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Introduction

Blocking sets of finite projective spaces have been studied by finite geometers for quite some
time. Beyond the fact that – as combinatorially defined objects in projective spaces – they
are of independent interest as well, blocking sets also have applications to other areas of
mathematics, such as game theory, finite nets or partial spreads.

A t-fold blocking set in a projective space PG(k−1, q) is a set of points B that intersects
every hyperplane in at least t points. A stronger requirement is that B intersects every
hyperplane in a generator set. (This property implies that B is a (k − 1)-fold blocking set.)
These objects have been studied in literature under various names, like generator sets [17],
and strong blocking sets [14]. However, they have become the focus of interest only very
recently, when it was discovered that they are closely related to minimal linear codes [1, 25].
The name cutting blocking set, which is most well-spread, was first used for these special
blocking sets in [1]. We will also stick to this terminology.

In this master’s thesis, we give an overview of the very active research area of cutting
blocking sets, with focus on their application to the theory of minimal codes.

This thesis is structured as follows. Chapter 1 contains basic definitions and results
about finite projective spaces that are necessary for understanding this text. In Chapter
2, we define minimal linear codes, give two cryptographic applications, and examine the
properties of these codes. In Chapter 3, we characterize minimal codes as cutting blocking
sets, and we prove results about these geometric objects. Chapter 4 is about constructions
of cutting blocking sets.
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Chapter 1

Finite projective spaces

Let q be a prime power, and let GF (q) be the unique field of order q. Let V (k, q) be a vector
space of dimension k over GF (q). (We know that V (k, q) ≃ GF (q)k). The projective space
PG(k − 1, q) can be derived from the vector space V (k, q) as follows: We define the (d− 1)-
dimensional projective subspaces of PG(k − 1, q) to be the d-dimensional linear subspaces
of V (k, q). Thus, the points of PG(k − 1, q) are the 1-dimensional subspaces (vector lines)
of V (k, q), the lines of PG(k − 1, q) are the 2-dimensional subspaces of V (k, q), . . . , and the
(k−2)-dimensional subspaces (which are also called hyperplanes) are the (k−1)-dimensional
subspaces of V (k, q).

The points of PG(k − 1, q) can be identified via homogeneous coordinates, which we get
in the following way: Let e1, . . . , ek be a basis of V (k, q). If P is a fixed projective point,
then we can take a vector p representing it, i.e. a vector that generates the 1-dimensional
subspace corresponding to P . Then p can be uniquely written as a linear combination of the
basis vectors with coefficients a1, . . . , ak ∈ GF (q), not all of which are zero:

p =
k∑

j=1

ajej.

Since the vector representing the point P is only determined up to a scalar multiple, this is
also true for the coefficients (a1, . . . , ak). Let us consider the following equivalence relation
on GF (q)k:

(x1, . . . , xk) ∼ (y1, . . . , yk) ⇔ ∃λ ∈ GF (q)\{0} : yi = λxi (1 ≤ i ≤ k).

So, if we assign the equivalence class of (a1, . . . , ak) (which we denote by (a1 : · · · : ak))
to the point P , we get a bijection between the points of PG(k − 1, q) and the non-zero
equivalence classes with respect to ∼. This mapping defines a homogeneous coordinate system
of PG(k−1, q). Of course, there are may choices for the basis, so there are multiple coordinate
systems, but they can all be mapped to one another by applying a linear transformation to
the vector space V (k, q).

Similarly, we can assign homogeneous coordinate vectors to hyperplanes too. Let H be a
hyperplane in PG(k − 1, q), corresponding to a hyperplane in V (k, q) with normal vector h
(in a fixed basis). Since h and λh determine the same hyperplane for any λ ∈ GF (q)\{0},
we can define the homogeneous coordinate vector of H as the equivalence class of h under
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the equivalence relation ∼ defined earlier. (A hyperplane can also be viewed as a point in
the dual space of PG(k − 1, q).)

It is possible to assign coordinates to the lines too. In particular, the projective line l
joining the points A = (a0 : a1 : . . . ak−1) and B = (b0 : b1 : · · · : bk−1) (A ̸= B) can be
described by a set of k(k−1)

2
numbers ℓij = aibj − ajbi (i < j). These numbers are called the

Plücker coordinates of ℓ. The Plücker coordinates are homogeneous coordinates too, that is,
a Plücker coordinate vector and its non-zero scalar multiples all define the same line, and
not all of the values ℓij are equal to zero. Also, it does not matter, how we choose the two
points on the line, the coordinates obtained in this way will be equal, up to a scalar multiple.
However, not all vectors of length k(k−1)

2
can be assigned to a line in PG(k − 1, q), as the

following proposition shows.

Proposition 1.0.1. A non-zero vector (ℓij)0≤i<j≤k is the Plücker coordinate vector of a line
in PG(k − 1, q) if and only if

ℓi1i2ℓi3i4 − ℓi1i3ℓi2i4 + ℓi1i4ℓi2i3 = 0

for any quadruple (i1, i2, i3, i4).

In the same way as we have defined the Plücker coordinates of a line joining two different
points, we can do this with the subspaces of co-dimension 2 defined as the intersection of two
different hyperplanes. (This will be a line in the dual space of PG(k − 1, q).)

Definition 1.0.2. Two sets of points in PG(k − 1, q) are projectively equivalent if they can
be mapped into each other by a linear transformation of the ambient space V (k, q).

Proposition 1.0.3. The number of d-dimensional subspaces of V (k, q), and therefore the
number of (d− 1)-dimensional subspaces of PG(k − 1, q), is[

k

d

]
q

:=
(qk − 1)(qk−1 − 1) . . . (qk−d+1 − 1)

(qd − 1)(qd−1 − 1) . . . (q − 1)
.

In particular, a projective line contains q + 1 points, and a projective plane contains
q2 + q + 1 points and the same number of lines.

Proposition 1.0.4. Let t ≥ d. The number of t-dimensional subspaces containing a given
d-dimensional subspace of V (k, q), and therefore the number of (t−1)-dimensional subspaces
containing a given (d− 1)-dimensional subspace of PG(k − 1, q), is

[
k−d
t−d

]
q
.

For instance, the number of hyperplanes through a given subspace of co-dimension 2 is
always q + 1.

For two projective subspaces U, V ⊆ PG(k − 1, q), we can define the projective subspace
⟨U, V ⟩ generated by them: Take the linear subspaces in V (k, q) corresponding to U and V .
Together, they generate a subspace W in V (k, q). Let ⟨U, V ⟩ be the projective subspace in
PG(k − 1, q) corresponding to W .

Proposition 1.0.5. Let U and V be two projective subspaces in PG(k − 1, q). Then

dim(⟨U, V ⟩) + dim(U ∩ V ) = dim(U) + dim(V ).
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This immediately implies that the intersection of a line and a hyperplane in PG(k− 1, q)
cannot be empty.

Definition 1.0.6. Let 1 ≤ m ≤ k. We say that m points in PG(k − 1, q) are in general
position, if the m vectors of V (k, q) defining the points are linearly independent.

The field GF (q) is a subfield of GF (qh) if h > 1. It follows that if we have a point in
PG(k − 1, q), then its coordinates can be seen as coordinates over GF (qh). In this way, we
get a natural inclusion between PG(k − 1, q) and PG(k − 1, qh).

Definition 1.0.7. An order q subgeometry in PG(k − 1, qh) (h ≥ 2) is a set of points
projectively equivalent to PG(k − 1, q). If h = 2, then an order q subgeometry is also called
a Baer subgeometry.

Proposition 1.0.8. An order q subgeometry in PG(k − 1, qk−1) intersects each hyperplane
in at least one point.

Proof. The projective space PG(k− 1, qk−1) arises from V (k, qk−1), which is a k-dimensional
vector space over GF (qk−1). But GF (qk−1) is a (k−1)-dimensional vector space over GF (q),
which means that V (k, qk−1) is also a vector space over GF (q), and it has dimension k(k−1).
This vector space gives rise to a projective space PG(k(k − 1) − 1, q). In this setting,
a hyperplane in PG(k − 1, qk−1) corresponds to a subspace of dimension (k − 1)2 − 1 in
PG(k(k−1)−1, q), and an order q subgeometry in PG(k−1, qk−1) corresponds to a subspace
of dimension k − 1 in PG(k(k − 1) − 1, q). By Proposition 1.0.5, the two subspaces in
PG(k(k−1)−1, q) must intersect each other, so neither can the intersection in PG(k−1, qk−1)
be empty.

Figure 1.1: The correspondence between the spaces PG(k−1, qk−1) and PG(k(k−1)−1, q).
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Remark 1.0.9. In the same way, one can prove that an order q subgeometry of dimension
d in PG(k − 1, qh) intersects each hyperplane in at least one point if h ≤ d ≤ k − 1. For
example, a Baer subgeometry in PG(k − 1, q2) intersects each hyperplane too.

Proposition 1.0.10. There exist k − 1 pairwise disjoint order q subgeometries in PG(k −
1, qk−1).

Proof. It is possible to take k − 1 pairwise non-intersecting subspaces of dimension k − 1 in
PG(k(k− 1)− 1, q). The corresponding sets of points in PG(k− 1, qk−1) form k− 1 disjoint
subgeometries.

We will also need the following result later.

Proposition 1.0.11. A Baer subgeometry in PG(3, q2) intersects each plane in a Baer sub-
plane or a Baer subline.

Proof. Similarly as above, let us consider the correspondence between PG(3, q2) and PG(7, q).
A plane in PG(3, q2) corresponds to a 5-dimensional subspace in PG(7, q), and a Baer subge-
ometry in PG(3, q2) corresponds to a 3-dimensional subspace in PG(7, q). The intersection
of a 3-dimensional and a 5-dimensional subspace in PG(7, q) can have dimension 1, 2, or 3,
according to Proposition 1.0.5. If the dimension of the intersection is 3, it means that the
smaller subspace is contained in the larger one. But this is impossible in our case, since the
3-dimensional Baer subgeometry is not contained in any plane. Thus, the intersection is a
1- or 2-dimensional subspace, which corresponds to a Baer subline or a Baer subplane in
PG(3, q2), respectively.

Proposition 1.0.12. If a set of points {P1, P2, . . . , Ps} in PG(k − 1, qk−1) is fixed by the
Frobenius map

F : PG(k − 1, qk−1) → PG(k − 1, qk−1),

(r0 : r1 : · · · : rk−1) 7→ (rq0 : r
q
1 : · · · : r

q
k−1),

then the subspace S = ⟨P1, P2, . . . , Ps⟩ intersects the subgeometry PG(k − 1, q) ⊂ PG(k −
1, qk−1) in a subspace of PG(k − 1, q), which has the same dimension as S.

Proposition 1.0.13. Let ℓ1, ℓ2, and ℓ3 be three pairwise disjoint lines in PG(3, q). Then
there exist exactly q + 1 lines that intersect all of the three lines. The union of the points of
these q + 1 lines is projectively equivalent to the set of points determined by the equation

x0x1 + x2x3 = 0.

Definition 1.0.14. A set of points projectively equivalent the set of points determined by
the equation

x0x1 + x2x3 = 0

in PG(3, q) is called a hyperbolic quadric.

Proposition 1.0.15. Let Q be a hyperbolic quadric in PG(3, q). Then the intersection of Q
and a plane π is either
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• the union of two intersecting lines, or

• a conic.

The latter has no three collinear points.

The interested reader can learn more about finite projective spaces from the textbook
[22].
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Chapter 2

Minimal linear codes

In this chapter, we introduce a class of linear codes, called minimal linear codes. The first
part of the chapter is a review of basic concepts from coding theory. The remainder of the
chapter consists of the definition of minimal codewords and minimal codes, two applications
of these codes to cryptography, and some fundamental properties of minimal codes.

2.1 Linear codes
In the communication model studied by coding theorists, a sender wants to forward a message
to a receiver through some (possibly noisy) channel. They would like to do this in a way
such that if a part of the message is changed during transmission, the receiver is still able to
recover the original message. To this end, the communicating participants turn to the use of
error-correcting codes.

Suppose that the message is a string of length n, consisting of elements of GF (q) (the
finite field of order q, where q is a prime power). Then it can be viewed as an element of the
vector space GF (q)n. In practice, the most common case is when q = 2, so the messages are
binary strings. This explains why we also use the terminology "bit" for coordinates even if
q ̸= 2.

Definition 2.1.1. We say that during the transmission t errors have occurred if t coordinates
have been changed, or, in other words, instead of the vector x sent by the sender, the receiver
got a vector x+ e such that e ∈ GF (q)n has exactly t non-zero coordinates.

The aim of the receiver is to decode the message, which means that he wants to find out
x knowing x+ e and the subset C ⊆ GF (q)n of possible messages x. The subset C is called
a code. In general, it can be any subset of GF (q)n. But a lot of nice properties are valid if
it is also a linear subspace of GF (q)n. In this master’s thesis, we only deal with this case.

Definition 2.1.2. We call a set C ⊆ GF (q)n a linear [n, k]q-code if C is a k-dimensional
linear subspace of the vector space GF (q)n. The elements of C are called codewords.

Definition 2.1.3. Let v and w be two vectors in GF (q)n. Their Hamming distance is the
number of coordinates in which v and w differ, so

dH(v, w) = |{i : vi ̸= wi}|.

9



Proposition 2.1.4. The Hamming distance is a metric on GF (q)n.

The metric space (GF (q)n, dH) is called the Hamming space.

Definition 2.1.5. The minimum distance of C is the minimal Hamming distance between
any two distinct codewords of C, which is the largest integer d such that any two distinct
vectors in C differ from each other in at least d coordinates.

Definition 2.1.6. A linear [n, k]q-code with minimum distance d is also called a linear
[n, k, d]q-code.

The parameter d is related to the error-correcting quality of the code: the more coordi-
nates are different in any two codewords, the more bits have to be changed during transmis-
sion for the receiver not to be able to recover the original message.

Definition 2.1.7. A code is t-error-correcting if minimum distance decoding is able to
correct t or less errors that may occur in any codeword.

Here, minimum distance decoding means that the receiver chooses a codeword from C
that has smallest Hamming distance from the received vector. If there are more than one
such codewords, then the decoding is not successful.

Proposition 2.1.8. A code C is t-error-correcting if and only if its minimum distance d is
at least 2t+ 1.

Definition 2.1.9. The (Hamming) weight of the codeword c is defined as w(c) = dH(c, 0).

Proposition 2.1.10. The minimum distance of a linear code is equal to the weight of its
minimum weight non-zero codeword(s).

Proof. If two codewords a and b have Hamming distance d, then the codeword a − b has
Hamming weight d. If the codeword c has Hamming weight w, then the Hamming distance
between c and 0 is w. So the set of weights and the set of distances between codewords is
the same, and it follows that the minima of the two sets is the same too.

Definition 2.1.11. We define the (information) rate of a linear [n, k]q-code as R = k/n.

We can define an [n, k]q-code in multiple ways. One possibility is giving the code by its
generator matrix. This is a matrix of size k × n, the rows of which are the elements of a
basis of the subspace C. Another possibility is to give a matrix A of size (n − k) × n such
that c ∈ C ⇔ c · AT = 0. This matrix is in fact the generator matrix of the dual code of C,
which is the [n, n − k]q-code C⊥ defined by the orthogonal complement of C in GF (q)n. In
this case, A is called the parity check matrix of the code C.

We will also use the following two definitions:

Definition 2.1.12. A code C is non-degenerate if there is no coordinate position i such that
for all c ∈ C,we have ci = 0.

Definition 2.1.13. Two linear codes are equivalent if they can be transformed to each other
by finitely many applications of the following two steps:

10



• switching the same 2 coordinates in every codeword, or

• multiplying the same coordinate by the same nonzero element λ ∈ GF (q) in all of the
codewords.

The aim of coding theory is to construct codes as "good" as possible, meaning that for a
fixed length, the sender can send many different messages, so the rate of the code is as high
as possible. But we also want the receiver to be able to correct many errors. Unfortunately,
one of these measures of goodness can only be increased at the expense of the other.

For a more detailed introduction to linear codes, we refer to [20]. The proofs of the
propositions listed in this section can be found there too.

2.2 Minimal codewords and codes
Definition 2.2.1. The support of the codeword c ∈ C is the set of its non-zero coordinates:

Supp(c) = {i ∈ [n] : ci ̸= 0}.

Definition 2.2.2. The codeword c ∈ C is minimal, if for all codewords b ∈ C, we have

Supp(b) ⊆ Supp(c) ⇒ ∃λ ∈ GF (q) : b = λc.

The code C is minimal if all of its non-zero codewords are minimal.

Example 2.2.3. Constant weight codes are always minimal. It is known that linear con-
stant weight codes are duals of Hamming codes. (For the proof, see Theorem A.0.5 in the
Appendix.) Unfortunately, they have very bad rates.

2.3 Applications to cryptography

2.3.1 Secret sharing

Minimal codewords were first used in the secret sharing scheme of Massey [23], which is as
follows. Suppose that the secret is an element s ∈ GF (q), and we want to divide it between n
players. This means that we give each player a piece of information such that certain subsets
of the players can determine s by putting their pieces of information together (in this case,
they form an authorized coalition), but other subsets cannot determine it. Moreover, they
have no more chance to find out the secret from their pieces of information than by taking a
random guess. Clearly, the authorized coalitions form a monotone increasing family, so in a
scheme, we are always interested in the minimal authorized coalitions.

Let C be a linear [n + 1, k]q-code, and let G be its generator matrix. Let us denote the
columns of G by G0, G1, . . . , Gn. Suppose that there is no column consisting only of zeros,
in other words, that C is non-degenerate. Now choose a random vector u from GF (q)k such
that uG0 = s, and calculate the vector uG = (s, v1, v2, . . . , vn). Let us give the element
vi ∈ GF (q) to player i. (Suppose that the players know their own indices, and the matrix G
is also known to each player, but the random vector u is not.)
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It is easy to see that a subset {i1, i2, . . . , im} of players can reveal s if and only if G0 can
be written as a linear combination of the columns Gi1 , Gi2 , . . . , Gim . Indeed, if there exist
scalars c1, . . . , cm such that G0 = c1Gi1 + · · ·+ cmGim , then we have s = c1vi1 + · · ·+ cmvim .
So the players in this subset can determine s by finding the suitable scalars c1, . . . , cm, which
they can do with a little calculation. On the other hand, if the columns Gi1 , Gi2 , . . . , Gim do
not generate G0, then the equation xGij = vij , xG0 = g is a system with at most k equations.
So it has a solution x ∈ GF (q)k for any value g ∈ GF (q). So in this case, the players of the
coalition do not have any information about the secret.

The condition that an authorized coalition is minimal means that G0 = c1Gi1+· · ·+cmGim

with cj nonzero (j = 1, . . . ,m). This is equivalent to the fact that the vector d with d0 = 1,
dij = −cj and dk = 0 for k /∈ {0, i1, . . . , im} is a minimal codeword in the dual code of
C. So we get that the minimal authorized coalitions of players correspond to the minimal
codewords of the dual code C⊥ with a 1 in the first coordinate.

In general, it is hard to determine the minimal codewords in a code. It makes the situation
easier if we use a code every codeword of which is minimal.

2.3.2 Secure two-party computation

Independently from the previous application, another code-based cryptographic protocol was
described in [11], which also relies on the minimality of the linear code used in it. In this
setting, a function f is given, and there are to parties (we call them Alice and Bob), who
hold disjoint parts of the input of f . We denote the part of the input known to Alice by
X, and the part known to Bob by Y . The task of the two parties is to compute the value
f(X, Y ) without revealing their respective parts of the input. A standard example is when
two millionaires want to find out which one of them is richer, but neither of them wants to
reveal anything about their wealth. We restrict ourselves to the semi-honest setting, which
means that both parties are following the protocol, but they might try to infer information
about the input of the other party from the information that they receive during the protocol.

We make some assumptions. We suppose that X ∈ GF (q)r an Y ∈ S, where S is a given
set. Furthermore, let f : GF (q)r × S → GF (q) be a function of the form

f(X, Y ) =
r∑

i=1

Xifi(Y ),

where fi : S → GF (q) (i = 1, . . . , r). We want to find a protocol where Alice learns nothing
about Y , Bob learns f(X, Y ), but nothing more about X. Note that we could require that
Alice learns f(X, Y ) too, but this can be attained by adding one last step to the protocol
where Bob sends the value f(X, Y ) to Alice. So we only deal with the case where it is enough
that Bob learns f(X, Y ). We also remark that it seems like we made a strict assumption on
the form of the function f . However, the class of functions of this specific form include many
important cases. For instance, if S = GF (q)r and fi is the projection to the i-th coordinate,
then we get the scalar product. Or, if we complete the input X = (X1, X2, . . . , Xr) of Alice by
an additional bit Xr+1 =

∑r
i=1 X

2
i , and we let fi(Y ) = −2Yi (i = 1, . . . , r), and fr+1(Y ) = 1,

then if Bob learns f(X1, . . . , Xr, Xr+1, Y1, . . . , Yr, Yr+1) =
∑r

i=1X
2
i − 2

∑r
i=1 XiYi, then by

adding
∑r

i=1 Y
2
i , he can calculate the squared euclidean distance of the vectors X and Y .

The secure computation of these function is crucial in some real-world problems.
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We also assume that we are aware of an oblivious transfer protocol. This protocol assures
that Bob can choose a coordinate of X and look at it without Alice knowing which coordinate
he chose, and without Bob learning any other bit of information about X than the chosen
coordinate. We describe such a protocol in the Appendix.

Now we are ready to give a protocol for computing f securely. Let us choose a linear
[n, n−r]q-code C which admits parity check matrix H ∈ GF (q)r×n, which is also the generator
matrix of the dual code C⊥. Let us denote the i-th row of H by Hi. The matrix H is known
to both parties. First, Alice uniformly randomly picks a vector Z ∈ GF (q)n such that
HZT = X. (So we have Xi = HiZ

T .) Bob will query some coordinates of Z, using oblivious
transfer, from which he will be able to compute f(X, Y ). To see which coordinates he has to
choose, we write f(X, Y ) as

f(X, Y ) =
r∑

i=1

Xifi(Y ) =
r∑

i=1

HiZ
Tfi(Y ) =

(
r∑

i=1

fi(Y )Hi

)
ZT .

So, to compute f(X, Y ), Bob only needs to know those coordinates of Z where
∑r

i=1 fi(Y )Hi ̸=
0. In other words, he needs to know Z at the positions belonging to the support of the code-
word c =

∑r
i=1 fi(Y )Hi of the dual code of C. So, in the second step of the protocol, Bob has

to query all the bits of Z that belong to this support, using oblivious transfer. Remember
that Alice is not supposed to get any information about Y . However, the number of coordi-
nates asked by Bob can reveal some information. To handle this, we can for example have
Bob make m − t dummy queries in the end, where t is the actual number of bits that he
needs, and m is the maximum of bits that he has to ask for any input Y . Note that since we
are in the semi-honest model, we can assume that he will not make real queries here. We still
need to make sure that Bob cannot find out any more information about X. But if there is a
codeword d in C⊥ which is linearly independent of c and the support of d in contained in the
support of c, then Bob can also get another bit of information (dZT ) about Z. Therefore,
for our protocol to be secure, we need that c is a minimal codeword in C⊥. Since we want
that the protocol works for arbitrary f , we have to choose the code in such a way that every
codeword is minimal, thus C⊥ has to be a minimal code. Indeed, if we use a minimal linear
code, then it is easy to see that Bob will learn only one bit of information about X, which
is f(X, Y ). We also remark that if C⊥ is a constant weight code (which is minimal), then he
always has to query the same number of bits, so he does not have to make dummy queries.

2.4 Properties of minimal codes
Now that we have seen the applications, we can move forward to studying minimal codes.
We begin with presenting two results on the rate of minimal codes.

Theorem 2.4.1 ([11]). Let C be a minimal linear [n, k]q-code. Then we have

R ≤ logq 2.

Proof. This follows from the fact that due to minimality,

F = {Supp(c) : 0 ̸= c ∈} ⊂ 2[n]
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forms a Sperner family. By Sperner’s theorem, we have |F| ≤
(

n
n/2

)
. From this, we get

|C| = qk ≤ 1 + (q − 1)

(
n

n/2

)
,

because each set of positions in F can be the support of only one codeword and its scalar
multiples, and C also contains (0, 0, . . . , 0). So, R = k/n ≤ logq 2.

Theorem 2.4.2 ([11]). Let 0 ≤ R = k
n
≤ 1

2
logq

(
q2

q2−q+1

)
. Then there exists a minimal linear

[n, k]q-code.

Proof. Let n and k be integers that satisfy the condition of the theorem. If we fix two linearly
independent vectors a, b ∈ GF (q)n such that Supp(b) ⊆ Supp(a), then we have exactly

[
n−2
k−2

]
q

k-dimensional subspaces of GF (q)n through the two-dimensional subspace ⟨a, b⟩, which is the
number of linear [n, k]q-codes containing a and b. Moreover, we can fix such a bad pair of
vectors in exactly

n∑
i=1

(q − 1)i(qi − q)

ways, since there are (q − 1)i vectors a such that |Supp(a)| = i, and for every such a, the
number of vectors b that are linearly independent of a with Supp(b) ⊆ Supp(a) is qi − q. We
have

n∑
i=1

(q − 1)i(qi − q) ≤ (1 + (q − 1)q)n = (q2 − q + 1)n.

So, the number of bad codes (that are not minimal) is at most
[
n−2
k−2

]
q
(q2 − q + 1)n, which is

smaller than the total number
[
n
k

]
q

of linear [n, k]q-codes, if the condition of the theorem is
satisfied. So, the number of minimal codes with these parameters must be positive.

Unfortunately, the above proof is not constructive.
The following theorem is referred to as the Ashikhmin-Barg condition:

Theorem 2.4.3 ([3]). Let C be a linear [n, k, d]q-code. Let wmax and wmin stand for the
weight of the maximal weight and the minimal weight nonzero codeword(s) in C. If

wmax

wmin

<
q

q − 1
,

then C is minimal.

Proof. Suppose to the contrary that there is a non-zero codeword c ∈ C that is not minimal.
Let b be a codeword for which Supp(b) ⊆ Supp(c), and b is linearly independent of c. Consider
the q−1 codewords of the form cλ = c−λb, where λ ∈ GF (q)\{0}. If we sum up the weights
of the codewords cλ, we get (q − 1)w(c)− w(b), since every bit of Supp(b) will be zero in cλ
for exactly one value of λ. There must be a value λ such that cλ has weight at most average:

w(cλ) ≤ w(c)− 1

q − 1
w(b) ≤ wmax −

1

q − 1
wmin,

but the right hand side is less than wmin by the assumption of the theorem, which leads to
a contradiction.
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The Ashikhmin-Barg condition is only sufficient for a linear code to be minimal, but not
necessary, as the following example shows.

Example 2.4.4. Let C be the 2-dimensional code over GF (2) generated by the vectors
(1, 1, 0, 0, 0, 0) and (0, 1, 1, 1, 1, 1). Then the minimum weight of C is wmin = 2, and the
maximum weight of C is wmax = 5. So,

wmax

wmin

=
5

2
> 2,

but C is a minimal linear code.

We can also give a necessary condition for a linear code to be minimal.

Definition 2.4.5. A linear code C is intersecting if for any nonzero codewords c, b ∈ C, we
have Supp(c) ∩ Supp(b) ̸= ∅.

Proposition 2.4.6 ([13]). Minimal codes are intersecting.

Proof. Let c and b be two codewords of C such that Supp(c) ∩ Supp(b) = ∅. Since C is a
linear subspace of GF (q)n, c+ b is also a codeword, and we have Supp(c) ⊂ Supp(c+ b), but
c and c+ b are two linearly independent vectors; a contradiction.

If q = 2, then this condition is also sufficient.

Proposition 2.4.7 ([13]). Binary intersecting codes are minimal.

Proof. In the binary case, the support of a codeword determines the codeword itself. If we
have c ̸= 0 and b ̸= 0 such that Supp(c) ⊂ Supp(b), then Supp(c + b) = Supp(d)\Supp(b)
does not intersect Supp(c); a contradiction.

However, if q > 2, then intersecting codes are not necessarily minimal, as shown by the
following proposition.

Proposition 2.4.8 ([13]). Let k ≥ 2. For any two linearly independent codewords c and d
of a minimal [n, k, d]q code C, we have |Supp(c) ∩ Supp(b)| ≥ q − 1.

Proof. Let c and b be two linearly independent codewords. By Proposition 2.4.6, we know
that Supp(c) ∩ Supp(b) ̸= ∅. Consider e = c + λb ∈ C, 0 ̸= λ ∈ GF (q). This is linearly
independent of both c and b, so it cannot cover any of them. So codeword e has a zero position
which lies in Supp(c) or Supp(b). But this zero position in e must be in Supp(c) ∩ Supp(b).
Thus, there must exist at least one coordinate position i ∈ Supp(c)∩Supp(b) such that eiλ =
0. Also, we cannot have iλ = iµ if λ ̸= µ, because ci ̸= 0 ̸= di for i ∈ Supp(c)∩Supp(b). So we
have an injection from GF (q)\{0} to Supp(c) ∩ Supp(b), and therefore |Supp(c) ∩ Supp(b)|
must contain at least q − 1 indices.

We now construct an intersecting code which is not minimal.

Example 2.4.9. Let C be the 2-dimensional code over GF (q), q > 2, generated by the
vectors c = (1, 1, 1, 0, 0) and b = (0, 0, 1, 1, 1). Then |Supp(c) ∩ Supp(b)| = 1, but for a
minimal code, necessarily |Supp(c) ∩ Supp(b)| ≥ q − 1 ≥ 2.
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Let us also see a sufficient and necessary condition for a linear code to be minimal.

Theorem 2.4.10 ([19]). Let C ⊆ GF (q)n be a linear code. Then C is minimal if and only
if for any two linearly independent codewords a, b ∈ C, we have∑

λ∈GF (q)\{0}

w(a+ λb) ̸= (q − 1)w(a)− w(b).

Proof. We will show that

Supp(b) ⊆ Supp(a) ⇔
∑

λ∈GF (q)\{0}

w(a+ λb) = (q − 1)w(a)− w(b).

For a = (a1, . . . , an) ∈ GF (q)n and b = (b1, . . . , bn) ∈ GF (q)n, define a ∩ b ∈ GF (q)n as
(e1, . . . , en), where

ei =

{
ai if ai = bi,

0 otherwise
(i = 1, . . . , n).

For example, (0, 1, 2, 2, 1, 0) ∩ (0, 2, 2, 0, 1, 1) = (0, 0, 2, 0, 1, 0) ∈ GF (3)6.
Let a, b ∈ GF (q)n. Then we have

Supp(b) ⊆ Supp(a) ⇔
∑

λ∈GF (q)\{0}

(λa ∩ b) = b.

To see this, let us suppose first that Supp(b) ⊆ Supp(a). Then

bi ̸= 0 ⇒ ai ̸= 0 ⇒ ∃!λi ∈ GF (q)\{0} : bi = λiai.

So, the i-th coordinate of λa ∩ b will be equal to bi for exactly one value of λ, and it will be
equal to zero in all other cases. It follows that the i-th coordinate of the sum will be equal
to bi. For the other direction, let us suppose that∑

λ∈GF (q)\{0}

(λa ∩ b) = b,

and bi ̸= 0. We need to show that ai ̸= 0. But if ai were equal to zero, then the i-th coordinate
of each vector in the sum would be equal to zero, and therefore the i-th coordinate of the
sum, which is bi, would be equal to zero too. This is a contradiction, so we have ai ̸= 0.

Note that if λ ̸= µ, then Supp(λa ∩ b) ∩ Supp(µa ∩ b) = ∅, since the vectors λa and µa
do not agree in any of their coordinates. Therefore,

∑
λ∈GF (q)\{0}

(λa ∩ b) = b ⇒
∑

λ∈GF (q)\{0}

w(λa ∩ b) = w

 ∑
λ∈GF (q)\{0}

(λa ∩ b)

 = w(b).

On the other hand, for any a, b ∈ GF (q)n, the i-th coordinate of∑
λ∈GF (q)\{0}

(λa ∩ b)
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is bi if ai ̸= 0, and 0 otherwise. Therefore, the implication∑
λ∈GF (q)\{0}

w(λa ∩ b) = w(b) ⇒
∑

λ∈GF (q)\{0}

(λa ∩ b) = b

is also true. We have proven that

Supp(b) ⊆ Supp(a) ⇔
∑

λ∈GF (q)\{0}

w(λa ∩ b) = w(b). (2.1)

The next step of the proof is showing that for any a, b ∈ GF (q)n, we have

(q − 1)(w(a) + w(b)) =
∑

λ∈GF (q)\{0}

w(a+ λb) + q
∑

λ∈GF (q)\{0}

w(λa ∩ b). (2.2)

Indeed, for a fixed λ ∈ GF (q)\{0},

w(a) + w(b) = w(a+ λb) +
∑

µ∈GF (q)\{0}

w(µa ∩ b) + w

(
−1

λ
a ∩ b

)
.

Summing up these equations for all λ ∈ GF (q)\{0} yields

(q−1)(w(a)+w(b)) =
∑

λ∈GF (q)\{0}

w(a+λb)+(q−1)
∑

λ∈GF (q)\{0}

w(λa∩b)+
∑

λ∈GF (q)\{0}

w(λa∩b)

=
∑

λ∈GF (q)\{0}

w(a+ λb) + q
∑

λ∈GF (q)\{0}

w(λa ∩ b).

Combining (2.1) and (2.2) finishes the proof.

Remark 2.4.11. If q = 2, then Theorem 2.4.10 states that a linear code C ⊆ GF (2)n is
minimal if and only if

w(a+ b) ̸= w(a)− w(b).

Note that this means exactly that C is intersecting.

We recall the Singleton bound, which is a classical result in coding theory.

Theorem 2.4.12 (Singleton bound, [20]). Let C be a linear [n, k, d]q code. Then

k ≤ n− d+ 1.

Proof. Let C be a linear [n, k, d]q code. Let us choose d − 1 coordinates, and delete these
coordinates from each codeword. The words of length n−d+1 that we get in this way, must
be pairwise different, because if we got the same words for two different codewords c and c′,
it would mean that c and c′ differ in at most d−1 bits, which is impossible. Thus, the size of
C, which is qk, cannot be larger than the number of different q-ary words of length n−d+1.
So we have

qk ≤ qn−d+1

⇒ k ≤ n− d+ 1.
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From Proposition 2.4.8 and Theorem 2.4.12, we obtain the following result on the minimal
distance of a minimal code:

Corollary 2.4.13 ([13]). Let C be a minimal [n, k, d]q code. Then

d ≥ k + q − 2.

Proof. Let c ∈ C be a minimal weight codeword, so we have w(c) = d. Let us consider the
projection of C to the support of c. (So, from each codeword, we eliminate those coordinates
that do not belong to Supp(c).) This way we get a new code C ′ of length d and dimension
k. By Proposition 2.4.8, we know that each codeword in C ′ has weight at least q − 1, so the
minimal distance d′ of C ′ is at least q − 1. Now, the Singleton bound gives us

d ≥ k + d′ − 1 ≥ k + q − 2.

We can provide an even stronger lower bound for the minimum distance of a minimal
code, which we will do in the next chapter, using geometric arguments.
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Chapter 3

Cutting blocking sets

3.1 A geometric characterization of minimal codes
It is common in coding theory that a certain property of a linear code can be formulated in
terms of geometry: We can associate a set of points of a finite projective space to the code,
and from the property of the code, we obtain a geometric property of this point set. This is
the case with minimality as well.

Theorem 3.1.1 ([1]). An equivalence class of minimal linear [n, k]q codes is equivalent to a
set P of n points in PG(k− 1, q) such that every hyperplane of PG(k− 1, q) is generated by
its points in P.

Proof. Suppose that the linear [n, k]q code C is non-degenerate, and consider the generator
matrix of C, which is a matrix M of size k×n. If we multiply a column of M by an arbitrary
non-zero element of GF (q), we get a code which is equivalent to C, thus the columns are
only relevant up to a non-zero scalar multiple. Starting from this observation, we can view
the columns of M as the homogeneous coordinate vectors of n points in PG(k − 1, q). Let
P = {P1, P2, . . . , Pn} be the set of these points. (Since C is non-degenerate, there is no
column with only 0 entries, therefore these vectors indeed represent points of PG(k − 1, q).)
The matrix M is a generator matrix of C, which means that each codeword can be written
in the form c = uM for some vector u ∈ GF (q)k. Furthermore, if c ̸= 0, then u ̸= 0. These
vectors u can be considered as the coordinate vectors of hyperplanes in PG(k − 1, q). The
hyperplane corresponding to the vector u contains the point Pi corresponding to the i-th
column of M if and only if the i-th coordinate of c = uM is 0. So the condition that there
are no non-zero codewords c and d that are linearly independent and Supp(c) ⊆ Supp(d) (or
equivalently Supp(d) ⊆ Supp(c)), can be reformulated as follows: There are no hyperplanes
U ̸= V such that P ∩ U ⊆ P ∩ V . This is in turn equivalent to the property that for all
hyperplanes U , we have ⟨P ∩ U⟩ = U .

Sets of points with the property given in Theorem 3.1.1 have already been examined
before the discovery of their connection to minimal codes, as special multiple blocking sets,
which we define in the next section.
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3.2 (Multiple) blocking sets and cutting blocking sets
Definition 3.2.1. A set of points B ⊆ PG(k − 1, q) is a

• blocking set if it intersects every hyperplane.

• t-fold blocking set if it intersects every hyperplane in at least t points.

• cutting blocking set if it intersects every hyperplane in a generator set.

Remark 3.2.2. We have defined blocking sets only with respect to hyperplanes. In fact, they
can be defined with respect to subspaces of any dimension: A d-blocking set in PG(k− 1, q)
is a set of points which intersects each subspace of dimension k− d− 1. We can define t-fold
d-blocking sets and cutting d-blocking sets similarly. However, we are interested in 1-blocking
sets, because they are the ones that are connected to minimal linear codes. For simplicity,
we refer to 1-blocking sets as blocking sets in this thesis.

To generate a hyperplane in PG(k−1, q), we need a set of k−1 points in general position.
So it follows that cutting blocking sets in PG(k− 1, q) are special (k− 1)-fold blocking sets.

The whole PG(k − 1, q) is clearly a cutting blocking set. (This corresponds to the afore-
mentioned simplex code.) Also, if B is a cutting blocking set and B ⊆ B′, then B′ is a cutting
blocking set too. Thus, we are interested in finding cutting blocking sets of the smallest pos-
sible size. This is equivalent to finding minimal codes with the best possible rate when the
dimension and the size of the alphabet is fixed.

Example 3.2.3. The union of k − 1 pairwise disjoint lines in PG(k − 1, q), or the union of
k−1 disjoint order q subgeometries in PG(k−1, qk−1) is a (k−1)-fold blocking set. However,
it is not necessarily a cutting blocking set, since it can happen that the k − 1 intersection
points of a hyperplane H with the set of lines lies in a proper subspace of H.

Similarly to blocking sets in the projective space PG(k − 1, q), we can define blocking
sets in the affine space AG(k − 1, q).

Definition 3.2.4. A ⊆ AG(k−1, q) is an affine blocking set if it intersects every hyperplane
of AG(k − 1, q).

Due to the equivalence between minimal linear codes and cutting blocking sets, the state-
ments about minimal linear codes can be formulated for cutting blocking sets and proved
geometrically, and vice versa. As an example, we state the Ashikhmin-Barg condition for
cutting blocking sets, and give a geometric proof.

Theorem 3.2.5 ([5]). Let P be a set of n points in PG(k − 1, q). Let m and M denote the
minimum and the maximum number of points of P contained in a hyperplane, respectively.
If

n−M

n−m
>

q − 1

q
,

then P is a cutting blocking set.
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Proof. Suppose to the contrary that P is not a cutting blocking set. This means that there
is a hyperplane H in PG(k−1, q) such that ⟨P ∩H⟩ ≠ H. So P ∩H is contained in a proper
subspace of H of dimension k − 2. Let us denote this subspace by S. Now PG(k − 1, q) can
be partitioned as

PG(k − 1, q) = S ∪ (H\S) ∪ (H1\S) ∪ (H2\S) ∪ · · · ∪ (Hq\S),

where {H,H1, H2, . . . , Hq} is the set of the q + 1 hyperplanes of PG(k − 1, q) through S.
Suppose that |P ∩H| = |P ∩ S| = x. Then

n = |P| ≤ x+ q(M − x) = qM − (q − 1)x ≤ qM − (q − 1)m,

a contradiction.

3.3 Bounds on the size of a cutting blocking set
Lemma 3.3.1 ([18]). B is a cutting blocking set in PG(k − 1, q) if and only if for any
hyperplane H, it holds that B\H is an affine blocking set in PG(k− 1, q)\H ≃ AG(k− 1, q).

Proof. Let us suppose that B intersects every hyperplane of PG(k− 1, q) in a generator set,
and let H be an arbitrary hyperplane of PG(k − 1, q). If B\H is not an affine blocking
set in PG(k − 1, q)\H, then there is a hyperplane H ′ of PG(k − 1, q) such that the affine
space PG(k − 1, q)\H does not contain any point from B. But then H ′ ∩ B is contained
in the subspace H ∩ H ′ that has co-dimension 2, so it cannot be a generator set of H, a
contradiction. On the other hand, if every hyperplane H ′ of PG(k − 1, q) contains at least
one point from B outside any hyperplane H, then the points of H ′ ∩B generate H ′, because
any subspace of co-dimension 2 contained in H ′ can be written as H ′∩H for some hyperplane
H.

Lemma 3.3.2 ([9]). Let P (x1, . . . , xm) ∈ GF (q)[x1, . . . , xm] be an m-variable polynomial
over GF (q). If P (a1, . . . , am) = 0 for all (a1, . . . , am) ∈ GF (q)m, then

P (x1, . . . , xm) ∈ (xq
1 − x1, x

q
2 − x2, . . . , x

q
m − xm) .

Proof. We prove the lemma by induction on m.
If m = 1, then every element of GF (q) is a root of P (x) ∈ GF (q)[x], so∏

a∈GF (q)

(x− a) | P (x),

but the product on the left hand side is exactly (xq−x), so P is a multiple of this polynomial.
Let m ≥ 2, and let us suppose that the lemma is true for values at most m− 1. Let P be

a polynomial of m variables, and define

P a(x2, x3, . . . , xm) := P (a, x2, . . . , xm).

By induction, it follows that

P a(x2, . . . , xm) = P a
2 (x2, . . . , xm)(x

q
2 − x2) + P a

3 (x2, . . . , xm)(x
q
3 − x3)
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+ · · ·+ P a
m(x2, . . . , xm)(x

q
m − xm)

for some polynomials P a
2 (x2, . . . , xm), . . . , P

a
m(x1, . . . , xm) ∈ GF (q)[x2, x3, . . . , xm]. If we let

a vary over GF (q), then, for each i = 2, . . . ,m, we get a function P x1
i (x2, . . . , xm). This

function is not necessarily a polynomial in x1, but – as every function over a finite field – it is
functionally equivalent to a polynomial Ri(x1, x2, . . . , xm). This means that for all values a ∈
GF (q), after substituting a for xi, the two expressions P x1

i (x2, . . . , xm) and Ri(x1, x2, . . . , xm)
look the same. Then, by the first part of the proof,

(xq
1 − x1) | P x1

i (x2, . . . , xm)−Ri(x1, x2, . . . , xm)

⇒ (xq
1 − x1) | P (x1, x2, . . . , xm)−

m∑
i=2

Ri(x1, . . . , xk)(x
q
i − xi),

which is exactly what we wanted to prove.

Theorem 3.3.3 (Jamison [21], Brouwer-Schrijver [9]). The minimum size of an affine block-
ing set in AG(k − 1, q) is (k − 1)(q − 1) + 1.

Proof. Let A ⊆ AG(k − 1, q) be an affine blocking set. Without loss of generality, we may
assume that A contains the point 0 = (0, 0, . . . , 0). Let B be the set A\{0}. Since A intersects
each hyperplane, B must intersect each hyperplane that does not contain 0. The equation of
such a hyperplane can be written as

w1x1 + . . . wk−1xk−1 = 1,

where w1, . . . , wk−1 ∈ GF (q), not all of them are 0. The fact that the hyperplane determined
by the above equation contains a point from B, corresponds to the condition that there exists
a point b = (b1, . . . , bk−1) ∈ B such that

w1b1 + . . . wk−1bk−1 = 1.

So, if this is true for every hyperplane not through 0, then the polynomial

F (x1, . . . , xk−1) =
∏
b∈B

(b1x1 + · · ·+ bkxk − 1)

evaluates zero at all (k − 1)-tuples (w1, . . . , wk−1) ∈ GF (q)k, different from 0, since at least
one of the terms of the product is zero.

Let us write F (x1, . . . , xk−1) as

F (x1, . . . , xk−1) = F1(x1, . . . , xk−1)(x
q
1 − x1) + · · ·+ Fk−1(x1, . . . , xk−1)(x

q
k−1 − xk−1)

+G(x1, . . . , xk−1),

where the degree of each xi in G is at most q − 1. Let us consider the polynomials
xiF (x1, . . . , xk−1) for i = 1, . . . , k−1. These polynomials all assume zero to every (k−1)-tuple
from GF (q)k. But this means that the polynomials xiG(x1, . . . , xk−1) (i = 1, . . . , k−1) also
assume zero to every (k − 1)-tuple, because aq − a = 0 for all a ∈ GF (q). Therefore we can
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apply Lemma 3.3.2 to these polynomials, and after using the condition on the degrees of the
variables in G, we conclude that

(xq−1
i − 1) | G(x1, . . . , xk−1)

for each i = 1, . . . , k − 1, which in turn implies that

k−1∏
i=1

(xq−1
i − 1) | G(x1, . . . , xk−1).

Note that G is not identically 0 (e.g. G(0) ̸= 0, because F (0) ̸= 0), so the degree of G is at
least the degree of the polynomial

k−1∏
i=1

(xq−1
i − 1),

which is (k− 1)(q− 1). The degree of F , which is exactly |B| cannot be less than the degree
of G, so we obtained that

|A| = |B|+ 1 ≥ (k − 1)(q − 1) + 1,

as stated in the theorem.
We have proved that any affine blocking set has size at least (k− 1)(q− 1) + 1. This size

can be attained: if we take (k − 1) independent lines through a fixed point, then the union
of these lines intersects each hyperplane in at least one point, and this set has cardinality
|(k − 1)(q − 1) + 1|.

Theorem 3.3.4 ([2, 18]). The size of a cutting blocking set in PG(k − 1, q) is at least
(q + 1)(k − 1).

Proof. Let B be a cutting blocking set, and let us choose a hyperplane H for which |B ∩H|
is maximal. Then, by Lemma 3.3.1, A = B\H is an affine blocking set in PG(k − 1, q)\H.
Let A′ ⊆ A be an affine blocking set in PG(k − 1, q)\H that is minimal (i.e. for any point
P ∈ A′, A′\{P} is not an affine blocking set). According to Theorem 3.3.3, the size of A′

must be at least (k−1)(q−1)+1. By the minimality of A′, for any point P ∈ A′, there exists
a hyperplane U for which A′ ∩U = {P}. Then |A\U | ≥ |A′\U | ≥ (k− 1)(q− 1), because we
only left one point out.

We know that there are exactly q+1 hyperplanes through H ∩U , and two of them are H
and U . Neither H, nor U contain points from A\U , so the points of A\U are divided among
q − 1 hyperplanes. So at least one of them has to contain at least (k − 1) points from A\U .
Let Z be such a hyperplane. Remember that we chose H such that |B ∩H| was maximal.
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Thus,

|B ∩H| ≥ |B ∩ Z| = |Z ∩ A|+ |Z ∩ (B ∩H)| = |Z ∩ (A\U)|+ |U ∩ (B ∩H)| =

= |Z ∩ (A\U)|+ |B ∩H|+ |(B\H)\U | − |B\U | ≥ k− 1 + |B ∩H|+ (k− 1)(q− 1)− |B\U |.

This implies that |B\U | ≥ (k− 1)q. Also, |B ∩U | ≥ k− 1, because B ∩U is a generator set
in the hyperplane U . So we have

|B| = |B\U |+ |B ∩ U | ≥ (k − 1)q + (k − 1) = (k − 1)(q + 1),

which is the desired result.

Corollary 3.3.5 ([2, 18]). Let C be a minimal [n, k, d]q-code. Then n ≥ (k − 1)(q + 1).

Corollary 3.3.6. If C is a minimal code of rate R, then asymptotically R ≤ 1
q+1

.

Proof.

R =
k

n
≤ n+ q + 1

nq + n
→ 1

q + 1

as n → ∞.

One might ask whether the bound of Theorem 3.3.4 is sharp or not. In [7], Beutelspacher
characterized the (k − 1)-blocking sets of size (q + 1)(k − 1) under the assumption that
4 ≤ k ≤ √

q + 2:

Theorem 3.3.7 ([7]). Let 4 ≤ k ≤ √
q + 2, and let B be a (k − 1)-fold blocking set of size

(k − 1)(q + 1) in PG(k − 1, q). Then we have one of the following cases:

1. B is the union of k − 1 pairwise non-intersecting lines.

2. k =
√
q + 2, and B is a 3-dimensional Baer subspace of PG(k − 1, q).
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3. q = 4, k = 4, and B is the complement of a hyperoval in a plane of PG(3, 4). (A
hyperoval is a set of q + 2 points in the plane, such that any line contains at most 2
points of it.)

We can examine these three possibilities, and conclude that in neither case is B a cutting
blocking set.

Proposition 3.3.8 ([2]). If 4 ≤ k ≤ √
q + 2 then the bound of Theorem 3.3.4 is never tight.

Proof. Let B be a cutting blocking set in PG(k − 1, q), 4 ≤ k ≤ √
q + 2. By Theorem 3.3.7,

we have three possibilities for B. We will show that neither of them is a cutting blocking set.

1. Suppose that B is the union of k − 1 lines that are pairwise disjoint, say B = ℓ1 ∪ ℓ2 ∪
· · · ∪ ℓk−1. Let us choose a point from each line: P1 ∈ ℓ1, P2 ∈ ℓ2, . . . , Pk−1 ∈ ℓk−1.
Consider the subspace H = ⟨P1, P2, . . . , Pk−1⟩ generated by these points.

(a) If dimH ≤ k − 3, then there is a subspace H ′ of dimension k − 3, containing H.
Consider the q + 1 hyperplanes through H ′. Since B consist of k − 1 lines, we
know that at most k−1 < q+1 of these hyperplanes contains a line of B, so there
is at least one hyperplane that does not contain a point outside of the subspace
H ′, so it cannot be generated by the points of B.

(b) If dimH = k − 2, then let H be the hyperplane H = ⟨P1, P2, . . . , Pk−3, ℓk−2⟩. As-
sume that dimH < k−2. Then there exists a point Qk−2 ∈ ℓk−2∩⟨P1, P2, . . . , Pk−3⟩.
Now if we choose Qk−2 from ℓk−2 instead of Pk−2, then by case (a), we get that
B is not a cutting blocking set. So dimH = k − 2. Then ℓk−1 cannot be
skew to H, so there exists a point Qk−1 ∈ H ∩ ℓk−1. The point Qk−1 cannot
be in the subspace ⟨P1, P2, . . . , Pk−3⟩, because then we choose Qk−1 from ℓk−1

instead of Pk−1, and we get a contradiction as before. So we conclude that
⟨P1, P2, . . . , Pk−3, Qk−1⟩ is a hyperplane of H. The line ℓk−2 is a line of H, so
it must intersect ⟨P1, P2, . . . , Pk−3, Qk−1⟩ in a point Rk−2. Now if we replace Pk−1

by Qk−1, and Pk−2 by Rk−2 when we choose the k − 1 points, then we get that
dimH < k − 2, and we again obtain that B is not a cutting blocking set, as in
case (a).

2. Assume that k =
√
q + 2, and B is a 3-dimensional Baer subspace. A cutting blocking

set must generate the whole space, so B cannot be a cutting blocking set, except for the
case when k = q = 4. It is known that there are two possibilities for the intersection
of a Baer subgeometry and a plane in PG(3, q): it is either a Baer subplane, or a Baer
subline. (See Proposition 1.0.11.) The planes that intersect B in a Baer subline, are
not generated. So B is not a cutting blocking set.

3. Finally, suppose that q = k = 4 and B is the complement of a hyperoval in a plane of
PG(3, 4). Again, a cutting blocking set must generate the whole space, so if B lies in
a plane of a 3-dimensional space, then it cannot be a cutting blocking set.

Another consequence of Theorem 3.3.3 is the following.
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Theorem 3.3.9 ([2, 18]). In a minimal linear [n, k, d]q code C, the minimum distance d is
at least (k − 1)(q − 1) + 1.

Proof. Let C be a minimal linear [n, k, d]q code with generator matrix G. Then the set of
n points in PG(k − 1, q) defined by the columns of G form a cutting blocking set. Let us
denote this set by B. If c ∈ C is a codeword, then it can be written as c = uG for some
vector u ∈ GF (q)k. Let Hu be the hyperplane in GF (k − 1, q) with coordinate vector u.
The weight of the codeword c is the number of non-zero coordinates in c, equivalently, the
number of points in B outside of the hyperplane Hu. But we know that B\Hu is an affine
blocking set in PG(k − 1, q)\Hu, and therefore

w(c) = |B\Hu| ≥ (k − 1)(q − 1) + 1

by Theorem 3.3.3. We have seen that the weight of any codeword c ∈ C is at least (k −
1)(q − 1) + 1, so the minimum distance is at least (k − 1)(q − 1) + 1 too.

3.4 Double blocking sets in PG(2, q)

In PG(2, q), cutting blocking sets are the same as 2-blocking sets, also known as double
blocking sets, because two distinct points of a line also generate the line. If we consider the
union of three lines that do not intersect in the same point, then we get a double blocking
set in PG(2, q) of size 3q. By the previous section, we can see that if a double blocking set
B contains a full line, then this is the lowest possible cardinality of B. This follows from the
fact that if we delete the q + 1 points of this line from B, then the remaining points must
form an affine blocking set in AG(2, q), so by the theorem of Jamison and Brouwer-Schrijver,
there must be at least 2q−1 remaining points. If q is a square, then the union of two disjoint
Baer subplanes forms a double blocking set of size 2q + 2

√
q + 2. If q ̸= 4, then this value

is smaller than 3q. It will turn out that we cannot do better than this. First, we prove a
somewhat weaker lower bound.

Theorem 3.4.1 ([10]). The size of a double blocking set in PG(2, q) is at least 2q+
√
2q+2,

if q > 5.

Proof. Let B be a double blocking set. Suppose that some line ℓ contains at least
√
2q + 2

points of B. Take a point P on this line that is outside of B. (If the whole line l is contained
in B, then we have seen that |B| ≥ 3q, which is greater than 2q +

√
2q + 2 if q > 5.) There

are q lines through P other than ℓ, and we need two points on each line to block all of them.
So |B| ≥ 2q +

√
2q + 2.

From now on, assume that every line contains less than
√
2q+2 points of B. Let n be the

largest number of points of B on a line of PG(2, q). Let τi denote the number of i-secants to
B (i = 2, . . . , n). Then

n∑
i=2

τi = q2 + q + 1,

n∑
i=2

iτi = |B|(q + 1),
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n∑
i=2

i(i− 1)τi = |B|(|B| − 1).

The first equation holds because the number of lines in PG(2, q) is q2 + q + 1. We get the
second equation by double counting the pairs (P, l), where P is a point of B, and l is a line
through P . The third equation is obtained by double counting the triplets (P,R, l), where
P ∈ B and R ∈ B are two different points on the line l, using the fact that two different
points determine a unique line.

Since 2 ≤ |l ∩B| ≤ n ≤
√
2q + 1, we have

n∑
i=2

(i− 2)(i−
√

2q − 1)τi ≤ 0,

n∑
i=2

i(i− 1)τi − (
√

2q + 2)
n∑

i=2

iτi + (2
√
2q + 2)

n∑
i=2

τi ≤ 0,

|B|(|B| − 1)− |B|(q + 1)(
√

2q + 2) + (2
√

2q + 2)(q2 + q + 1) ≤ 0,

(|B| − (2q +
√

2q + 2))(|B| − (
√
2qq + 1)) +

√
2q ≤ 0,

which is only possible in the case when

|B| > 2q +
√

2q + 2,

since
|B| − (

√
2qq + 1) < |B| − (2q +

√
2q + 2) if q > 5,

and the product of two numbers is negative if and only if the smaller number is negative and
the larger number is positive.

To prove better lower bounds on the size of a double blocking set in the projective plane,
the authors of [4] used the following result of Rédei about lacunary polynomials (polynomials
that have a long sequence of zeros in the sequence of coefficients).

Theorem 3.4.2 ([24]). Let q = ph. Let f1 ∈ GF (q)[x] be a fully reducible polynomial (i.e. it
factors into linear factors over GF (q)). Suppose that f1(x) = xqg1(x) + h1(x), where g1 and
h1 share no common factor. Let d1 < q be the maximum of the degrees of g1 and h1. Let e
be the maximal integer such that f1(x) = f2(x)

pe for some f2 ∈ GF (q)[x]. Then one of the
following cases holds.

1. e = h and d1 = 0;

2. e ≥ h
2

and d1 ≥ pe;

3. e < h
2

and d1 ≥ pe⌈ph−e+1
pe+1

⌉;

4. e = 0, d1 = 1, and f1(x) = a(xq − x).

Using this theorem, they could prove the following:
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Theorem 3.4.3 ([4]). The size of a double blocking set in PG(2, q) is at least

• 2q + 2
√
q + 2, if q > 16 is a square;

• 2q + pd⌈pd+1+1
pd+1

⌉+ 2, if p2d+1 = q > 3.

Now we are able to examine the tightness of Theorem 3.3.4 when k = 3.

Proposition 3.4.4 ([2]). If k = 3, then the bound of Theorem 3.3.4 is tight exactly if q = 2.

Proof. From the above results, it follows that if a double blocking set of PG(2, q) has 2q+ 2
points, then q must be equal to 2.

3.5 Blocking sets and saturating sets
Cutting blocking sets have an interesting application to another area of finite geometry (which
also has a coding theoretic aspect), namely, they are related to saturating sets.

Definition 3.5.1. A set of points S ⊆ PG(k − 1, q) is a ρ-saturating set, if every point of
PG(k − 1, q) lies in a ρ-dimensional subspace generated by ρ + 1 points of S, and ρ is the
smallest number with this property.

Example 3.5.2. Let ℓ1 and ℓ2 be two lines in PG(3, q) that are skew to each other, and let
S be the union of their points. Through each point P ∈ PG(3, q)\S, there exists a unique
line that intersects both ℓ1 and ℓ2. Therefore, S is a 1-saturating set in PG(3, q).

Theorem 3.5.3 ([15]). A cutting blocking set in a subgeometry PG(k−1, q) ⊂ PG(k−1, qk−1)
is a (k − 2)-saturating set in PG(k − 1, qk−1).

Proof. Let us take a cutting blocking set B in PG(k − 1, q) ⊂ PG(k − 1, qk−1). We need
to show that any point P is contained in a hyperplane generated by some points of B. If
P ∈ B, then this is trivial, since B cannot lie in a subspace of dimension less than k − 2.
Now assume that P /∈ B. Consider the subspace S = ⟨P, P q, P q2 , . . . , P qk−2⟩. The set of
points {P, P q, P q2 , . . . , P qk−2} is fixed by the Frobenius map R 7→ Rq, since (P qk−2

)q = P .
(For a point R = (r0 : r1 : · · · : rk−1) ∈ PG(k − 1, qk−1), by Rh, we mean the point with
coordinates (rh0 , r

h
1 , . . . , r

h
k−1).) Therefore, by Proposition 1.0.12, the intersection of S and

the subgeometry PG(k− 1, q)) is a subspace of PG(k− 1, q), which has the same dimension
as S. Any hyperplane of PG(k − 1, q) through this subspace is generated by the points of
B. Let us choose one of them arbitrarily, say H. Then the hyperplane H ′ of PG(k− 1, qk−1)
containing this sub-hyperplane H will be a good choice, since it is also generated by the
points of B.

Using the above theorem, one can derive results on (k − 2)-saturating sets in PG(k −
1, qk−1) from results on cutting blocking sets in PG(k − 1, q).

Let us see how saturating sets are connected to linear codes.
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Definition 3.5.4. Let C be a linear [n, k, d]q code. The covering radius of C is the smallest
integer R such that the Hamming balls of radius R around the codewords of C cover the
whole space GF (q)n. That is,

R = max
x∈GF (q)n

dH(x,C).

Proposition 3.5.5. Let C be a linear [n, k, d]q code of covering radius R, and let A ∈
GF (q)(n−k)×n be its parity check matrix. Then R is equal to the smallest integer R′ such that
each u ∈ GF (q)n−k can be written as a linear combination of R′ columns of A.

Proof. First, we prove that R′ ≤ R. Let u ∈ GF (q)n−k. Then there exists a vector x ∈
GF (q)n such that u = xAT . The covering radius of C is R, therefore there exists a codeword
c ∈ C such that dH(x, c) ≤ R. Since c is a codeword, we also know that cAT = 0. Now
consider the word x−c. This has Hamming weight at most R, and (x−c)AT = xAT −cAT =
xAT = u. We have written u as the linear combination of at most R columns of A, so R′ ≤ R.

Now let us prove that R ≤ R′. For w ∈ GF (q)n, define v = wAT . There exists a vector
y ∈ GF (q)n such that w(y) ≤ R′, and v = yAT , because any vector can be written as a
linear combination of at most R′ columns of A. Then (w − y)AT = 0, which implies that
w − y ∈ C. Moreover, dH(x− y, x) ≤ R′, so we have R ≤ R′.

Corollary 3.5.6. C is a linear [n, k, d]q code of covering radius R if and only if the columns
of its parity check matrix are the homogeneous coordinate vectors of the points of an (R− 1)-
saturating set of size n in PG(n− k − 1, q).

Corollary 3.5.7. If there exists a minimal linear code with parameters [n, k, d]q, then there
exists a linear code of covering radius k − 1, with parameters [n, n− k, d′]qk−1.
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Chapter 4

Constructions of cutting blocking sets

4.1 Higgledy-piggledy line sets
Since lines in PG(k − 1, q) have the property that they intersect each hyperplane, it seems
like a good idea to look for a cutting blocking set that is the union of lines.

Definition 4.1.1. If the union of the points of some lines forms a cutting blocking set in
PG(k− 1, q), then the set of these lines is called a higgledy-piggledy line set in PG(k− 1, q).

Let us begin with a simple construction which works for any k and q.

Example 4.1.2 (Simplex construction, [1]). Let us take k points in PG(k − 1, q) in general
position, and let us denote them by P1, . . . , Pk. Let B be the union of the lines joining the
pairs of points. In this way, we obtain a cutting blocking set of size

(
k
2

)
(q − 1) + k. Indeed,

let H be a hyperplane in PG(k − 1, q). Since H is a hyperplane, it cannot contain k points
in general position, so at least one point, say P1, is not on H. It follows that H intersects
the lines P1P2, P1P3, . . . , P1Pk in k − 1 different points Q2, Q3, . . . , Qk. We have

⟨P1, P2, . . . , Pk⟩ ⊆ ⟨P1, Q2, Q3, . . . , Qk⟩

⇒ k − 1 = dim (⟨P1, P2, . . . , Pk⟩) ≤ dim (⟨P1, Q2, Q3, . . . , Qk⟩)

⇒ dim (⟨Q2, Q3, . . . , Qk⟩) ≥ k − 2,

so the points Q2, Q3, . . . , Qk generate H. (See Figure 4.1.)

We have seen that if a cutting blocking set of the plane contains at least one line, then
it has at least 3q points. So the simplex construction is optimal in the plane, if we are
considering cutting blocking sets that arise from higgledy-piggledy line sets. However, the
size of this set is quadratic in the dimension, while the best known lower bound for a cutting
blocking set is linear (see Theorem 3.3.4). In fact, the best known lower bound for the size
of a higgledy-piggledy line set, which is given in the following theorem, is also linear in the
dimension.

Theorem 4.1.3 ([18]). A higgledy-piggledy line set in PG(k− 1, q) has size at least k− 1 +
⌊k−1

2
⌋ − ⌊k−2

q
⌋.
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Figure 4.1: The simplex is a higgledy-piggledy line set.

Proof. Let B be a cutting blocking set in PG(k − 1, q) that is the union of the points of a
set L of m lines. Let us take ⌊k−1

2
⌋ lines arbitrarily from L. Since r lines generate a subspace

of dimension at most 2r − 1, these lines will be contained in a hyperplane H. Then B\H
is an affine blocking set in PG(k − 1, q)\H. So, by Theorem 3.3.3, B\H contains at least
(k− 1)(q− 1) + 1 points. Now, B is the union of some lines, and a line not in H has 1 point
in H and q points outside of H, so at most q points of B\H can be contained in each line.
Therefore, we need at least

|B\H|
q

≥ (k − 1)(q − 1) + 1

q
= k − 1− k − 2

q

lines to covers the points of B\H. So there are at least ⌊k−1
2
⌋ lines in H, and at least

k − 1− k−2
q

lines not in H, which is at least k − 1 + ⌊k−1
2
⌋ − ⌊k−2

q
⌋ lines in total.

In PG(3, q), the lower bound of Theorem 4.1.3 simplifies to 3 if q = 2, and 4 if q > 2.
These values can be attained too, as described in the following example.

Example 4.1.4 ([17]). Let us take three pairwise skew lines ℓ1, ℓ2, ℓ3 in PG(3, q). They
determine a unique hyperbolic quadric. The intersection of a plane with this quadric is
either a conic or the union of two intersecting lines. If it is a conic, then this conic contains
the three intersection points of the plane and the three lines, and no three points on a conic
are collinear. However, if a plane intersects the quadric in two lines, and the plane does
not contain any of the three lines ℓ1, ℓ2, ℓ3, then the three intersection points are collinear.
To handle this case, we have to take a fourth line, which is skew to the quadric. This will
intersect the plane in a fourth point, which cannot be on the same line as the other three
(since the line through the other three points is on the quadric). Thus, these four lines
together form a higgledy-piggledy line set.
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Figure 4.2: 4 lines in higgledy-piggledy arrangement in PG(3, q).

This argument also shows that 3 lines cannot be enough in PG(3, q) to form a cutting
blocking set, except for the case when q = 2. If this is the case, then every plane that
intersects the quadric in a pair of lines, contains one of the three lines ℓ1, ℓ2, ℓ3. So, three
pairwise skew lines in PG(3, 2) always forms a higgledy-piggledy line set. This implies that
the bound of Theorem 3.3.4 is tight if k = 4 and q = 2. (These values are outside of the
region 4 ≤ k ≤ √

q + 2.)

The simplex construction, which is the only known general construction for a higgledy-
piggledy line set that works for all values of k and q, has size quadratic in k, but the lower
bound of Theorem 3.3.4 is linear in k. Though we do not know of any construction for a
higgledy-piggledy line set with cardinality linear in k, there is a construction for large enough
values of q. This is a very nice result, even if – from a coding theoretic point of view – it is
not very useful, because in practice, the value of q is usually small.

The following two lemmas will be needed for this construction.

Lemma 4.1.5 ([17]). Let L be a set of lines in PG(k − 1, q). If there exists no subspace of
co-dimension 2 meeting each element of L, then L is a higgledy-piggledy line set.

Proof. Suppose that the lines of L are not in higgledy-piggledy arrangement, that is, there
exists a hyperplane H such that all of the lines of L intersect H in a subspace U of co-
dimension 2. But each element of L meets H, so it follows that each element of L meets U ;
a contradiction.

Lemma 4.1.6. Let L be a set of m lines in PG(k − 1, q). Let ℓ(1), ℓ(2), . . . , ℓ(m) denote
the Plücker coordinate vectors of the lines of L. Let U be a subspace of co-dimension two in
PG(k − 1, q), and let u denote its Plücker coordinate vector. U meets each element of L if
and only if ∑

i<j

ℓij(1)uij = 0,
∑
i<j

ℓij(2)uij = 0, . . .
∑
i<j

ℓij(m)uij = 0.
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Thus, there exists a subspace of co-dimension two meeting each element of L if and only if
the set of equations∑

i<j

ℓij(1)uij = 0,
∑
i<j

ℓij(2)uij = 0, . . .
∑
i<j

ℓij(m)uij = 0

ui1i2ui3i4 − ui1i3ui2i4 + ui1i4ui2i3 = 0 (∀(i1, i2, i3, i4)) (4.1)

has a non-trivial solution for u.

Proof. The line and a subspace of co-dimension two intersect each other if and only if the
scalar product of their Plücker coordinate vectors is zero. Moreover, the vector u is the
Plücker coordinate vector of a subspace of co-dimension two if and only if the relations (4.1)
hold.

Theorem 4.1.7 ([17]). If q ≥ 2k−3 then there is a higgledy-piggledy line set in PG(k−1, q)
consisting of 2k − 3 lines.

Proof. Suppose first, that the characteristic of the field GF (q) is greater than k − 1.
We construct a line set L such that there exists no subspace of co-dimension two meeting

each element of L. By Lemma 4.1.5, this will be a higgledy-piggledy line set.
Let

M = {(1 : t : t2 : · · · : tk−1) : t ∈ GF (q)} ∪ {(0 : 0 : · · · : 0 : 1)}

be the moment curve in PG(k − 1, q). The tangent line of M at point P (t) = (1 : t :
t2 : · · · : tk−1) is defined as the line connecting the points P (t) and P ′(t) = (0 : 1 : 2t :
3t2 : · · · : (k − 1)tk−2). The Plücker coordinates of this line can be written as ℓij(t) =
(j − i)ti+j−1 (i, j ∈ {0, 1, . . . , k − 1}).

Suppose that there exists a non-zero vector u such that

ui1i2ui3i4 − ui1i3ui2i4 + ui1i4ui2i3 = 0 (∀(i1, i2, i3, i4)),

and ∑
i<j

uijℓij(t) = 0 ∀t ∈ GF (q)

⇔
k−2∑
i=0

k−1∑
j=i+1

uij(j − i)ti+j−1 = 0 ∀t ∈ GF (q)

⇔
k−1∑
N=1

tN−1

⌊N
2 ⌋∑

i=0

(N − 2i)ui,N−i +
2k−3∑
N=k

tN−1

k−1−⌊N
2 ⌋∑

i=1

(N − 2i)ui,N−i = 0 ∀t ∈ GF (q).

This is a degree 2k − 4 polynomial of t, and it has at least 2k − 3 roots (because |GF (q)| =
q ≥ 2k − 3), so it must be the zero polynomial. So we have

∑
i(N − 2i)ui,N−i = 0 for all

0 ≤ N < 2k − 2. In detail,
u01 = 0,

2u02 = 0,
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3u03 + u12 = 0,

4u04 + 2u13 = 0,

5u05 + 3u14 + u23 = 0,

6u06 + 4u15 + 2u24 = 0,
...

(k − 1)u0,k−1 + (k − 3)u1,k−2 + · · ·+
(⌈

k − 1

2

⌉
−
⌊
k − 1

2

⌋)
u⌊ k−1

2 ⌋,⌈ k−1
2 ⌉ = 0,

...
3uk−4,k−1 + uk−3,k−2 = 0,

2uk−3,k−1 = 0,

uk−2,k−1 = 0.

Since we have assumed that the characteristic of the field is greater than k− 1, we also know
that the coefficients in the above linear system of equations are all non-zero. The first two
equations tell us that u01 = u02 = 0. Using this, and the Plücker relations (4.1), we have that
u03u12 = 0. But if one of them is zero, then the other one must be zero as well, by the third
equation. If we repeat this argument, we obtain that all coordinates uij that occur in the
first k − 1 equations, are zero. Similarly, starting from the last two equations, and stepping
upwards one by one, we get that all other coordinates of u are equal to zero as well. So, u is
the zero vector, and it cannot be the coordinate vector of a subspace of co-dimension two.

We have shown that there exists no subspace of co-dimension two which intersects all
tangent lines of the moment curve, so if we take all of them, that will definitely be a higgledy-
piggledy line set. Now take arbitrary 2k − 3 tangent lines with Plücker coordinate vectors
ℓ(t1), ℓ(t2), . . . , ℓ(t2k−3). Suppose that there exists a subspace U with Plücker coordinates
(uij)i<j that meets all of these 2k − 3 lines. Then∑

i<j

uijℓij(tk) = 0 ∀k ∈ {1, 2, . . . , 2k − 3}

⇒ f(tk) =
k−2∑
i=0

k−1∑
j=i+1

uij(j − i)ti+j−1
k = 0 ∀k ∈ {1, 2, . . . , 2k − 3}.

A degree 2k − 4 polynomial cannot have more than 2k − 4 roots, so the polynomial f is the
zero polynomial. But then each t ∈ GF (q) is a root of f , which means that all of the tangent
lines of M meet the subspace U ; a contradiction.

Now we have proved the theorem in the case when the characteristic of GF (q) is greater
than k − 1. When this is not the case, then it can happen that some of the coefficients in
the linear equations are zero. But this issue can be fixed if we take so-called diverted tangent
lines instead of the tangent lines. Let us fix an injection ϕ : {0, 1, . . . , k − 1} → GF (q). By
the assumption of the theorem, |GF (q)| > k− 1, so such an injection does exist. Then, if we
substitute the line joining P (t) and P ′(t) by the line joining P (t) and P̃ (t) = (0 : 1 : ϕ(2)t :
· · · : ϕ(k− 1)tk−2) in the proof, then it will still work, but the coefficient of uij in the system
of equations will be (ϕ(j) − ϕ(i)) instead of j − i, which is never zero. This concludes the
proof of the theorem.
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Remark 4.1.8. The lines of the above theorem do not necessarily form a minimal higgledy-
piggledy line set. For instance, in PG(4, 11), one of the seven lines can be deleted from the
set of lines, and it still remains higgledy-piggledy [6].

Remark 4.1.9. In some cases, it is possible to construct higgledy-piggledy line sets in PG(k−
1, q) that contain less than 2k − 3 lines. For example, in [6], the authors constructed a
set of seven lines in higgledy-piggledy arrangement in PG(5, q), and in [16], we can find a
construction of a set of six lines in higgledy-piggledy arrangement in PG(4, q).

Although we do not know of any general constructions for higgledy-piggledy line sets of
linear size, we can prove their existence via probabilistic arguments.

Theorem 4.1.10 ([18]). In PG(k − 1, q), there exists a set of m lines in higgledy-piggledy
arrangement, where

m =


⌈

2
1+ 1

ln(q)(q+1)2
(k − 1)

⌉
if q > 2,

⌈1.95(k − 1)⌉ if q = 2.

Proof. Let us take m lines ℓ1, ℓ2, . . . , ℓm in PG(k− 1, q) uniformly at random. Let B denote
the union of their points. We want to choose m such that the probability of the event that
there is a hyperplane which is not generated, is strictly smaller than 1. This shows that the
union of these lines forms a cutting blocking set with positive probability, therefore there
must be a choice when they form a cutting blocking set. If a hyperplane H is not generated,
then the intersection points of H with all of the lines lie in a subspace of dimension at most
k − 3, so there exists a subspace of dimension at most k − 3 intersecting all lines. There are
two cases: the first case is when there exists a subspace of dimension k − 4 that intersects
all lines, and the second is when the smallest such subspace U has dimension k − 3. But
in this latter case, since we also know that there is a hyperplane (H) through U that is not
generated, none of the lines intersect H outside of U . So we get that

p = P(∃H : dimH = k − 2, ⟨H ∩B⟩ ≠ H) ≤ P(∃U : dimU = k − 4,∀i U ∩ ℓi ̸= ∅)

+P(∃V : dimV = k − 2,∃H,∀i V ∩ ℓi ̸= ∅, ℓi ⊆ V or dimH = k − 2, ℓi ̸⊆ H).

Using that

P(∃U : dimU = d,∀i U ∩ ℓi ̸= ∅) ≤
[

k

d+ 1

]
q

P(U ∩ ℓ ̸= ∅)m,

=

[
k

d+ 1

]
q

[d+1
2

]
q
+
[
d+1
1

]
q
1
q

([
k
1

]
q
−
[
d+1
1

]
q

)
[
k
2

]
q

m

and that for a fixed subspace V of dimension k − 3,

P(∃H : ∀i ℓi ⊆ V or dimH = k − 2, ℓi ̸⊆ H)

≤ (q + 1)

(
P(ℓ ⊆ V |ℓ ∩ V ̸= ∅) + P(ℓ ̸⊆ V |ℓ ∩ V ̸= ∅) q

q + 1

)m
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= (q + 1)

( [
k−2
2

]
q[

k−2
2

]
q
+ (qk−2 − qk−3)

[
k−2
1

]
q

+

(
1−

[
k−2
2

]
q[

k−2
2

]
q
+ (qk−2 − qk−3)

[
k−2
1

]
q

)
q

q + 1

)m

,

after some calculation, we get that if we choose m as given in the theorem, then p will be
smaller than 1.

4.2 Cutting blocking sets from subgeometries
A standard construction for a (k− 1)-fold blocking set in PG(k− 1, q), other than the union
of k− 1 lines, is the union of k− 1 disjoint subgeometries of order q

1
k−1 . Similarly to the case

of lines, this (k − 1)-fold blocking set is not necessarily a cutting blocking set. However, it
might be possible that if we choose these subgeometries cleverly, then they do form a cutting
blocking set. For example, in [6], the authors were able to construct a cutting blocking set
in PG(3, q3) as the union of three disjoint order q subgeometries.

We propose another way to construct cutting blocking sets from subgeometries. Instead
of taking disjoint (k − 1)-dimensional order q subgeometries in PG(k − 1, qk−1), we consider
k− 1 hyperplanes in PG(k− 1, qk−2) in general position, and we take order q subgeometries
in these hyperplanes.

Example 4.2.1. Let H be a hyperplane in PG(4, 8). Let us take three disjoint order 2
subgeometries in H such that they form a cutting blocking set (as in [6]). Let us denote
them by B1, B2, B3. Let us also fix three non-collinear points P1, P2, P3 ∈ H, and let π
denote the plane generated by them. In PG(4, 8), there are 9 hyperplanes through a plane.
There exists a 3-dimensional order 2 subgeometry through any 4 points in general position,
so it is possible to choose three subgeometries B4, B5, B6 such that B3+i intersects H exactly
in Pi (i = 1, 2, 3), and all of the 9 hyperplanes through π contain at least one point from
B3 ∪ B4 ∪ B5 outside of H. Then B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 is a cutting blocking set.
Indeed, if a plane meets Bi for all i, then this has to be in H, because it contains three non-
collinear points R1, R2, R3 (Ri ∈ Bi). But then it can meet B3+i only in Pi, since this is the
unique intersection point of B3+i and H. So the only plane with this property is π. Suppose
that there exists a hyperplane H ′ that is not generated. Since a hyperplane intersects all of
the six hyperplanes containing the six subgeometries in a subspace of co-dimension two (a
hyperplane of the hyperplane), which contains at least one point of the subgeometry, this
means that H ′ intersects all of the six subgeometries in a subspace of co-dimension two. Then
the only possibility is that this subspace of co-dimension two is the plane π. By construction,
all hyperplanes through π are generated.

Remark 4.2.2. Note that this construction is not optimal, because in PG(4, q), there is a
cutting blocking set formed by the union of seven lines according to Theorem 4.1.7. But it
still shows that there exist cutting blocking sets of this form.
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Appendix A

Characterization of linear constant
weight codes

Definition A.0.1. Take an arbitrary vector from each 1-dimensional subspace of GF (q)k,
and let M be the k× ((qk− 1)/(q− 1)) matrix which has these vectors as columns. The code
Hamq(k) with parity check matrix M is called a Hamming code, and its dual code Hamq(k)

⊥

(the one with generator matrix M) is called a simplex code.

Proposition A.0.2 ([20]). Simplex codes are constant weight codes.

Proof. We prove that each codeword of the simplex code C = Hamq(k)
⊥ has weight qk−1. Let

us consider the matrix M from Definition A.0.1. We denote the rows of M by r1, r2, . . . , rk.
Any codeword c ∈ C can be written as c = α1r1 + α2r2 + · · ·+ αkrk with unique coefficients
α1, α2, . . . , αk. Our goal is to determine the number of non-zero coordinates of c. If the j-th
column of M is (x1, x2, . . . , xk)

T , then the condition that the j-th coordinate of c is 0, can
be written as

α1x1 + α2x2 + · · ·+ αkxk = 0. (A.1)

Since the columns of M can be seen as the projective coordinates of the points of PG(k−1, q),
(A.1) defines a hyperplane H in PG(k − 1, q). So, the number of vectors not fulfilling (A.1)
equals the number of points in PG(k − 1, q) outside of H, which is

qk − 1

q − 1
− qk−1 − 1

q − 1
= qk−1.

Thus, the weight of any codeword c ∈ C is qk−1.

Remark A.0.3. Proposition A.0.2 also implies that any two codewords of Hamq(k)
⊥ have

the same Hamming distance, so the codewords form a simplex in the Hamming space. There-
fore the name simplex code.

It is clear that is we have a constant weight code C, then the code C ′ that we get from
C by adding some 0-coordinates, is still constant weight.

We define the replication of a code as follows.

Definition A.0.4. Let C be a linear [n, k]q-code. The r-fold replication of C is the [rn, rk]q-
code Cr that we get from C by concatenating each codeword with itself r times.
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Obviously, any replication of a constant weight code is constant weight.
So, we know that simplex codes are constant weight codes, and replicating them a few

times, or adding some 0-coordinates to them also results in constant weight codes. The
following theorem – which is due to Bonisoli [8] – shows that essentially, all constant weight
codes can be obtained in this way. Here, we give Bonisoli’s result with the shorter and more
elegant proof of Ward [26].

Theorem A.0.5 ([8, 26]). Every linear constant weight code C is equivalent to a replicated
simplex code, possibly with added 0-coordinates.

Proof. To prove the theorem, we will use the following equation, which is one of the well-
known MacWilliams identities. ∑

c∈C

w(c) = n(C)qk−1(q − 1). (A.2)

Here, n(C) denotes the number of coordinate positions in C that are not identically zero.
One can obtain (A.2) by double counting the pairs (c, i), where c ∈ C, and i is a non-zero
coordinate position of c. When we fix c, we get the left hand side, and when we fix i, we get
the right hand side because the number of vectors in the k-dimensional vector space C that
are outside of the hyperplane defined by Xi = 0, is qk − qk−1 = qk−1(q − 1).

Let C be a linear [n, k]q code with constant weight w (k ≥ 2), and let M be the generator
matrix of C such that

C = {vM : v ∈ GF (q)k}.

We can safely assume that n(C) = n. (If this is not the case, we remove the 0-coordinates.)
(A.2) now has the form

w(qk − 1) = nqk−1(q − 1) ⇔ w
qk − 1

q − 1
= nqk−1.

Since q and qk−1
q−1

are co-prime, qk−1 must divide w, so we have

w = rqk−1 (A.3)

for some positive integer r.
Let V = GF (q)k, and let us consider its dual space V ∗ (the space of linear functionals

on V .) Take a non-zero element f ∈ V ∗. Then the code Cf = {vM ∈ C : f(v) = 0} is a
constant weight code of dimension k − 1, since the kernel of a non-zero linear functional has
co-dimension 1. Furthermore, Cf is a subset of C, so it also has constant weight w. If we
apply (A.2) to Cf , we get

w(qk−1 − 1) = n(Cf )q
k−2(q − 1) ⇔ w

qk − 1

q − 1
= nqk−1.

By (A.3), we have

rq
qk−1 − 1

q − 1
= n(Cf ),
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and

n− n(Cf ) = r
qk − 1

q − 1
− rq

qk−1 − 1

q − 1
= r

(
qk − 1− qk + q

q − 1

)
= r.

Note that if two linear functionals f1 ∈ V ∗ and f2 ∈ V ∗ have the same kernel K, then
f1 and f2 are scalar multiples. If K = V , then this statement is trivial. If K ̸= V , then
dimK = dimV − 1, so we can write V = K + ⟨v⟩, where we can choose v ∈ V such that
f2(v) = 1. Let x = k + λv be an arbitrary element of V . Then

f1(x) = f1(k) + λf1(v) = λf1(v),

and
f2(x) = f2(k) + λ = λ.

So, for all x ∈ V , we have that f1(x) = f1(v)f2(x).
Now let us consider the columns of M as linear functionals on V . The kernel of the j-th

column consists of those vectors v ∈ GF (q)k for which the j-th coordinate of the codeword
vM is 0. From the previous arguments, it follows that up to scalar multiples, every linear
functional appears as a column of M exactly r times. Therefore, after scaling, we get that
C is an r-fold replication of a simplex code, completing the proof.
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Appendix B

An oblivious transfer protocol

We will present the oblivious transfer protocol described in [12]. This is based on the idea
of the well-known Diffie-Hellman (DH) key exchange protocol. Given a cyclic group G = ⟨g⟩
known to both Alice and Bob, they can agree on a secret key K, which they can use later to
encrypt and decrypt messages. The DH protocol is as follows. Alice picks a random element
a, computes A = ga, and sends it to Bob. Bob picks a random element b, computes B = gb,
and sends it to Alice. Finally, Alice computes Ba, and Bob computes Ab, which are both equal
to the element K = gab. Now if Alice wants to send the message m, she encrypts it using K,
and she sends e = E(m,K) to Bob, who decrypts it by calculating D(e,K) = m. This key
exchange protocol is safe if we assume that the corresponding computational problem (given
ga and gb, find gab), also known as the Computational Diffie-Hellman Problem (CDHP), is
hard.

In our oblivious transfer protocol, instead of agreeing on one key, Alice, who holds the
input m = (m1,m2, . . . ,mn), will compute n different keys K1, K2, . . . , Kn. Bob, however,
will know only one of the keys Ki where i is the index of the bit he wants to query. So Alice
can send all the n encrypted messages E(m1, K1), E(m2, K2), . . . , E(mn, Kn). Bob will only
be able to decrypt mi.

Let G = ⟨g⟩ = {1, g, g2, . . . , gp−1} be a cyclic group of order p, p prime. Suppose that
Alice holds the input m = (m1,m2, . . . ,mn), and Bob wants to find out mi. The steps of the
oblivious transfer protocol are the following.

1. Alice picks a random element a ∈ {1, 2, . . . , p}, and computes A = ga and L = Aa.

2. Alice sends A to Bob.

3. Bob picks a random element b ∈ {1, 2, . . . , p}, and computes B = Aigb and K = Ab.

4. Bob sends B to Alice.

5. For all j ∈ [n], Alice computes Kj =
Ba

Lj .

Notice that

Ki =
Ba

Li
=

Aaigab

Aai
= gab = Ab = K.

We need to show two things. First of all, that Alice cannot find out i from B with higher
probability than 1/n. Secondly, that Bob cannot generate any other key Kj , j ̸= i.
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For the first part, we observe that for a fixed B0 = gb0 , the probability that B = B0 when
i = j is the probability that P(ai + b = b0) = 1/p, which is independent of j. This means
that the probability of each possible value of B received by Alice is the same, no matter what
index Bob chooses.

For the second part, we show that if Bob can generate two different keys Ki and Kj with
positive probability, then the CDHP cannot be hard. Indeed, if Bob knows an algorithm that
outputs Ki and Kj (j ̸= i) on the input A = ga with probability greater than ϵ, then for inputs
A = ga and A′ = ga

′ , he can calculate A∗ = AA′ = ga+a′ . Then he can run his algorithm
on all of the three inputs A,A′, A∗. Let us denote the outputs by Ki, Kj, K

′
i, K

′
j, K

∗
i , K

∗
j ,

respectively. Then Bob can calculate(
Ki

Kj

) 1
j−i

=

(
Ba/Li

Ba/Lj

) 1
j−i

= L = ga
2

.

Similarly, he can calculate ga
′2 and g(a+a′)2 , from which

gaa
′
=

(
g(a+a′)2

ga2ga′2

) p+1
2

.

The probability that his results are correct is the probability that all three pairs of keys were
computed correctly, which is at least ϵ3.
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