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Chapter 1

Introduction

1.1 Summary

Interest rate is considered as a feature of the debt instrument and it is one

of the most important aspect of the economics. From a long time ago, the

connection between the price of an asset and interest rate has been studied

and, as a result, stochastic variation was introduced. After the volatility of

the interest rate was discovered, it has been treated as a stochastic variable

for the importance of better risk management and forecasting.

Usually, estimation of parameters in the diffusion process can be done

by Maximum Likelihood estimation or the approximation Euler–Maruyama

scheme, which is quite straightforward as it deals with the trajectory instead

of the transition directly. However, Euler-type schemes depend on the sam-

pling interval and introduce discretization bias in the estimates, also, the

Maximum Likelihood estimators can be complicated or not even available

for certain type of models. Overall, for extended general models, where the
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diffusion is a function of observation, we cannot compute the conditional

moments by the repetition of Itô’s formula. This is where the Milstein’s ap-

proximation is going to help us obtain the first four conditional moments of

the underlying process, and after this, we can use the combined estimating

function approach.

The goal of the thesis is to provide information about the inference of in-

terest rate models by using Milstein’s approximation and then use combined

estimating functions under general conditions for better results.

This paper is organized as follows. The rest of Chapter 1 introduces some

notations and definitions. In Chapter 2, we will present the basic information

regarding optimal estimation functions and as well as the recursive estimation

regarding state space and general models. After that, we show combined

estimating functions with discretely observed diffusion processes on general

models in Chapter 3, and lastly, we show the application of this method by

some examples. In the appendixes, we summarize some basic information

connected to semimartingales (appendix A) and the main idea of Milstein’s

approximation (appendix B).

1.2 Preliminaries

First, we will introduce some notations and definitions that will be necessary

for the rest of the thesis. This section contains definitions and statements

from [5], [17] and [18].

We define Ω a sample space with a measure µ and a probability density

function p(y, θ) with respect to µ where y ∈ Ω and θ ∈ Θ ⊂ Rp.
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Definition 1.2.1 (Estimating function). A function g : Ω×Θ → Rp is called

an estimating function if g(., θ) is measurable for any θ ∈ Θ and g(y, .) is

continuous in a compact subspace of Θ containing the true parameter θ0 for

any sample y ∈ Ω.

Given an estimating function g and an observation y, the estimating

equation can be defined as

g(y, θ) = 0, (1.1)

and the solution θ̂ is an estimate of the parameter θ.

Additionally, if two estimating functions lead to the same solution for any

given sample y, we call them equivalent.

Definition 1.2.2 (Unbiased estimating functions). We call an estimating

function g unbiased if

Eθ(g(Y, θ)) = 0,∀θ ∈ Θ. (1.2)

Definition 1.2.3 (Regular estimating function). g is regular if the following

conditions are satisfied

• Eθ(g(Y, θ)) = 0, for all θ;

• ∂g(y, θ)/∂θ exists for all θ;

• the order of integration and differentiation can be interchanged for any

bounded measurable function f(y) that is independent of θ;

• 0 < Eθ(g
2(Y, θ)) < ∞;

• 0 < (Eθ(∂g(Y, θ)/∂θ))
2 < ∞.
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In the following chapters, we will use the information matrix that provides

a way to measure the amount of information that a random variable contains

about some parameter θ (such as the true mean) of the random variable’s

assumed probability distribution.

Definition 1.2.4 (Fisher information). The Fisher information or informa-

tion matrix is denoted by I and is defined as

I = V ar(
∂

∂θ
l(θ | y)), (1.3)

where l(θ | y)) is the log-likelihood function of θ given observed value of y.

Definition 1.2.5 (Godambe information). Given a regular estimating func-

tion g and a single observation Y , the Godambe information is denoted by

Jg, and is described as

Jg(θ) =
S2
g (θ)

Vg(θ)
, (1.4)

where Sg is the sensitivity

Sg = Eθ(
∂g(Y, θ)

∂θ
) (1.5)

and Vg is the variability

Vg = V ar(g(Y, θ)). (1.6)

Now, let us introduce a theorem that shows the connection between the

Fisher and Godambe information.

Theorem 1.2.1 (Godambe Inequality). Given an estimating function g,

Jg(θ) ≤ I(θ), (1.7)

where the equality holds if g is equivalent to the score function.
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Chapter 2

Optimal Estimating functions

Since we now know what is an estimating function, the next question is

how to identify an optimal one. And the answer is related to the Godambe

information of the function. The following definition is from [18].

Definition 2.0.1 (Optimal estimating function). A regular estimating func-

tion g∗ is optimal if

Jg∗(θ) ≥ Jg(θ), (2.1)

for all g and θ ∈ Θ.

2.1 Basics of Estimating functions

In this section, we follow [9], which presents the basic information regarding

optimal estimating functions and information matrices.

We should introduce our probability space (Ω,A,Pθ) and our observed

time series {yt, t = 1, . . . , n}, which is a realization of a discrete-time stochas-

tic process. Its distribution depends on a vector parameter θ, which belongs
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to an open subset Θ of the p−dimensional Euclidean space. Additionally,

we assume Fy
t to be the σ-field generated by {y1, . . . , yt, t ≥ 1} and let

ht = ht(y1, . . . , yt, θ), 1 ≤ t ≤ n be specified q-dimensional vectors that are

martingales.

Now, we consider the class of zero mean and square integrable p-dimensional

martingale estimating functions:

M =

{
gn(θ) : gn(θ) =

n∑
t=1

at−1ht

}
,

where at−1 are p× q matrices depending on y1, . . . , yt−1, 1 ≤ t ≤ n.

Moreover, we also assume the followings about our estimating function

gn(θ) for every n ≥ 1:

• gn(θ) are almost surely differentiable with respect to θ,

• E
(

∂gn(θ)
∂θ

| Fy
n−1

)
is non-singular for all θ,

• E
(
gn(θ)gn(θ)

′ | Fy
n−1

)
is non-singular and positive definite for all θ.

In the class M, our optimal estimating function

g∗n(θ) =
∑n

t=1 a
∗
t−1ht

=
∑n

t=1

(
E
(

∂ht(θ)
∂θ

| Fy
t−1

))′ (
E
(
hth

′
t | F

y
t−1

))−1
ht

(2.2)

will maximize the information matrix

Ig(θ) =

(
n∑

t=1

at−1E

(
∂ht(θ)

∂θ
| Fy

t−1

))′

(
n∑

t=1

E
(
(at−1ht)(at−1ht)

′ | Fy
t−1

))−1( n∑
t=1

at−1E

(
∂ht(θ)

∂θ
| Fy

t−1

))
(2.3)
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and reduces the corresponding optimal information to

E
(
g∗n(θ)g

∗
n(θ)

′ | Fy
n−1

)
. (2.4)

These will be used in Section 3.2, 3.3 and as well in the Section 3.4, where

we apply our knowledge in an example.

2.2 Recursive estimation

In this section, we will focus on the recursive estimation for continuous time

models using Milstein’s approximation, following paper [10]. Recursive esti-

mation uses the parameter at time t to estimate the parameter in t+ 1 and

some adjustment based on the observation at time t+1. It helps us to break

the problem to smaller problems and obtain a mathematical model of the

system in real time.

2.2.1 State space models

Before jumping into the optimal recursive estimate functions for general mod-

els, we will see a discrete-time state space model of an observed process {yt}

and a state process {θt}.

yt+1 = Aθt + azt+1 + b(z2t+1 − 1) (2.5)

θt+1 = Bθt + cηt+1 + d(η2t+1 − 1), (2.6)

where A,B, a, b, c and d are positive constants, moreover, possibly mea-

surable with respect to the σ-field Fy
t . Additionally, {zti}, {ηti} are two

independent standard Gaussian sequences of i.i.d random variables with
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Corr(zt, ηt) = ρ. Now, we introduce a lemma that will be useful to prove

next theorem.

Lemma 2.2.1. Assume Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) with Corr(Z1, Z2)=

ρ. Then Corr(Z2
1 , Z

2
2)=ρ2.

Theorem 2.2.2. Given the previous state space model and the class of all

estimators of the form :

θ̂t+1 = Bθ̂t + Ĝt(yt+1 − Aθ̂t), (2.7)

we will have Ĝt

Ĝt =
ABγt + ρ(ac+ 2)

A2γt + a2 + 2b2
(2.8)

minimizing the mean-square error

γt+1 = E

(
(θt+1 − θ̂t+1)

2 | Fy
t

)
. (2.9)

Moreover, the mean-square error is given as

γt+1 = (B − AĜt)
2γt + c2 + 2d2 + Ĝ2

t (a
2 + 2b2)− 2ρĜt(ac+ 2ρbd). (2.10)

Proof. Firstly, we calculate the difference θt+1 − θ̂t+1

θt+1 − θ̂t+1 = Bθt + cηt+1 + d(η2t+1 − 1)− (Bθ̂t + Ĝt(yt+1 − Aθ̂t))

= B(θt − θ̂t) + cηt+1 + d(η2t+1 − 1)

−Gt(Aθt + azt+1 + b(z2t+1 − 1)− Aθ̂t)

= (B − AGt)(θt − θ̂t) + cηt+1 + d(η2t+1 − 1)− aGtzt+1 − bGt(z
2
t+1 − 1).

(2.11)

If we take the square of the above expression and calculate the expected value,

we can use the previous lemma 2.2.1 to see that the conditional mean-square

error at t+ 1 is given by

γt+1 = (B − AGt)
2γt + c2 + 2d2 +G2

t (a
2 + 2b2)− 2ρGt(ac+ 2ρbd). (2.12)
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Now, we differentiate it with respect to Gt and assume the first derivative is

zero, we get

−2A(B − AGt)γ + 2Gt(a
2 + 2b2)− 2ρ(ac+ 2ρbd) = 0

Solving for Gt, we obtain

Ĝt =
2ABγt + ρ(ac+ 2ρbd)

2A2γt + a2 + 2b2
.

Corollary 2.2.2.1. Let the state space model be of the form

yt+1 = Aθt + zt+1, θt+1 = Bθt + ηt+1,

where {zt} and {ηt} are two sequences of i.i.d random variables with mean

zero and variance σ2
z and σ2

η respectively. In the class of estimates of the

form:

θ̂t+1 = Bθ̂t+1 + Ĝt(yt+1 − Aθ̂t), (2.13)

the Gt, which minimizes the mean-square error

γt = E

(
(θt − θ̂t) | Fy

t

)
,

is given by

Ĝt =
BAγt

A2γt + σ2
z

.

In addition, the mean-square error is given as

γt+1 = (B − ĜtA)
2γt + σ2

η + Ĝ2
tσ

2
z .

Proof. It can be proven by setting a = σz, b = σeta, c = d = 0, and ρ = 0

and using the previous theorem.
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2.2.2 General models

In the continuous setting, we consider the following general state space model

∂yt = A(yt)θtdt+ α(yt)dW1(t), (2.14)

∂θt = B(yt)θtdt+ β(yt, θt)dW2(t) (2.15)

whereW1(t) andW2(t) are two uncorrelated standard Brownian motions. Af-

ter applying the Milstein’s approximation considering discretisation in small

intervals of time, then we obtain the following non-Gaussian discrete state-

space model

yti+1
− yti = A(yti)θtih+ α(yti)

√
hzti+1

+
h

2
α(yti)α̇y(yti)(z

2
ti+1

− 1), (2.16)

θti+1
= (1 +B(yti)h)θti + β(yti)

√
hηti+1

+
h

2
β(yti , θti)β̇θ(yti , ηti)(η

2
ti+1

− 1),

(2.17)

where α̇y =
∂α
∂y
, β̇y =

∂β
∂θ
.

We can relate this to our discrete model (2.5)-(2.6), and use the previous

knowledge to calculate the recursive estimator and mean-square error.

Now since we covered both general models and state space models, let us

see how we apply this theory to an interest rate model.

Example 2.2.1 (CIR Model). Consider the Cox–Ingersoll–Ross model for

the observed process yt, given that

dyt = k(θt − yt)dt+ σ
√
ytdW1(t)

and the state process θt follows a diffusion process of the form

dθ = B(yt)θtdt+ β(yt, θt)dW2(t),
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with E(dW1(t), dW2(t)) = 0.

Applying the Milstein’s approximation will lead to

yti+1
− yti + kyti = kθtih+ σ

√
ytihzti+1

+
1

4
σ2h(z2ti+1

− 1),

and

θti+1
=

(
1 +B(yti)h

)
θti + β(yti)

√
hηti+1

+
h

2
β(yti , θti)β̇σ(yti , θti)(η

2
ti+1

− 1).

We would like to relate these to (2.5) and (2.6) by letting yt+1 = yti+1
− yti +

kyti , θt+1 = θti+1
, zt+1 = zti+1

, ηt+1 = ηti+1
, and ρ = 0. Additionally, we also

say A = kh, a = σ
√

ytih, b = 1
4
σ2h, B = 1 + B(yti)h, c = β(yti)

√
h, and

d = h
2
β(yti , θti)

ˆβ(yti , θti). Now, from Theorem 2.2.2 we can get the recursive

estimator

θ̂t+1 =

(
1 +B(yti)h

)
θ̂t + Ĝt

(
yt+1 − khθ̂t

)
,

where

Ĝt =

k

(
1 +B(yt)h

)
γt

k2hγt + σ2

(
yt +

1
8
σ2

) ,

and the mean-square error is given as

γt+1 =

(
1+B(yti)h−khĜt

)2

γt+β2(yt)h+
h2

2
β2(yt, θ̂t)β̇

2
t (yt, θ̂t)+σ2hĜ2

t

(
yt+

1

8
σ2h

)
.

As we can see, we found the form of the recursive estimator and the mean

square error, which is the mean of the squared difference between the actual

value and the estimated value.
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2.3 Optimal estimation for semimartingales

This section is based on [14], which extends the theory of parametric esti-

mation for discrete-time stochastic processes [3] to the continuous-time case.

Firstly, we introduce the optimality criterion and later we will mention the

recursive case.

2.3.1 Optimality criterion

Assume we have a complete probability space (Ω,A,P) for each P ∈ P with

a family F = {Ft, t ≥ 0} of σ-algebras. We also denote the space of right-

continuous functions x = (xt, t ≥ 0) having limits on the left by D. We will

use X = (Xt, Ft) to denote an {Ft}-adapted process (Xt) with trajectories

in the space D, with initial assumption X0 = 0. Additionally, we denote

by M(F, P ),Mloc(F, P ),M2
loc(F, P ) classes of uniformly integrable, local and

locally square-integrable martingales X = (Xt, Ft) respectively. Next, we

have the class of random processes V = (Vt, Ft) which have locally bounded

variation P -a.s, denoted by Vloc(F, P ).

Since we assume the process X = (Xt, Ft) is a semimartingale for each

P , then we can represent it as

Xt = Vt,θ +Ht,θ, (2.18)

where V = (Vt, Ft) ∈ Vloc(F, P ) and H = (Ht, Ft) ∈ Mloc(F, P ).

Remark. If V is predictable, then this representation (2.18) is called the

Doob-Meyer decomposition.
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Now, we consider a parameter θ to be a function of P , and let G =

(Gt,θ, Ft) be a family of processes indexed by θ such that E(Gt,θ) = 0 for

each t with respect to P . Godambe’s optimality criterion in [3] states that in

the class of unbiased estimating functions an estimating function is optimum

if it minimizes

E(G2
t,Θ)

/(
E(

∂Gt

∂θ
)

)2

(2.19)

for each t. In this section, we specialize in the functions of the form

Gt,θ =

∫ t

0

as,θ dHs,θ, (2.20)

where H = (Ht,θ, Ft) ∈ M2
loc(F, P ) and Is,θ = ∂Hs,θ/∂θ exists.

Also, we assume the following: (as,θ, Fs) is predictable and differentiable

with respect θ,
∫ t

0
(∂as/∂θ) dHs,θ,

∫ t

0
as,θ dHs,θ exist and lastly, ∂Gt,θ/∂θ has

non-zero expectation and can be expressed as∫ t

0

(∂as,θ/∂θ) dIs,θ

∫ t

0

as,θ dIs,θ. (2.21)

Using the properties of the stochastic integral with respect to martingales,

we get

E(G2
t,Θ) = E(

∫ t

0

a2s,θ d⟨H⟩s,θ), (2.22)

and

E(
∂Gt,θ

∂θ
) = E(

∫ t

0

as,θ dIs,θ). (2.23)

A sufficient criterion for the optimal process G∗
t,θ =

∫ t

0
a∗s,θ dHs,θ to exists

is that

E

(
Gt,ΘG

∗
t,θ/E(

∂Gt,θ

∂θ

)
(2.24)
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is the same for all G. After using the properties of stochastic integrals, we

can write it in the form

E

(∫ t

0

as,θa
∗
s,θ d⟨H⟩sθ)

/
E(

∫ t

0

as,θ dIs,θ

)
; (2.25)

therefore, a∗s,θ can be represented as − dIsθ/d⟨H⟩s,θ and it will be optimal.

This extends a result of [4] for discrete time processes.

2.3.2 Recursive optimal estimating functions

Following [14], we view the estimation of θ in a dynamic sense, as a special

case of filtering, where the goal is to compute the estimate for some time-

varying parameter from an observation and we will examine the properties of

the general solutions of the recursive algorithms. In our case, θ is a constant

over time, which leads to the filtering corresponding to a continual updating

of the estimate θ̂t as more data comes available.

Now, consider the following semimartingale model:

Xt = θRt +Ht,θ, (2.26)

where Rt is absolutely continuous with respect to d⟨H⟩t,θ.

Now rewriting this as

dXt = θdRt + dHt,θ. (2.27)

The optimal estimate θ̂ will satisfy the equation∫ t

0

a∗
s,θ̂
(dXs − θ̂tdRs) = 0. (2.28)

Assuming dX̂t = θ̂tdRt and a∗s,θ is independent of θ, then by differentiating

(2.28) we get

dθ̂t = Nta
∗
t (dXt − dX̂t), (2.29)
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where N−1
t =

∫ t

0
a∗sdRs and

dNt = −N2
t a

∗2
t d⟨H⟩t. (2.30)

Equation (2.29) and (2.30) gives us the recursive procedure for estimating θ.

The general solution gives the estimate

θ0t =
θ0N

−1
0 +

∫ t

0
a∗sdXs

N−1
0 +

∫ t

0
a∗sdRs

. (2.31)

In this general solution, N−1
0 will correspond to the prior variance of θ0t , and

as it goes to infinity, θ0t becomes the estimate θ̂t.

Now let us see a specific example.

Considering the Aalen’s model (see [1]), we have

dXt = θJ(t,X)dt+ dMt,θ.

Without going into details, for the counting process θJ(t,X)dt = ⟨M⟩t,θ, the

estimating function

G∗
t,θ =

∫ t

0

a∗s,θdMs,θ

will be optimal for

a∗s,θ =
J(s,X)ds

⟨M⟩s
.

If a∗s,θ = 1/θ and dRs = J(s,X)ds, then equation (2.29) will be

dθ̂t = θ̂t(dXt − dX̂t)/Xt = Nt(dXt − dX̂t),

where N−1
t =

∫ t

0
J(s,X)ds. Then

Ṅt = −J(t,X)N2
t ,
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and the general solution is

θ0t =
θ0N

−1
0 +

∫ t

0
dXs

N−1
0 +

∫ t

0
J(s,X)ds

, (2.32)

where as N0 converges to infinity, θ0t becomes the estimate θ̂t.

Also this solution provides the filtering algorithm of Van Shuppen for

counting processes with Aalen’s model.
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Chapter 3

Combined estimating functions

From now on we will now consider combined estimating functions to get a

better estimate.

3.1 Optimal estimating function combinations

This section follows the paper [15]. Let us consider a probability space

(Ω,A,P), on which θ is a real valued random variable. We also let g1 and

g2 be unbiased estimating functions with finite positive variance and the

expectation of ∂g1
∂θ

and ∂g2
∂θ

are also finite, with E(∂g1
∂θ

) ̸= 0.

Theorem 3.1.1. In the class of all unbiased estimating functions

g = g1 + cg2, (3.1)

we have

• g∗ minimizes V ar(g):

g∗ = g1 + C∗g2, (3.2)
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where

C∗ = −Cov(g1, g2)

V ar(g2)
, (3.3)

• g0 minimizes V ar(g)/(E(∂g
∂θ
))2:

g0 = g1 + C0g2, (3.4)

where

C0 =
E(∂g2

∂θ
)V ar(g1)− E((∂g1

∂θ
)Cov(g1, g2)

E(∂g1
∂θ

)V ar(g2)− E((∂g2
∂θ

)Cov(g1, g2)
. (3.5)

Remark. If E(∂g2
∂θ

) = 0, then these two are equivalent, in which case C∗ =

C0 = −Cov(g1, g2)/V ar(g2).

Remark. In case when g01 and g02 are orthogonal and information unbiased

estimating functions, then C0 = 1 and the optimal combined estimating

function is

g0 = g01 + g02. (3.6)

3.1.1 Application to State Space models

Following [15], which extend the result on optimal combination on estimating

functions for discrete time stochastic processes [7] to discrete time state space

models and to continuous time counting process models, we will consider the

following state space model in discrete time:

θt+1 = a(t)θt + c(t) + b(t)ut+1

ξt+1 = A(t)θt+1 +B(t)vt+1,

where {θt} is an unobserved sequences of random variables, {ξt} is an ob-

served sequence of variables and {ut}, {vt} are independent sequences of in-

dependent variables with variance σ2
u, σ

2
v respectively. Also, the functions
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a(t), b(t), c(t), A(t) and B(t) are Aξ
t measurable. Let θ̃t = E(θt | Aξ

t ),and

γt = V ar(θt | Aξ
t ).

We consider the combinations of

g1 = θt+1 − a(t)θ̃t − c(t) (3.7)

g2 = ξt+1 − A(t)a(t)θ̃t − A(t)c(t). (3.8)

We should note that θt+1 serves the same role as the θ we mentioned above.

By (3.2), the optimal combination is

θt+1 − a(t)θ̃t − c(t)− Cov(g1, g2 | Aξ
t )

V ar(g2 | Aξ
t )

(ξt+1 − A(t)a(t)θ̃t − A(t)c(t)). (3.9)

3.1.2 Application to Continuous time models

Similarly as the previous subsection, we follow [15], showing how the com-

bination of estimating function suggests a prescription for updating a filter

in continuous time. As in Section 2.3.1, we have a probability space with

right continuous filtration and here we also have cadlag processes (θt, t ≥

0)(unobserved state process) and (ηt, t ≥ 0)(observed state process) such

that

dθt = α(t)θt−dt+ σ(t)dt+ dMt, (3.10)

and

dηt = htdt+ dVt, (3.11)

where (Mt, t ≥ 0) is a square integrable martingale with respect to the filtra-

tion generated by (θs, t ≤ s) and (Vt, t ≥ 0) is a square integrable martingale

with respect to (Gt, t ≥ 0), where Gt is generated by (θt, t ≥ 0; ηs, s ≤ t).

Additionally, α and σ have continuous paths and measurable with respect
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to F η
t−, which is a σ-field generated by ηs, s ≤ t. Lastly, (ht, t ≥ 0) is a

Gt-predictable and independent of the two cadlag processes.

To find the combined estimating functions, we will think of dθt as θt+dt−

θt− and let us say the differential d̂θ̃t is an estimate of

dθt + θt− − θ̆t, (3.12)

where θ̃t stands for E(θt | Fη
t ) and θ̆t is E(θt− | Fη

t−).

Equation 3.12 is a part of the first estimating component

g1 = dθt − α(t)θ̆t−dt− σ(t)dt+ θt− − θ̆t− (3.13)

and the second component could be

g2 = dηt − h̆t−dt. (3.14)

The optimal combination will be

dθt − α(t)θ̆t−dt− σ(t)dt+ θt− − θ̆t− − Ct

Wt

(dηt − h̆t−dt), (3.15)

where Ct stands for the covariance

Cov(g1, g2 | Fη
t−) = E((dMt + θt− − θ̆t−)(dVt + htdt− h̆t−dt) | Fη

t−))

and Wt is the variance

V ar(g2 | Fη
t− = E(d⟨V ⟩t | Fη

t−))

assuming V ar(htdt | Fη
⊔−) is negligible. By setting (3.15) to be zero we get

a solution

d̂θ̃t = α(t)θ̆t−dt+ σ(t)dt+
Ct

Wt

(dηt − h̆t−dt).

The last equation, by a few little modification is essentially the standard

filtering equation. Thus, it gives a justification through estimating functions

for stochastic differential equation satisfied by the usual filter θ̆t = E(θt | Fη
t ).

24



3.2 Discretely observed diffusion

This section follows closely [9], where we deal with discrete time results

on combining estimating functions and obtain closed form expression for

the gain in information. We assume the continuous time process {yt} is

recorded discretely at time points h.2h, . . . , where h is the discrete interval

of observations. Let Fy
(t−1)h be the σ-field generated by y1h, y2h, . . . , y(t−1)h,

now we consider the observable discrete time process {yth, t = 1, 2 . . . } with

the following conditional moments

µt(θ) = E(yth | Fy
(t−1)h), (3.16)

σ2
t (θ) = V ar(yth | Fy

(t−1)h), (3.17)

γt(θ) = E
(
(yth − µt(θ))

3 | Fy
(t−1)h

)
, (3.18)

κt(θ) = E
(
(yth − µt(θ))

4 | Fy
(t−1)h

)
. (3.19)

In order to estimate θ based on the observations, we consider two classes

of martingale differences {mt(θ) = yth − µt(θ), t = 1, . . . , n} and

{Mt(θ) = m2
t (θ) − σ2

t (θ), t = 1, . . . , n}, where the quadratic variation and

covariation of these two are

⟨m⟩t = σ2
t (β), (3.20)

⟨M⟩t = κt(β)− σ4
t (β), (3.21)

and

⟨m,M⟩t = γt(β) (3.22)

respectively.
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The optimal estimating functions based on the martingale differences are

given by

g∗m = −
n∑

t=1

∂µt

∂θ

mt

⟨m⟩t
, (3.23)

g∗M = −
n∑

t=1

∂σ2
t

∂θ

Mt

⟨M⟩t
, (3.24)

moreover, we have the corresponding information

I∗gm = −
n∑

t=1

∂µt

∂θ

∂µt

∂θ′
1

⟨m⟩t
, (3.25)

I∗gM = −
n∑

t=1

∂σ2
t

∂θ

∂σ2
t

∂θ′
1

⟨M⟩t
. (3.26)

Theorem 3.2.1. Given a discretely observed process, in the class of all

combined estimating functions of the form

gc =

{
gc(θ) : gc(θ) =

n∑
t=1

(at−1mt + bt−1Mt)

}
• The optimal estimating function is g∗c =

∑n
t=1(a

∗
t−1mt+ b∗t−1Mt), where

a∗t−1 =

(
1− ⟨m,M⟩2t

⟨m⟩t⟨M⟩t

)−1(
− ∂µt

∂θ

1

⟨m⟩t
+

∂σ2
t

∂θ

⟨m,M⟩t
⟨m⟩t⟨M⟩t

)
(3.27)

and

b∗t−1 =

(
1− ⟨m,M⟩2t

⟨m⟩t⟨M⟩t

)−1(
∂µt

∂θ

⟨m,M⟩t
⟨m⟩t⟨M⟩t

− ∂σ2
t

∂θ

1

⟨m⟩t

)
. (3.28)

• The information Ig∗C (θ) is given by

Ig∗C (θ) =
∑n

t=1

(
1− ⟨m,M⟩2t

⟨m⟩t⟨M⟩t

)−1

[
∂µt

∂θ
∂µt

∂θ′
1

⟨m⟩t +
∂σ2

t

∂θ

∂σ2
t

∂θ′
1

⟨M⟩t +

(
∂µt

∂θ

∂2
t

∂θ′
+

∂σ2
t

∂θ
∂µt

∂θ′
⟨m,M⟩t
⟨m⟩t⟨M⟩t

)]
;

(3.29)
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• The information gain is given by

Ig∗C (θ)− Ig∗m(θ) =
∑n

t=1

(
1− ⟨m,M⟩2t

⟨m⟩t⟨M⟩t

)−1

[
∂µt

∂θ
∂µt

∂θ′
⟨m,M⟩2t
⟨m⟩t +

∂σ2
t

∂θ

∂σ2
t

∂θ′
1

⟨m⟩t +

(
∂µt

∂θ

∂2
t

∂θ′
+

∂σ2
t

∂θ
∂µt

∂θ′
⟨m,M⟩t
⟨m⟩t⟨M⟩t

)]
.

(3.30)

Before going into how it works with specific models, it would be wise to

see what is the case with general models.

3.3 General models

In this section we will use Milstein’s approximation to obtain the first four

conditional moments and construct the optimal estimating functions as in

paper [9].

Consider the diffusion process given by the time-homogeneous stochastic

differential equation of the form

dyt = a(α, yt)dt+ b(β, yt)dWt, (3.31)

where a is the drift, b is the diffusion functions, and Wt is the standard

Brownian motion.

For extended general models, the diffusion is a function of the observa-

tion yt, hence closed form of expressions of the conditional distribution, as

well as closed form expression for the conditional moments cannot be easily

obtained by repeating the Itô’s formula. That is why we use the Milstein’s

approximation to do so.
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After applying Milstein’s approximation to (3.31), we get

yth =y(t−1)h + a(α, y(t−1)h)dt+ b(β, y(t−1)h)
√
hzt

+ 1
2
b(β, y(t−1)h)by(β, y(t−1)h)(z

2
t − 1)h,

(3.32)

where by =
∂b
∂y

and z ∼ N(0, 1), i.i.d.

With (3.32), we can compute the first four conditional moments of yth

given y(t−1)h:

µt(α) = y(t−1)h + a(α, y(t−1)h)h, (3.33)

σ2
t (β) = b2(β, y(t−1)h)h+

1

2
b2(β, y(t−1)h)b

2
y(β, y(t−1)h)h

2, (3.34)

γt(β) = 3b3(β, y(t−1)h)by(β, y(t−1)h)h
2 + b3(β, y(t−1)h)b

3
y(β, y(t−1)h)h

3, (3.35)

κt(β) = 15b4(β, y(t−1)h)b
2
y(β, y(t−1)h)h

3

+ 15
4
b4(β, y(t−1)h)b

4
y(β, y(t−1)h)h

4 + 3b4(β, y(t−1)h)h
2.

(3.36)

Then based on the observations, we can see the martingale differences

mt = yth − µt(α) and Mt = m2
t − σ2

t (β) as we did in Section 2.1. In this

case, we can also compute the quadratic variation and covariation as we did

in (3.21)

⟨M⟩t = κt(β)− σ4
t (β) =

= 14b4(β, y(t−1)h)b
2
y(β, y(t−1)h)h

3

+ 7
2
b4(β, y(t−1)h)b

4
y(β, y(t−1)h)h

4 + 2b4(β, y(t−1)h)h
2,

(3.37)

⟨m⟩t = σ2
t (β), ⟨m,M⟩t = γt(β). (3.38)

Now using from (3.23)- (3.26), we can compute the optimal estimating func-

tions and corresponding information:

g∗m(α) = −
n∑

t=1

∂µt

∂α

mt

⟨m⟩t
, (3.39)
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g∗M(β) = −
n∑

t=1

∂σ2
t

∂β

Mt

⟨M⟩t
, (3.40)

moreover, we have the corresponding information:

I∗gm(α) = −
n∑

t=1

∂µt

∂α

∂µt

∂α′
1

⟨m⟩t
, (3.41)

I∗gM (β) = −
n∑

t=1

∂σ2
t

∂β

∂σ2
t

∂β′
1

⟨M⟩t
. (3.42)

3.4 Application

Finally, let us see how we obtain the optimal estimating function and infor-

mation matrix based on the previous theorems. (We are using paper [9].)

Example 3.4.1 (NLD process). Consider the following Nonlinear Drift (NLD)

diffusion process for modeling interest rates

dyt = (α1 + α2y
−1
t )dt+

√
β1 + β2ydWt,

where β1, β2 > 0, 0 < α1 < β2/2 and α2 > β1/2. To relate this to our

general model, we have a(α, y) = (α1 + α2/y), B(α, y) =
√
β1 + β2y and

by = (α, y) = 1/2(β1 + β2y)
−1/2. The Milstein’s approximation will give us

the following:

yth = y(t−1)h + (α1 + α2y
−1
(t−1)h)h+

√
β1 + β2y(t−1)h

√
hzt +

1

4
β2(z

2
t − 1)h.

One can find the first four conditional moments and then the estimating

function and information based on mt is:

g∗m(α) =

 −h
∑n

t=1
mt

σ2
t (β)

−h
∑n

t=1
mt

y(t−1)hσ
2
t (β)

 ,
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I∗m(α) =

 h2
∑n

t=1
1

σ2
t (β)

h2
∑n

t=1
1

y(t−1)hσ
2
t (β)

h2
∑n

t=1
1

y(t−1)hσ
2
t (β)

h2
∑n

t=1
1

y2
(t−1)h

σ2
t (β)

 .

Also, the estimating function and information based on Mt are given as

g∗M(α) =

 −h
∑n

t=1
Mt

⟨M⟩t

−h
∑n

t=1

(y(t−1)h+1/4β2h)Mt

⟨M⟩t

 ,

I∗m(α) =

 h2
∑n

t=1
1

⟨M⟩t h2
∑n

t=1

(y(t−1)h+1/4β2h)

⟨M⟩t

h2
∑n

t=1

(y(t−1)h+1/4β2h)

⟨M⟩t h2
∑n

t=1

(y(t−1)h+1/4β2h)2

⟨M⟩t .


In this case, θ = (α1, α2, β1, β2)

′ and the optimal combined estimating func-

tion using mt and Mt is given by:

g∗c =
n∑

t=1

(a∗t−1mt + b∗t−1Mt),

where

a∗t−1 = (1− ρ2t )
−1

(
− ∂µt

∂θ

1

⟨m⟩t
+

∂σ2
t

∂θ

⟨m,M⟩t
⟨m⟩t⟨M⟩t

)
,

b∗t−1 = (1− ρ2t )
−1

(
∂µt

∂θ

⟨m⟩t⟨M⟩t
⟨m⟩t

− ∂σ2
t

∂θ

1

⟨m⟩t

)
,

with
∂µt

∂θ
= (h, h−1

(t−1)h, 0, 0)
′,

and
∂σ2

t

∂θ
= (0, 0, h, h(t−1)h + 1/4β2h

2)′.

Finally, the information for the combined estimating function is

n∑
t=1

(1−ρ2t )
−1

[
∂µt

∂θ

∂µt

∂θ′
1

⟨m⟩t
+
∂σ2

t

∂θ

∂σ2
t

∂θ′
1

⟨M⟩t
+

(
∂µt

∂θ

∂σ2
t

∂θ′
+
∂σ2

t

∂θ

∂µt

∂θ′

)
⟨m,M⟩t
⟨m⟩t⟨M⟩t

]
.

Now, let us see another example.
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Example 3.4.2. In this example, we will attempt to use trinomial trees for

the purpose of simulating an interest rate model and Milstein’s approxima-

tion. Let’s consider the modified version of the CIR model, for the purpose

of better convergence we will take the square root of

dyt = k(θt − yt)dt+ σ
√
ytdWt.

We will have xt =
√
yt,

dxt = (−k

2
xt +

1

2

kθ

xt

− 1

8

σ2

xt

) +
σ

2
dWt.

Trinomial trees are mostly used for option pricing and it also can be used

to provide a discrete-time and discrete-space Markov approximation for x

(see [13] for more details). We denote the process value on node (i, j) by

y(i, j). Hence, from a node y(i, j) we have three possible steps: to go up, to

stay, or to go down, with respective probabilities. For the theoretical part,

we used [2].

Using the probability structure of the trinomial tree, we have generated

a trajectory (orange), which then we compare with the Milstein’s approxi-

mation (blue) of the CIR model.
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Figure 1: Milstein’s approximation and the trajectory of the trinomial tree

of the CIR model

Figure 2: Multiple trajectories of the Milstein’s approximation of the CIR

model

As we can see, the approximation is very close to our trajectory of the

trinomial tree.
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Chapter 4

Conclusion

As we have seen in the examples, Milstein’s method works well when it comes

to some interest rate models. Additionally, we saw how we can use Milstein’s

method to obtain the first four conditional moments of the diffusion and

then constructing an optimal estimating function. In the end, we can use

the martingale differences and obtain information gain.
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Appendix A

Semimartingales

A semimartingale is a stochastic process which can be decomposed as a sum

of local martingales and a finite variation process. It has a significant role in

financial application, with being able to represent arbitrage-free asset prices

and interest rates.

Definition A.0.1. Consider a filtered probability space and X a real valued

process on it. We say X is a semimartingale if it can be decomposed as

Xt = Mt + Ft,

whereMt is a local martingale and Ft is an adapted process of locally bounded

variation.

The continuous case is also quite similar.

Definition A.0.2. X is a continuous semimartingale if it can be uniquely

decomposed as

Xt = Mt + Ft,
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where Mt is a continuous local martingale and Ft is a continuous finite vari-

ation process starting at zero.

To just name a few semimartingales: Brownian motion, Itô process, Levy

process etc.

An important property to note is that semimartingales form the largest

class of processes for which Itô integral can be defined.

Property 1. A linear combination of semimartingales is a semimartingale too.

Property 2. For every semimartingale, the quadratic variation exists.

One thing to note is that in this paper we use a special case of semimarti-

nagles, that can be written with respect to the Brownian motion. The reason

for that is, we use Milstein’s approximation, that is obtained as a result of

application of stochastic Taylor expansion, or more easily, by Itô’s formula.
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Appendix B

Milstein’s approximation

This appendix is based on [8] and [12].

The simplest way to approximate a stochastic differential equation may

be the Euler–Maruyama Method, but it may not the most accurate in some

cases. Hence, we can use Milstein’s approximation which adds a second-

order ”correction” term, that is derived from the Taylor expansion and Itô’s

lemma. Considering the homogeneous scalar stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt,

where a, b are the drift and diffusion coefficients, both smooth, and Wt is a

Brownian motion, the Milstein’s method yields the following form:

Xn+1−Xn = a(t,Xn)∆t+ b(t,Xn)∆Wn+0.5b(t,Xn)b
′(t,Xn)((∆Wn)

2−∆t).

Now, to show why this method is useful we can check its convergence. With-

out going to the specifics, we can see that it has strong and weak order of

convergence of β = 1. For the definition and more details, see [12]. Specif-

ically, in [8], we can see how the Milstein approximation is closer to the
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exact solution, when compared to the Euler–Maruyama method, for which

it has a strong order of convergence of β = 1/2, while having weak order of

convergence of β = 1.

Finally, the Milstein approximation is better when we deal with scalar

diffusions, since it is easier to implement. However, when it comes to multi-

dimensional cases it becomes drastically more challenging.
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[11] López-Pérez, Alejandra, Manuel Febrero-Bande and Wencesalo
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