbaglia et al., 2020 ).

Fig. 4.9 shows that the effect of the number of time series and the effect of length of

time series on the bootstrap Granger causality test is the same with t-distributed error

terms as with normally distributed errors. For a fixed value of K and increasing values

of T the test has better results, and also for a fixed value of T and decreasing values

of K. The bigger the value of degrees of freedom, the better performance the test has.

It corresponds to my previous expectations since for df → ∞ the distribution of the

error terms is multivariate normal. The smaller the value of degrees of freedom, the

more heavy-tailed the distribution of the errors is. In the three lower-dimensional cases,

where T = 400, the test performs very well with every setting of the degrees of freedom.

The difference between the performance of the test with the different values of degrees

of freedom is bigger in the higher dimensional cases, for example, when T = 100 and

K = 40.

Fig. 4.10 reports really similar results as the previous figures, although it shows a

piece of additional information. It compares the performance of the bootstrap Granger

causality test with t-distributed errors, where df = 10 with the performance of the test

with normally distributed errors. The curves are quite similar in every combination of

the values of T and K. Thus, for bigger degrees of freedom than 10, the bootstrap

Granger causality test’s performance is very similar to the test’s performance with nor-

mally distributed errors. Maybe almost the same, and the differences are caused by the

simulations.
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Figure 4.10: Size-power curves of the bootstrap Granger causality test with t-distributed
errors, where df = 10 (red line) and with normally distributed errors (blue line) for every
combination of K = (10, 20, 40) and T = (100, 200, 400). (Source: own construction.)
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Conclusion

In this study, firstly, I present the relevance of the topic. As more data are available,

dimensionality has become a common issue nowadays. VAR models and Granger causality

analysis are applied in various papers. Standard methods, such as the Wald test, cannot

be applied in high-dimensional settings, but we can handle dimensionality with regularized

methods. Although, an important property of the regularization is that the parameters

become biased. Thus, we cannot calculate the confidence interval in the traditional way.

A possible solution is to apply the bootstrap Granger causality method.

Then, I summarize the improvements related to the theory of high-dimensional VAR

models. Under certain conditions, the estimation of the non-zero coefficients with adaptive

lasso is asymptotically equivalent to the oracle assisted least squares estimator, with

Gaussian and also with non-Gaussian and conditionally heteroskedastic error terms. Thus,

the method performs well with correlated regressors and t-distributed errors, which is

common in financial applications.

I compare a bootstrap Granger causality test with the standard Wald test. While

the first one can be applied in high-dimensional settings, the Wald test exists only in

low-dimension. I employ a bootstrap procedure using the adaptive lasso as a penalized

estimator to select the relevant variables. With the bootstrap procedure, I reduce the

omitted variable bias, thus, the inference is uniformly valid.

In the simulation study, I evaluate the performance of the bootstrap Granger causality

test compared to the standard Wald test in low-dimensional settings, as the Wald test

30
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cannot be applied in the case of high-dimensional data. I use data generating processes

selected based on financial applications, and the results are the following.

� The bootstrap Granger causality test outperforms the Wald test in every combi-

nation of K = (10, 20, 40) and T = (100, 200, 400) based on the size-power curves

when the error terms are not correlated. This result corresponds to the results of

Wilms et al. (2016 ).

� I also compare the bootstrap Granger causality test with correlated error terms too,

which is not examined in the study of Wilms et al. (2016 ). In the case of T = 100

and K = (10, 20), the Wald test outperforms the bootstrap Granger causality test

even with ρ = 0.3, which is not a strong correlation.

� I examine in detail the effect of the correlation of the error terms on the bootstrap

Granger causality test. The stronger the correlation of the errors, the worse the

performance of the test.

� If the data generating process has a block-diagonal structure (DGP2), both tests

perform worse than with DGP1. The effect of the correlation of the errors is similar

to the case of DGP1.

� The test is not very sensitive to the selection of the λridge parameter (which is used

for the first step of the adaptive lasso).

� The effect of the number of time series and time series length on the bootstrap

Granger causality test is the same with t-distributed errors as with normally dis-

tributed errors. The smaller the value of degrees of freedom, the more heavy-tailed

the distribution of the errors is. The more heavy-tailed the distribution is, the worse

performance the test has. Although, for df ≥ 10 the results of the simulations are

almost the same as with normally distributed errors.

There are some questions that I have not addressed yet. Further research is needed

to examine the performance of the test in high-dimensional settings. It would also be

interesting to compare the test with other regularized methods, as the approach of Hecq

et al. (2020 ). Still, I think that I show important new results about the bootstrap

Granger causality test that were not examined before, or at least not in detail.
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Appendix A

Glossary

� adaptive lasso (adaptive least absolute shrinkage and selection operator): adapt́ıv

lasso (adapt́ıv legkisebb abszolút zsugoŕıtó és szelekciós operátor)

� AIC (Akaike information criterion): AIC (Akaike információs kritérium)

� alternative hypothesis: alternat́ıv hipotézis

� argument: argumentum (pl. függvényé)

� asymptotically equivalent: aszimptotikusan ekvivalens

� autoregressive: autoregressźıv

� bayesian: bayes-i

� beta-min condition: minimum béta feltétel

� biased: torźıtott

� BIC (Bayesian information criterion): BIC (bayes-i információs kritérium)

� bootstrap: bootstrap

� burn-in: burn-in (első n generált minta elvetése)

� causality: (grangeri értelemben vett) okság
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� coefficient: koefficiens, béta, paraméter

� cointegration: kointegráció

� conditionally heteroskedastic: feltételesen heteroszkedasztikus

� confidence interval: konfidencia intervallum

� consistent: konzisztens

� control variable: kontrollváltozó

� covariance matrix: kovarianciamátrix

� cross-section: keresztmetszeti

� cross-validation: keresztvalidáció

� data-driven method: adatvezérelt módszer

� data generating process: adatgeneráló folyamat

� diagonal: diagonális

� EBIC (Extended Bayesian information criterion): EBIC (kiterjesztett bayes-i in-

formációs kritérium)

� elastic net: rugalmas háló

� empirical distribution function: empirikus eloszlásfüggvény

� error term: hibatag

� exogenous variable: exogén (külső) változó

� factor models: faktormodellek

� Granger causality: Granger-okság

� heavy-tailed distribution: vastag szélű eloszlás

� high-dimensional: magas dimenziós
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� hypothesis: hipotézis

� independent and identically distributed (i.i.d.): független azonos eloszlású

� indicator function: indikátor függvény

� inference: hipotézisvizsgálat

� information criterion: információs kritérium

� intercept: ordinátatengely-metszet

� invertible: invertálható

� lag-length: késleltetéshossz

� lasso (least absolute shrinkage and selection operator): lasso (legkisebb abszolút

zsugoŕıtó és szelekciós operátor)

� linear: lineáris

� log-likelihood: log likelihood

� low-dimensional: alacsony dimenziós

� martingale difference sequence: martingál differencia sorozat

� matrix: mátrix

� mid p-Value: közép p-érték

� ML (maximum likelihood) method: ML (legnagyobb valósźınűség) módszer

� multiple Granger causal network: többszörös Granger-oksági hálózat

� multivariate: többváltozós

� non-Gaussian: nem-Gauss eloszlású

� null hypothesis: nullhipotézis

� normal distribution: normális eloszlás
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� OLS (ordinary least squares) model: OLS (legkisebb négyzetek) modell

� omitted variable bias: kihagyott változók okozta torźıtás

� oracle asisted estimator, oracle property: ”jós tulajdonságú” becslés (előre ismerjük

a releváns változókat)

� outcome variable: eredményváltozó

� overfit: túlilleszt

� partial: parciális

� penalization: penalizáció, regularizáció, bűntetés

� point-wise: pontonként

� positive definite: pozit́ıv definit

� post-double-seleczion procedure: dupla szelekció utáni eljárás

� post-selection: változószelekció utáni

� power: statisztikai erő

� predictor matrix: magyarázóváltozó mátrix

� p-value: p-érték

� regression: regresszió

� regressor: regresszor, változó

� regularization: regularizáció, penalizáció, bűntetés

� residual: maradéktag, reziduum

� response vector: eredményváltozó vektor

� sensitivity analysis: érzékenységvizsgálat

� set: halmaz
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� shrinkage methods: zsugoŕıtó módszerek

� significance level: szignifikanciaszint

� significant: szignifikáns

� size: a teszt mérete (elsőfajú hiba valósźınűsége)

� sparse: ritka (pl. mátrixnál: vannak nulla elemei is)

� sparsity parameter: zsugoŕıtó paraméter

� spurious causal relation: hamis oksági kapcsolat

� stable process: stabilis folyamat

� stationary: stacionárius

� t-distribution: t-eloszlás

� test statistic: teszt statisztika

� time series: idősor

� treatment variable: magyarázóváltozó

� tuning parameter: hiperparaméter

� unbiased: torźıtatlan

� uniform distribution: egyenletes eloszlás

� uniformly: egyenletesen

� unit disc: egységkör, egység sugarú kör

� univariate: egyváltozós

� upper bound: felső korlát

� valid: érvényes

� VAR (vector autoregressive) model: VAR (vektor autoregressźıv) modell
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� variance reduction: variancia csökkentés

� VECM (vector error correction model): VECM (vektor hibakorrekciós modell)

� vector: vektor

� weakly stationary: gyengén stacionárius



Appendix B

Summary of my thesis in Hungarian

Napjainkban egyre több adat áll rendelkezésünkre, aminek következtében a dimenzion-

alitás általános problémává vált. Számos cikkben alkalmazzák a VARmodellt és vizsgálják,

hogy van-e Granger-okság. A standard módszereket - mint például a Wald tesztet - ma-

gas dimenziós adatokon nem lehet alkalmazni, de a dimenzionalitást többek közt regu-

larizációs módszerekkel tudjuk kezelni. Azonban a regularizáció egy fontos tulajdonsága,

hogy torźıtottak lesznek a paraméterek, ami miatt nem lehet hagyományos módon konfi-

dencia intervallumot számolni hipotézisvizsgálattal. A problémára egy lehetséges megoldás

a bootstrap Granger-okság módszer alkalmazása.

A magas dimenziós VARmodellek elméletében fontos előrelépést jelentettek a következő

álĺıtások. Bizonyos feltételek mellett a nemnulla koefficiensek adapt́ıv lassoval történő

becslése aszimptotikusan ekvivalens a ”jós tulajdonságú” OLS becsléssel. Ez nem csak

normális eloszlású, hanem nem-Gauss eloszlású és feltételesen heteroszkedasztikus hi-

batagok esetén is fennáll. A módszer tehát jól működik akkor is, ha a változók korrelálnak

és t-eloszlásúak a hibatagok, ami gyakori pénzügyi alkalmazások esetén.

Dolgozatomban összehasonĺıtom a bootstrap Granger-okság tesztet a standard Wald

teszttel. Mı́g az első magas dimenziós adatok esetén is alkalmazható, a második csak

alacsony dimenzió esetén. A releváns változókat egy bootstrap módszerrel választom ki,

ahol a regularizáció adapt́ıv lassoval történik. A lasso kiszűri az irreleváns változókat,

majd a releváns változókra OLS futtatásával kapok t-statisztikákat. Azonban ı́gy nem

venném figyelembe az első lépésbeli bizonytalanságot. A végső modell függene az ada-
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toktól, túlillesztene. Kihagyhatnék gyengén releváns változókat, amik túl nagy kihagy-

ott változók okozta torźıtást eredményeznek, amit aszimptotikusan nem lehet figyelmen

ḱıvül hagyni. Ezáltal a szelekció utáni becslés nem egyenletesen, hanem csak pontonként

konvergálna a normális eloszláshoz. A bootstrap procedúrával azonban csökkentem a ki-

hagyott változók okozta torźıtást és ı́gy kapok egyenletesen érvényes hipotézisvizsgálatot.

A bootstrap Granger-okság és a Wald teszt teljeśıtményét szimulációkkal hasonĺıtom

össze. A szimulációkhoz úgy választottam meg az adatgeneráló folyamatokat, hogy megfelel-

jenek a pénzügyi alkalmazásoknak és a következő eredményeket kaptam.

� Ha a hibatagok nem korrelálnak, akkor a bootstrap Granger-okság teszt teljeśıtménye

jobb mint a Wald teszté minden lehetséges K = (10, 20, 40) és T = (100, 200, 400)

beálĺıtás esetén, amit size-power görbékkel szemléltetek. Ez az eredmény megfelel

Wilms et al. (2016 ) eredményének.

� A két módszer teljeśıtményét korreláló hibatagokkal is összehasonĺıtom, amit Wilms

et al. (2016 ) tanulmányában nem vizsgáltak. T = 100 és K = (10, 20) kombinációi

esetén a Wald teszt teljeśıtménye jobb mint a bootstrap Granger-okság teszté még

ρ = 0.3 korreláció esetén is, ami nem mondható erős korrelációnak.

� Részletesen megvizsgálom, hogy hogyan hat a hibatagok korrelációja a bootstrap

Granger-okság tesztre. Minél erősebb a korreláció, annál rosszabb a teszt tel-

jeśıtménye.

� Ha az adatgeneráló folyamat blokkos szerkezetű (mint DGP2), akkor mindkét teszt

teljeśıtménye rosszabb, mint a DGP1 esetén. A hibatagok korrelációjának hasonló

hatása van a bootstrap Granger-okság teszt teljeśıtményére mindkét adatgeneráló

folyamat esetén.

� A teszt nem túl érzékeny a λridge paraméter megválasztására (amit az adapt́ıv lasso

első lépésénél használok).

� t-eloszlású hibatagok esetén is ugyanolyan hatással van a teszt teljeśıtményére az

idősorok száma és az idősorok hossza, mint normális eloszlású hibatagok esetén.

Minél kisebb a szabadságfok, annál vastagabb szélű a hibatagok eloszlása. Minél
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vastagabb szélű az eloszlás, annál rosszabb a teszt teljeśıtménye. Azonban ha a sz-

abadságfok legalább 10, akkor már nagyon hasonló eredményt kapok, mint normális

eloszlású hibatagok esetén.

Felmerül néhány kérdés, amiket a dolgozatomban nem válaszoltam meg. További

kutatásban érdemes lenne megvizsgálni a bootstrap Granger-okság teszt teljeśıtményét

magas-dimenziós adatokon is. Emellett érdekes lenne összehasonĺıtani a tesztet más

regularizációs módszerekkel, például Hecq et al. (2020 ) tanulmányában alkalmazott

módszerrel. Ennek ellenére úgy gondolom, hogy fontos új eredményeket kaptam a boot-

strap Granger-okság tesztről amiket eddig még nem vizsgáltak, vagy legalábbis nem en-

nyire részletesen.


