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Abstract

A direct product of general linear groups acts on a tensor product of a �nite number

of �nite dimensional vector spaces. This thesis is about the orbits of this group action.

In the case of 2 by m by n tensors, we reduce the problem of classifying these orbits to

a di�erent problem about classifying the orbits of multisets of pairs of binary forms and

integers. For algebraically closed �elds, and the �eld of real numbers we classify the

orbits of 2 by m by n tensors for m ≤ n and m ≤ 4. When m = 2 then the classi�cation

is computed over arbitrary �elds. These results also help in giving a somewhat di�erent

proof to a known result by Parfenov about when the number of orbits is �nite.
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1 Introduction

"In the age of big data, the role of matrices is increasingly played by tensors, that is,
multidimensional arrays of numbers." This quote is from the book [18] written by Mateusz
Michaªek and Bernd Sturmfels, on page 137. Tensors are very interesting objects naturally
showing up in many di�erent areas of mathematics. The classi�cation of tensors is the main
subject of this thesis. What we shall consider is the problem of �nding canonical forms for
tensors in Kk1 ⊗ ... ⊗Kkr with respect to the action of GL(k1,K) × ... × GL(kr,K). It is
clearly su�cient to deal with the case 2 ≤ k1 ≤ ... ≤ kr. Of course, this is very di�cult in
general, so we can look at simpler questions, such as �nding all r-tuples (k1, ..., kr) for which
there are �nitely many orbits, or classifying the orbits for small values of r and for speci�c
ki-s.

In 1890, Kronecker ([14]) classi�ed all the orbits of pairs ofm×nmatrices (or alternatively
tensors in K2 ⊗Km ⊗Kn) with respect to the action of GL(m,K) × GL(n,K). This can
be extended to take into account the e�ect of GL(2,K) on the �rst component of the tensor
product. This observation appears in the literature (see [21]), but here we exploit this
opportunity to a greater extent. The problem of classifying the orbits in K2 ⊗ Km ⊗ Kn

is reduced to a di�erent problem concerning GL(2,K)-orbits of multisets of pairs of binary
forms and integers in Corollary 4.3.15. To the author's knowledge, this is a new result.

The following result is due to Parfenov ([21]), although it follows from more general
results by Kac ([13]). In this thesis it is Theorem 3.1.1. We will present a proof to this in
section 5, that di�ers from the original to some extent.

Theorem. Assume 2 ≤ k1 ≤ ... ≤ kr and K = C. The number of GL(k1,K) × ... ×
GL(kr,K)-orbits in Kk1 ⊗ ... ⊗Kkr is �nite if and only if the r-tuple (k1, ..., kr) is one of
the following: (n), (m,n), (2, 2, n), (2, 3, n).

What about the case when K is an arbitrary in�nite �eld? As explained in Remark
3.1.2, Kn and Km ⊗Kn have �nitely many orbits, and there are �elds, where these are the
only cases. One example is Q, as stated and proved in Corollary 4.4.10. This is done by
classifying the orbits in K2 ⊗K2 ⊗Kn over arbitrary K in Propositions 4.4.7 and 4.2.11.
The author could not �nd this result elsewhere in the literature.

Section 2 contains Kronecker's classi�cation theorem and related results. Here the theory
of matrix pencils is discussed, and their connection to quiver representations is pointed out.
Kronecker's theorem can be interpreted in both of these categories. This serves as theoretical
background for the rest of the thesis.

Section 3 is about the orbits in Kk1 ⊗ ... ⊗ Kkr . It contains a result that states that
if we embed a tensor product of vector spaces in a bigger tensor space canonically, then
the orbits do not change. This is Corollary 3.2.7, and it is stated in [21] as Corollary 2.1
(a), but we present it with a di�erent, more elementary proof. The end of this section
indroduces the notion of the rank of a tensor. This is an interesting invariant of the orbits.
A major motivation for the study of tensor rank is that the rank of the multiplication tensor
of matrices approximates very well the number of multiplications one has to perform in the
base �eld in order to compute the product of two matrices (see Chapter I in [15] and Chapter
15 in [4]).

In section 4, we make use of the results of the previous two sections as we point out
the connection between matrix pencils and tensors in K2 ⊗Km ⊗Kn. We prove important
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statements that will later help prove Parfenov's theorem, the most important of which is
reducing the classi�cation of tensors in K2 ⊗Km ⊗Kn to the classi�cation of a subset of
tensors in K2 ⊗Ki ⊗Ki for i ≤ m. This section also contains the reduction of the problem
of classifying the orbits in K2 ⊗ Km ⊗ Kn to classifying the GL(2,K)-orbits of multisets
of pairs of binary forms and integers. In the last subsection we present the classi�cation of
orbits in K2 ⊗K2 ⊗Kn for arbitrary K.

Section 5 contains the proof of Parfenov's theorem about the �niteness of the number of
orbits in a tensor product of vector spaces. In this section K is algebraically closed. Because
of the results of the previous two sections we only need to consider the spaces K2 ⊗K2 ⊗
K2,K2⊗K3⊗K3,K2⊗K4⊗K4,K3⊗K3⊗K3,K2⊗K2⊗K2⊗K2. During the proof we
classify (in Propositions 4.2.11 and 5.1.10) all the GL(k1,K)×GL(k2,K)×GL(k3, k)-orbits
in K2 ⊗K2 ⊗Kn,K2 ⊗K3 ⊗Kn and K2 ⊗K4 ⊗Kn, the last of which is a new result, as
far as the author knows.

In section 6, we present another application of the results of sections 3 and 4 as we prove
the results of the previous section also for R (which is not algebraically closed), namely the
classi�cation of orbits in R2 ⊗ Rm ⊗ Rn for m ≤ 4 (Propositions 4.2.11, 5.1.10, 6.1.1, 6.2.1,
6.3.5), and the theorem about the �niteness of orbits which holds unchanged for R (Theorem
6.4.1). This last result was proved earlier by di�erent methods in [6].
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2 Kronecker's classi�cation theorem

2.1 Generalized Jordan normal form

To be able to state Kronecker's classi�cation theorem in its most general form, we will need
to introduce the concept of the generalized Jordan normal form of a matrix. This subsection
contains a brief summary of section 22.5 of the book [20].

De�nition 2.1.1 (Companion matrix). If p(x) = c0+c1x+c2x
2+...+cn−1x

n−1+xn ∈ K[x]
is a monic polynomial, then its companion matrix is the matrix

C(p) =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1

 .

De�nition 2.1.2 (Generalized Jordan block). Let U be a square matrix whose only nonzero
entry is a 1 in the top right corner, and let C(p) be the companion matrix of an irreducible
monic polynomial. A generalized Jordan block is a block matrix of the form

C(p) 0 0 · · · 0
U C(p) 0 · · · 0
0 U C(p) · · · 0
...

...
. . .

. . .
...

0 0 · · · U C(p)

 .

Theorem 2.1.3 ([20] Chapter 22. Section 5. Theorem 5.5). Every square matrixM ∈ Kn×n

is similar to a block diagonal matrix whose blocks are generalized Jordan blocks. These
blocks are unique up to reordering.

2.2 Matrix pencils

This subsection contains the summary of Chapter XII. of The Theory of Matrices Vol. II.
[10] by Felix Gantmacher.

Question 2.2.1 ([10]). Let A,B,A′, B′ ∈ Kn×m be matrices over a �eld K. The main
question of this subsection is �nding necessary and su�cient conditions for the existence of
matrices P ∈ GL(n,K) and Q ∈ GL(m,K) such that

PAQ = A′, PBQ = B′.

We can reformulate this problem by de�ning the action of the group GL(n,K)×GL(m,K)
on the set Kn×m × Kn×m in the following way. If (P,Q) ∈ GL(n,K) × GL(m,K) and
(A,B) ∈ Kn×m ×Kn×m, then

(P,Q) · (A,B) = (PAQ,PBQ).

Answering question 2.2.1 is equivalent to classifying the orbits of this group action.
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De�nition 2.2.2 (Matrix pencil). A matrix pencil is an expression of the form sA + tB,
where A,B ∈ Kn×m are matrices and s, t are commuting variables over the �eld K. In
other words, a matrix pencil is a matrix whose entries are homogeneous linear elements of
the polynomial algebra K[s, t].

De�nition 2.2.3 (Regular matrix pencil). A matrix pencil sA + tB is called regular if A
and B are square matrices and det(sA + tB) as a polynomial in s and t is not the zero
polynonial.

The group action above is the same as the action of GL(n,K)×GL(m,K) on the space
of matrix pencils over K of size n × m. Here a pair of matrices (P,Q) acts on a matrix
pencil sA+ tB as

(P,Q)(sA+ tB) = P (sA+ tB)Q = sPAQ+ tPBQ.

De�nition 2.2.4 (The category of matrix pencils, [3] Chapter I, Example 2.5). Fix an
arbitrary �eld K. A morphism between matrix pencils sA + tB and sA′ + tB′ is a pair of
matrices (P,Q) overK, for which Q(sA+tB) = (sA′+tB′)P. The composition of morphisms
(P,Q) and (P ′, Q′) is (P ′P,Q′Q). The identity morphisms are (I, I), where I is the identity
matrix. Matrix pencils together with these morphisms form a category.

Remark 2.2.5. Let us �x natural numbers n and m. Then the matrix pencils sA + tB
where A,B ∈ Kn×m form a subcategory in the category of matrix pencils. One can observe
that two pencils in this subcategory are on the same GL(n,K)×GL(m,K)-orbit if and only
if there is an invertible morphism between them. This means that answering question 2.2.1
is equivalent to classifying the isomorphism classes of this subcategory.

To be able to state the classi�cation theorem we need some additional notations.

Notation 2.2.6. For a �xed integer ϵ > 0 let

Lϵ = s ·Aϵ + t ·Bϵ,

where

Aϵ =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
0 0 0 0 · · · 1 0




ϵ

ϵ+ 1︷ ︸︸ ︷

8



Bϵ =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
0 0 0 0 · · · 0 1




ϵ

ϵ+ 1︷ ︸︸ ︷

Also, let
Nϵ = sHϵ + tIϵ,

where Hϵ is the Jordan block of size ϵ × ϵ corresponding to the eigenvalue 0, and Iϵ is the
identity matrix of size ϵ× ϵ.

The classi�cation theorem below is due to Kronecker and its proof can be found in
chapter XII. of the book [10].

Theorem 2.2.7 (Kronecker, [10]). Every matrix pencil is on the same orbit as a block
diagonal matrix pencil with blocks of the form

0, or Lϵ, or L
T
ν , or Nu, or sI + tJ,

where 0 is a block of zeroes of arbitrary size, J is and arbitrary generalized Jordan block and
I is the identity matrix of the corresponding size. The above form is unique up to reordering
of the blocks. Furthermore a matrix pencil is regular if and only if its normal form only
contains blocks of types Nu and sI + tJ .

Remark 2.2.8. A matrix pencil X is directly decomposable in the category of matrix
pencils if and only if there exist matrices (P,Q) ∈ GL(n,K) × GL(m,K) such that PXQ
is block diagonal with at least two blocks. This is because diag(Y1, Y2) is a direct sum of
matrix pencils Y1 and Y2 in the categorical sense. This means that the theorem above says
that the directly indecomposable matrix pencils up to the action of GL(n,K)×GL(m,K)
are exactly the matrices of type 0, Lϵ, L

T
ν , Nu, sI + tJ , and every matrix pencil is the direct

sum of �nitely many indecomposable ones.

2.3 Representations of the Kronecker quiver

For the following subsection I used section III.2. of the book [3] by Assem, Simson and
Skowronski.

De�nition 2.3.1 (Quiver). A quiver is a directed graph possibly with loops and multiple
edges. The notation G = (V,E) for a quiver G means that V is the set of vertices and E is
the set of edges. A quiver is �nite if it has �nitely many vertices and edges.

De�nition 2.3.2 (Representation). Let G = (V,E) be a quiver and K be an arbitrary
�eld. For every v ∈ V let Mv be a vector space over K and for every e = (v1, v2) ∈ E
let φe : Mv1 → Mv2 be a (K-) linear map. Then M = (Mv, φe)(v∈V,e∈E) is called a
representation of G. A representation is �nite dimensional if Mv is �nite dimensional for
all v ∈ V .
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De�nition 2.3.3 (Category of representations). Let M = (Mv, φe)(v∈V,e∈E) and N =
(Nv, ψe)(v∈V,e∈E) be representations of the quiver G = (V,E) over the �eld K. A morphism

between them is a collection of linear maps (αv)v∈V such that αv :Mv → Nv and αv2 ◦φe =
ψe ◦ αv1 ,∀e = (v1, v2) ∈ E. This yields the category of representations of G over K.

De�nition 2.3.4 (Kronecker-quiver). The Kronecker-quiver is a graph with two egdes u
and v, and two vertices α, β going from u to v.

u v

β

α

Figure 2.3.1: The Kronecker-quiver

We will use the following theorem from the book titled Categories for the Working
Mathematician [17] written by Saunders Mac Lane, where the proof of it can be found.

Theorem 2.3.5 ([17] Chapter IV Section 4 Theorem 1). A functor F : C → D is an
equivalence of categories if and only if it is full and faithful, and for each object d ∈ D there
exists an object c ∈ C such that d is isomorphic to Fc.

Proposition 2.3.6 ([3], Chapter I, Example 2.5). The category C of matrix pencils over a
�xed �eld K is equivalent to the category D of �nite dimensional representations of the
Kronecker quiver over K via the functor

F : C → D

that acts in the following way. On the objects

F : ObC → ObD

sA+ tB 7→ (Mv, φe)(v∈V,e∈E),

where if A,B ∈ Kn×m, then Mu = Km,Mv = Kn, φα = A,φβ = B (here we identify
matrices with the operators that multiply vectors by these matrices from the left). If (P,Q) :
sA+ tB → sA′ + tB′ is a morphism, then

F ((P,Q)) = (αu = P, αv = Q),

again identifying matrices with the corresponding linear maps.

Proof. F is a functor, because on one hand

F ((I, I ′)) = (idKm , idKn),

and on the other,

F ((P,Q) ◦ (P ′, Q′)) = F ((PP ′, QQ′)) = (PP ′, QQ′) =

(P,Q) ◦ (P ′, Q′) = F ((P,Q)) ◦ F ((P ′, Q′)).
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It is clear that F is an additive functor that is full and faithful, i.e. for sA+tB, sA′+tB′ ∈
C , the map

HomC (sA+ tB, sA′ + tB′) → HomD(F (sA+ tB), F (sA′ + tB′))

is an isomorphism of Abelian groups, because it maps a pair of matrices to a pair of the
corresponding linear maps. For a representation M such that dimMu = m,dimMv = n, let
us take bases b1, ..., bm and b′1, ..., b

′
n inMu andMv respectively, and let A,B be the matrices

of φα, φβ respectively. Then M and F (sA+ tB) are isomorphic via (αu, αv):

αu :Mu → Km

bi 7→ ei, i = 1, ...,m

αv :Mv → Kn

b′i 7→ e′i, i = 1, ..., n,

where e1, ..., em and e′1, ..., e
′
n are the standard bases. From Theorem 2.3.5 we conclude that

F is an equivalence of categories.

Remark 2.3.7. There is a third category that is equivalent to the ones above, and that is
the category of modules over the path algebraKG of the Kronecker quiver G. The interested
reader can �nd the theory of path algebras and their connection to representations in [3]
Chapters II and III.

From Theorem 2.2.7, Remark 2.2.8, and Proposition 2.3.6 we can conclude the following
theorem.

Theorem 2.3.8 (Kronecker). The following representations of the Kronecker quiver are
indecomposable, and every indecomposable representation is isomorphic to one of these:

Mu Mv φA φB

K 0 0 0

0 K 0 0

Kn+1 Kn An Bn

Kn Kn+1 AT
n BT

n

Kn Kn Hn In
Kn Kn In J

Here n is an arbitrary positive integer and J is a generalized Jordan block of size n × n.
An, Bn, Hn, In are as in Notation 2.2.6. Every �nite dimensional representation is a direct
sum of �nitely many indecomposable ones, and this direct sum is unique up to reordering
the summands.
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3 Orbits in Kk1 ⊗ ...⊗Kkr

Throughout this section K will denote an arbitrary �eld, and by orbits in Kk1 ⊗ ... ⊗Kkr

we shall mean GL(k1,K)× ...×GL(kr,K)-orbits.
In this section we will investigate the orbits of the natural action of GL(k1,K) × ... ×

GL(kr,K) on the space Kk1 ⊗ ...⊗Kkr . Our aim is to �nd the r-tuples (k1, ..., kr) for which
there are �nitely many orbits, and also to classify the orbits in these cases. We may assume
that k1 ≤ ... ≤ kr because permutations of the ki-s will not change the structure of the
orbits. We can also assume that all ki > 1, because V ⊗K K = V for all K-vector spaces V .

3.1 Parfenov's theorem

The following result is due to Parfenov and the proof can be found in the article [21]. As
it is noted in [21], it follows from more general results in [13]. We shall give a somewhat
di�erent proof of it below.

Theorem 3.1.1 ([21] Theorems 3 and 5.). If K = C, then there are �nitely many orbits
for the following r-tuples: (n), (m,n), (2, 2, n), (2, 3, n). For every other r-tuple there are
in�nitely many orbits.

Remark 3.1.2. Let us examine the cases where r < 3.

� When r = 1 then we are looking for the orbits in Kn under the action of GL(n,K).
Clearly there are two orbits: {0} and Kn\{0}.

� In the case of r = 2 we ought to classify matrices inKm×n under the action GL(m,K)×
GL(n,K). We know from elementary linear algebra that if the rank of M is i, then

M is on the same orbit as

(
I 0
0 0

)
where I is the i× i identity matrix. We also know

that matrices of di�erent ranks are on di�erent orbits. This means that there are
min{m,n}+ 1 orbits: one for every possible value of the rank.

3.2 The case of in�nitely many orbits

Notation 3.2.1. Let r be a positive natural number and �x i ∈ {1, ..., r}. Let us de�ne the
following correspondence on elementary tensors:

φi : Kk1 ⊗ ...⊗Kkr → HomK

(
Kk1 ⊗ ...⊗Kki−1 ⊗Kki+1 ⊗ ...⊗Kkr ,Kki

)
a1 ⊗ ....⊗ ar 7→ φi

a1⊗....⊗ar

where

φi
a1⊗...⊗ar(b1 ⊗ ...⊗ bi−1 ⊗ bi+1 ⊗ ...⊗ br) = (bT1 a1) · ... · (bTi−1ai−1) · (bTi+1ai+1) · ... · (bTr ar) · ai.

Then φi
a1⊗...⊗ar extends as a linear map to Kk1 ⊗ ... ⊗ Kki−1 ⊗ Kki+1 ⊗ ... ⊗ Kkr and φi

extends as a linear map to Kk1 ⊗ ...⊗Kkr . Furthermore φ is a linear isomorphism. This is
clear from the canonical isomorphisms V ∼= V ∗ and V ∗ ⊗W ∼= Hom(V,W ).

Notation 3.2.2. If ψ : V →W is a linear map, then Ran(ψ) shall denote the range of ψ.

12



De�nition 3.2.3. If T ∈ Kk1 ⊗ ...⊗Kkr then rki(T ) is the rank of φi
T as a linear map, i.e.

rki(T ) = dim(Ran(φi
T )).

Lemma 3.2.4. If S, T ∈ Kk1⊗...⊗Kki⊗...⊗Kkr are on the same orbit, then rki(S) = rki(T ).

Proof. If T = (Q1, ..., Qr)S, then φ
i
T = Qi ◦φi

S ◦ (QT
1 , ..., Q

T
i−1, Q

T
i+1, ..., Q

T
r ), and composing

with invertible linear maps does not change the rank.

Lemma 3.2.5. Let S ∈ Kk1 ⊗ ...⊗Kkr , and assume i ∈ {1, ...r} is �xed. Then there exists
a decomposition S =

∑m
j=1 a

j
1 ⊗ ...⊗ ajr such that aji ∈ Ran(φi

S) for all j ∈ {1, ...,m}.

Proof. Let w1, ..., wn be a basis in Ran(φ
i
S) and let us extend it to a basis w1, ...wn, vn+1, ..., vki

of Kki . We can express S in the basis

{ej1 ⊗ ...⊗ wji ⊗ ...⊗ ejr : j1, ..., jr} ∪ {ej1 ⊗ ...⊗ vji ⊗ ...⊗ ejr : j1, ..., jr}

as

S =

k1∑
j1=1

...

n∑
ji=1

...

kr∑
jr

λj1,...,jrej1 ⊗ ...⊗ wji ⊗ ...⊗ ejr+

+

k1∑
j1=1

...

ki∑
ji=n+1

...

kr∑
jr

µj1,...,jrej1 ⊗ ...⊗ vji ⊗ ...⊗ ejr .

Of course

Ran(φi
S) ∋ φi

S(ej1 ⊗ ...⊗ eji−1 ⊗ eji+1 ⊗ ...⊗ ejr) =
n∑

ji=1

λj1,...jrwji +

ki∑
ji=n

µj1,...jrvji ,

so all µj1,...jr = 0, which means that

S =

k1∑
j1=1

...

n∑
ji=1

...

kr∑
jr

λj1,...,jrej1 ⊗ ...⊗ wji ⊗ ...⊗ ejr .

This decomposition proves the lemma.

Theorem 3.2.6 (Same as [21] Corollary 2.2, with di�erent proof). Let S, T ∈ Kk1 ⊗
... ⊗ Kki ⊗ ... ⊗ Kkr ⊆ Kk1 ⊗ ... ⊗ Kki+1 ⊗ ... ⊗ Kkr . S and T are on the same orbit in
Kk1⊗...⊗Kki+1⊗...⊗Kkr if and only if they are on the same orbit inKk1⊗...⊗Kki⊗...⊗Kkr .

Proof. If S and T are on the same orbit in Kk1 ⊗ ...⊗Kki ⊗ ...⊗Kkr , then that means that
there exist Pj ∈ GL(kj ,K) for j = 1, ..., r such that (P1, ..., Pr)S = T . Let

P̂ =

(
Pi 0
0 1

)
∈ GL(ki + 1,K),

then
(P1, ..., Pi−1, P̂ , Pi+1, ..., Pr)S = T,
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which means that S and T are on the same orbit in Kk1 ⊗ ...⊗Kki+1 ⊗ ...⊗Kkr .
For the other direction let

(Q1, ..., Qr) ∈ GL(k1,K)× ...×GL(ki + 1,K)× ...×GL(kr,K)

such that (Q1, ..., Qr)S = T . We know from Lemma 3.2.5 that there exists S =
∑m

j=1 a
j
1 ⊗

... ⊗ ajr such that aji ∈ Ran(φi
S) for j = 1, ..., r. Of course Ran(φi

S) ≤ Kki , because
S ∈ Kk1 ⊗ ...⊗Kki ⊗ ...⊗Kkr . Let w1, ..., wn be a basis of Ran(φi

S) and let us extend it to a
basis w1, ..., wn, vn+1, ..., vki of K

ki . Then w1, ...wn, ...vn+1, ..., vki , eki+1 is a basis of Kki+1 .
Also by Lemma 3.2.4 dimRan(φi

T ) = n, and clearly Ran(φi
T ) ≤ ⟨Qiw1, ..., Qiwn⟩, so

Qiw1, ..., Qiwn is a basis of the subspace Ran(φi
T ) ≤ Kki . Then we can extend it to a basis

Qiw1, ...Qiwn, un+1, ...uki of K
ki . Let us de�ne the linear map Q̃ in the following way:

Q̃ : Kki+1 → Kki+1

wj 7→ Qiwj j = 1, ..., n

vj 7→ uj j = n+ 1, ...ki

eki+1 7→ eki+1.

Clearly Q̃ ∈ GL(ki + 1,K) and there exists some Q̂ ∈ GL(ki,K) such that Q̃ =

(
Q̂ 0
0 1

)
.

Also if a ∈ Ran(φi
S) then Qi(a) = Q̃(a), therefore

T = (Q1, ..., Qr)S =
m∑
j=1

Q1a
j
1 ⊗ ...⊗Qia

j
i︸︷︷︸

=Q̃aji

⊗...⊗Qra
j
r = (Q1, ..., Q̃, ..., Qr)S.

Then (Q1, ..., Q̂, ..., Qr)S = T in Kk1 ⊗ ...⊗Kki ⊗ ...⊗Kkr . This concludes the proof of the
theorem.

Corollary 3.2.7 ([21] Corollary 2.1 (a)). If kj ≤ k′j for j = 1, ..., r and there are in�nitely

many orbits in Kk1 ⊗ ...⊗Kkr , then there are in�nitely many orbits in Kk′1 ⊗ ...⊗Kk′r .

Proof. If for a �xed i ki = k′i + 1 and kj = k′j for j ̸= i, then the statement follows from
Theorem 3.2.6. For arbitrary kj , k

′
j the result follows by induction on

∑
k′j −

∑
kj .

Corollary 3.2.8. Suppose kj ≤ k′j for j = 1, ..., r and k′j ≥ 1 for j = r + 1, ..., s. Assume

moreover that there are in�nitely many orbits in Kk1 ⊗ ...⊗Kkr . Then there are in�nitely
many orbits in Kk′1 ⊗ ...⊗Kk′r ⊗Kk′r+1 ⊗ ...⊗Kk′s .

Proof. We know that

Kk1 ⊗ ...⊗Kkr = Kk1 ⊗ ...⊗Kkr ⊗K ⊗ ...⊗K︸ ︷︷ ︸
s−r times

and the GL(k1,K)× ...×GL(kr,K)-orbits are the same as GL(k1,K)× ...×GL(kr,K)×
GL(1,K) × ... × GL(1,K)-orbits since the only di�erence is multiplying by a scalar in the
last s− r components. Then the statement follows from Corollary 3.2.7.
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This means that in order to prove Theorem 3.1.1 we need to show two things:

� for tuples (2, 2, n), (2, 3, n) there is a �nite number of orbits;

� for tuples (2, 4, 4), (3, 3, 3), (2, 2, 2, 2) there are in�nitely many orbits,

and the rest of the theorem follows from Corollary 3.2.8 and Remark 3.1.2. We shall prove
these in the next two sections. We will classify the orbits in the cases (2, 2, n), (2, 3, n), (2, 4, n)
using Kronecker's theory of matrix pencils.

3.3 Tensor rank

In this subsection we will introduce the notion of the rank of a tensor, which, as we will see,
is invariant under the action of GL(k1,K)× ...×GL(kr,K).

De�nition 3.3.1 (Tensor rank). Let T ∈ V1 ⊗ ... ⊗ Vr for vector spaces Vi over the �eld
K. Then the tensor rank R(T ) of T is the smallest number q such that T is a sum of q
elementary tensors, i.e.

R(T ) = min

q ∈ N
∣∣∣∣∃aji ∈ Kki , i = 1, ..., r, j = 1, ..., q : T =

q∑
j=1

aj1 ⊗ ...⊗ ajr

 .

Remark 3.3.2. We de�ne the empty sum as the 0 tensor, so R(0) = 0.

Remark 3.3.3. When T ∈ Kk1 ⊗Kk2 , then T is a k1 × k2 matrix. Its tensor rank is the
number q such that T is the sum of q rank one matrices, i.e. matrices that are the product
of a column vector and a row vector. But this is the de�nition of the matrix rank, so in this
case the matrix rank and the tensor rank coincide.

Proposition 3.3.4. The tensor rank is invariant under the action of GL(V1)× ...×GL(Vr),
i.e. for all (P1, ..., Pr) ∈ GL(V1)× ...×GL(Vr) and all T ∈ V1 ⊗ ...⊗ Vr it stands that

R(T ) = R((P1, ..., Pr)T ).

Proof. Because of the fact that

(P1, ..., Pr)

 q∑
j=1

aj1 ⊗ ...⊗ aqr

 =

q∑
j=1

P1a
j
1 ⊗ ...⊗ Pra

q
r,

it stands that R(T ) ≥ R((P1, ..., Pr)T ), and also

R((P1, ..., Pr)T ) ≥ R((P−1
1 , ..., P−1

r )(P1, ..., Pr)T ) = R(T ).

Another important question is whether the tensor rank changes if we extend the tensor
spaces Vi. The proposition below answers this question.
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Proposition 3.3.5 ([23] Proposition 3.1). If Vi ≤ V ′
i for i = 1, ..., r, and T ∈ V1 ⊗ ...⊗ Vr,

then let R1 denote the rank of T , and let R2 denote the rank of T considered as a tensor in
V ′
1 ⊗ ...⊗ V ′

r . Then R1 = R2.

Proof. It is clear thatR2 ≤ R1. Let πi : V
′
i → Vi denote a projection. If T =

∑q
j=1 a

j
1⊗...⊗a

j
r

for aji ∈ V ′
i , then it is easy to see that T =

∑q
j=1 π1(a

j
1) ⊗ ... ⊗ πr(a

j
r), which proves

R1 ≤ R2.

Computing the tensor rank is not straightforward in general, indeed it is NP-complete
(see [11]). One can �nd explicit decompositions to prove an upper bound, however �nding
lower bounds is not easy. A method for it is the so-called Substitution method explained
below. The proof for it can be found in the article [2].

Theorem 3.3.6 (Substitution method, [2] Appendix B, Corollary B.2). Let T ∈ Kk1 ⊗ ...⊗
Kkr . Assume that a1, ..., akr is a basis in Kkr and

T =

kr∑
j=1

Tj ⊗ aj

for Tj ∈ Kk1 ⊗ ... ⊗Kkr−1 , where for some m < kr, T1, ..., Tm are linearly independent as
vectors. Then there exist constants λi,j ∈ K for i = 1, ...,m, j = m+ 1, ..., kr such that

R(T ) ≥ R

 kr∑
j=m+1

(
Tj +

m∑
i=1

λi,jTi

)
⊗ aj

+ 1.

Example 3.3.7. Let a,b be a basis of the two dimensional vector space K2. We shall
compute the tensor rank of T = a⊗b⊗b+b⊗a⊗b+b⊗b⊗a. It is clear that R(T ) ≤ 3.
We will use four di�erent techniques to show that R(T ) ≥ 3.

� This technique is based on an answer to the question posed in [1]. Let us assume that
R(T ) ≤ 2, i.e. for ui,j , vi,j , wi,j ∈ K it stands that

T =(u1,1a+ u1,2b)⊗ (v1,1a+ v1,2b)⊗ (w1,1a+ w1,2b)+

+(u2,1a+ u2,2b)⊗ (v2,1a+ v2,2b)⊗ (w2,1a+ w2,2b).

This means that we can write the following equation system for the coe�cients of this
tensor.

u1,1v1,1w1,1 + u2,1v2,1w2,1 = 0

u1,1v1,1w1,2 + u2,1v2,1w2,2 = 0

u1,1v1,2w1,1 + u2,1v2,2w2,1 = 0

u1,1v1,2w1,2 + u2,1v2,2w2,2 = 1

u1,2v1,1w1,1 + u2,2v2,1w2,1 = 0

u1,2v1,1w1,2 + u2,2v2,1w2,2 = 1

u1,2v1,2w1,1 + u2,2v2,2w2,1 = 1

u1,2v1,2w1,2 + u2,2v2,2w2,2 = 0.
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If we introduce the notations

U =

(
u1,1 u1,2
u2,1 u2,2

)
,W =

(
w1,1 w1,2

w2,1 w2,2

)
,

then the system above is equivalent to the following matrix equations.

UT

(
v1,1 0
0 v2,1

)
W =

(
0 0
0 1

)
UT

(
v1,2 0
0 v2,2

)
W =

(
0 1
1 0

)
.

If we multiply the �rst equation by the inverse of the second one from the left then
we get

W−1

(
v1,1
v1,2

0

0
v2,1
v2,2

)
W =

(
0 1
0 0

)
,

which means that the matrix

D =

(
0 1
0 0

)
is diagonalizable. This is a contradiction because D is a Jordan block.

� The second method is from the article [12] where the authors use it to compute the
tensor rank of the multiplication tensor of the R-algebra H. Let ⟨·, ·⟩ denote the dot
product. Let us assume again that R(T ) ≤ 2, i.e. T = u1 ⊗ v1 ⊗w1 + u2 ⊗ v2 ⊗w2.
Clearly Ran(φ1

T ) = K2 so u1 and u2 are linearly independent. This means that there
exists z ∈ K2 such that ⟨z,b⟩ ≠ 0 and either ⟨z,u1⟩ = 0 or ⟨z,u2⟩ = 0. We might
assume that ⟨z,u1⟩ = 0. Let us de�ne the linear map

ψ : K2 ⊗K2 → K

S 7→ ⟨z, φ1
T (S)⟩.

This means ψ ∈ (K2 ⊗K2)∗ = K2 ⊗K2. The matrix corresponding to ψ in K2 ⊗K2

is (
ψ(a⊗ a) ψ(a⊗ b)
ψ(b⊗ a) ψ(b⊗ b)

)
=

(
⟨z, 0⟩ ⟨z,b⟩
⟨z,b⟩ ⟨z,a⟩

)
.

This is a rank 2 matrix because ⟨z, 0⟩ = 0, so the determinant is −⟨z,b⟩2 ̸= 0. But

ψ = ⟨z,u1⟩︸ ︷︷ ︸
=0

·(v1 ⊗w1) + ⟨z,u2⟩ · (v2 ⊗w2) = ⟨z,u2⟩ · (v2 ⊗w2)

which contradicts the fact that the rank of ψ is 2.

� The third method is from the proof of Lemma 4.7 in [23]. Let us assume that T =
u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ w2 for contradiction. Then u1 and u2 span Ran(φ1

T ),
which is clearly two dimensional. This means that they are linearly independent. Let
ψ : K2 → K be a nonzero linear map whose kernel is spanned by u1. Then

ψ(u2) · (v2 ⊗w2) = ψ(a) · (b⊗ b) + ψ(b) · (a⊗ b) + ψ(b) · (b⊗ a),
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so ψ(b) = 0, because if it were not, then on the left hand side there would be a rank
1, and on the right hand side, a rank 2 matrix. This means that b and u1 are linearly
dependent. The same way b and u2 are linearly dependent, and therefore so are u1

and u2, but we have already seen that this is not the case, which is a contradiction.

� The fourth technique is the 3.3.6 substitution method. If R(T ) ≤ 2, then, according
to the substitution method, there exists λ ∈ K such that

R(b⊗ (a⊗ b+ b⊗ a+ λb⊗ b)) ≤ 1.

But this tensor is inK⊗K2⊗K2 = K2⊗K2, so it is a matrix. Its entries (computed in

the basis {a,b}) are
(
0 1
1 λ

)
, so it is clearly a rank 2 matrix, which is a contradiction.

The value of the tensor rank is known for tensors inK2⊗Km⊗Kn whenK is algebraically
closed. For this we need to introduce a correspondence between these tensors and matrix
pencils of size m × n. This result is Theorem 4.1.5 on page 20. The question is, does that
help over arbitrary �elds? Interestigly, yes, it does, although it only yields an inequality via
the following proposition. This inequality can be found in Corollary 4.1.6.

Proposition 3.3.8. If K ≤ F and T ∈ Kk1 ⊗ ...⊗Kkr , then

RK(T ) ≥ RF (T ),

where RK(T ),RF (T ) denote the tensor rank of T over the �elds K,F respectively.

Proof. Follows from the fact that any decomposition of T over K is also a decomposition
over F .

Another question arises, and that is whether the tensor rank is a�ected by changing the
base �eld. This is answered by the following example.

Example 3.3.9. Let a,b denote a basis of Q2, and let us examine the rank tensor

T = a⊗ a⊗ a+ b⊗ a⊗ b+ a⊗ b⊗ b+ 2b⊗ b⊗ a

over the �elds Q and R. Of course

T =
1

2
(a+ b)⊗ (a+ b)⊗ (a+ b) +

1

2
(a− b)⊗ (a− b)⊗ (a− b) + b⊗ b⊗ a,

so RK(T ) ≤ 3 for K = Q,R. Also RK(T ) ≥ 2 for K = Q,R, since image of T in the
projection K2 ⊗K2 ⊗K2 → K ⊗K2 ⊗K2 is a rank 2 matrix (in the �rst component we
use the projection a 7→ 1,b 7→ 0).

Also it holds that

T =
1

2

(
1√
2
a+ b

)
⊗
(
a+

√
2b
)
⊗
(√

2a+ b
)

+
1

2

(
1√
2
a− b

)
⊗
(
a−

√
2b
)
⊗
(√

2a− b
)
,

so RR(T ) = 2, but, as we shall prove using the substitution method, RQ(T ) = 3. Indeed, if
it were 2, then there would exist λ ∈ Q such that

RQ(b⊗ (a⊗ b+ 2b⊗ a+ λa⊗ a+ λb⊗ b)) ≤ 1,

but this is a matrix with determinant λ2 − 2, which is nonzero, so it is a contradiction.
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4 Orbits in K2 ⊗Km ⊗Kn

4.1 Tensors and matrix pencils

Notation 4.1.1. GL2,m,n shall denote GL(2,K)×GL(m,K)×GL(n,K) in the rest of the
thesis. We will also use the notation π1 for the projection to the �rst component:

π1 : GL2,m,n → GL(2,K)

(M,P,Q) 7→M.

Notation 4.1.2. We will also use the following notations throughout the rest of the thesis.
If S, T ∈ K2⊗Km⊗Kn then we will denote them being on the same GL(2,K)×GL(m,K)×
GL(n,K)-orbit by S ≈ T , and them being on the same {I}×GL(m,K)×GL(n,K)-orbit by

S ∼∼∼ T . If two matrix pencils sA+ tB and sA′+ tB′ are on the same GL(m,K)×GL(n,K)-

orbit, then we will also denote this by sA+ tB ∼∼∼ sA′ + tB′.

If T ∈ K2 ⊗Km ⊗Kn then we can write T in the basis {ei ⊗ ej ⊗ ek : i, j, k}

T =
2∑

i=1

m∑
j=1

n∑
k=1

λi,j,kei ⊗ ej ⊗ ek,

which means that T = e1 ⊗M1 + e2 ⊗M2 with Mi =
∑m

j=1

∑n
k=1 λi,j,kej ⊗ ek ∈ Km×n. M1

and M2 are unique because if e1 ⊗M1 + e2 ⊗M2 = e1 ⊗M ′
1 + e2 ⊗M ′

2 then e1 ⊗ (M1 −
M ′

1) + e2 ⊗ (M2 −M ′
2) = 0 and by writing it in the basis {ei ⊗ ej ⊗ ek : i, j, k} we can see

that Mi −M ′
i = 0 for i = 1, 2. This means that

K2 ⊗Km ⊗Kn =
{
e1 ⊗M1 + e2 ⊗M2 :M1,M2 ∈ Km×n

}
.

Proposition 4.1.3 ([16] Section 3.11). The correspondence

Φ : K2 ⊗Km ⊗Kn →
{
sA+ tB : A,B ∈ Km×n

}
e1 ⊗M1 + e2 ⊗M2 7→ sM1 + tM2

is a linear isomorphism. Furthermore if we consider the action of {I}×GL(m,K)×GL(n,K)
on K2 ⊗ Km ⊗ Kn and the action of GL(m,K) × GL(n,K) on matrix pencils then the
following is true for P ∈ GL(m,K) and Q ∈ GL(n,K):

Φ((I, P,Q)T ) =
(
P,QT

)
Φ(T ).

Proof. Clearly Φ is a linear map, and we have already seen that it is bijective. Let T =∑2
i=1

∑m
j=1

∑n
k=1 λi,j,kei ⊗ ej ⊗ ek. Then
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Φ((I, P,Q)T ) = Φ

 2∑
i=1

m∑
j=1

n∑
k=1

λi,j,kei ⊗ Pej ⊗Qek

 =

= s

 m∑
j=1

n∑
k=1

λ1,j,k(Pej) · (Qek)T
+ t

 m∑
j=1

n∑
k=1

λ2,j,k(Pej) · (Qek)T
 =

= P

s
 m∑

j=1

n∑
k=1

λ1,j,kej · eTk

+ t

 m∑
j=1

n∑
k=1

λ1,j,kej · eTk

QT =

= PΦ(T )QT =
(
P,QT

)
Φ(T ).

Corollary 4.1.4 ([16] Section 3.11). If S, T ∈ K2 ⊗ Km ⊗ Kn, then S and T are on the
same {I} × GL(m,K) × GL(n,K)-orbit if and only if Φ(S) and Φ(T ) are on the same
GL(m,K)×GL(n,K)-orbit. For this reason from now on we shall consider matrix pencils
(of size m× n) as elements of K2 ⊗Km ⊗Kn via the isomorphism Φ.

Now we can state the following theorem about the tensor rank of matrix pencils in
K2 ⊗Km ⊗Kn for K algebraically closed.

Theorem 4.1.5 (Grigoriev, Ja'Ja, Teichert, [16] Theorem 3.11.1.1). Assume K is an
algebraically closed �eld, and let X ∈ K2 ⊗ Km ⊗ Kn such that the Kronecker normal
form of X is

diag
(
0, Lϵ1 , ..., Lϵq , L

T
ν1 , ..., L

T
νp , Nu1 , ..., Nur , sIf + tFf

)
,

where Ff is in Jordan normal form, and If is the identity matrix, both of size f × f . Let
d be the number of Nu-s that are at least of size 2 × 2, and for each eigenvalue λ of F , let
d(λ) denote the number of Jordan blocks of size at least 2 asssociated to λ, and let

M = max

{
max
λ

(d(λ)), d

}
.

Then

R(X) =

q∑
i=1

ϵi +

p∑
j=1

µj + q + p+ r + f +M.

Together with Proposition 3.3.8 this yields the following.

Corollary 4.1.6. Let K denote the algebraic closure of K. If K is an arbitrary �eld, and
the Kronecker normal form of X ∈ K2 ⊗Km ⊗Kn over K is

diag
(
0, Lϵ1 , ..., Lϵq , L

T
ν1 , ..., L

T
νp , Nu1 , ..., Nur , sIf + tFf

)
,

then, using the same notation as in Theorem 4.1.5,

R(X) ≥
q∑

i=1

ϵi +

p∑
j=1

µj + q + p+ r + f +M

over the �eld K.
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Proposition 4.1.7. If T ≈ S for T, S ∈ K2 ⊗Kn ⊗Kn then T is regular if and only if S
is regular as a matrix pencil.

Proof. We only need to prove that if T is not regular, then S is not regular either, then
the other direction is trivial (because of symmetry). Let (M,P,Q) ∈ GL2,n,n such that
(M,P,Q)T = S, then f = det(T ) is polynomial in two variables that is equal to the zero

polynomial. Let M =

(
a b
c d

)
, then

det(S) = det(P ) det(Q)f(as+ ct, bs+ dt) = 0,

and we are done.

4.2 Kronecker's normal form for tensors

Proposition 4.2.1. If the projection of stabilizer of T ∈ K2 ⊗Km ⊗Kn with respect to
the action of GL2,m,n to the �rst component of the product is surjective, i.e.

π1(StabGL2,m,n(T )) = GL(2,K),

then for any tensor S, T ≈ S if and only if T ∼∼∼ S.

Proof. Trivially if T ∼∼∼ S, then T ≈ S. Conversely assume that T ≈ S. Because the

projection of the stabilizer to the �rst component is surjective, this means that for any
M ∈ GL(2,K) there exists P ∈ GL(m,Km), Q ∈ GL(n,Kn) such that (M,P,Q)T = T , i.e.

(M, I, I)T ∼∼∼ T . Because T ≈ S there exists M ′, P ′, Q′ such that (M ′, P ′, Q′)T = S. But

then T ∼∼∼ (M ′, I, I)T ∼∼∼ (I, P ′, Q′)(M ′, I, I)T = (M ′, P ′, Q′)T = S.

Lemma 4.2.2. If sA+tB ∼∼∼ sA′+tB′ and sC+tD ∼∼∼ sC ′+tD′ then

(
sA+ tB 0

0 sC + tD

)
∼∼∼(

sA′ + tB′ 0
0 sC ′ + tD′

)
.

Proof. If P (sA+ tB)Q = sA′ + tB′ and P ′(sC + tD)Q′ = sC ′ + tD′ then(
P 0
0 P ′

)(
sA+ tB 0

0 sC + tD

)(
Q 0
0 Q′

)
=

(
sA′ + tB′ 0

0 sC ′ + tD′

)
.

Proposition 4.2.3. If T ∈ K2 ⊗Kn ⊗Km is an indecomposable matrix pencil, and M ∈
GL(2,K), then (M, I, I)T is also indecomposable as a matrix pencil.

Proof. Let us assume that P · ((M, I, I)T ) ·Q = diag(X,Y ). Then

(I, P,Q)T = (M−1M,P,Q)T = (M−1, I, I)

(
X 0
0 Y

)
=

(
(M−1, I, I)X 0

0 (M−1, I, I)Y

)
.

T is indecomposable, so this means that either (M−1, I, I)X, or (M−1, I, I)Y is zero, but
then one of X,Y is zero. We have thus proved that (M, I, I)T has only one decomposition,
which is the trivial one.
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Proposition 4.2.4. For all ϵ > 0 π1(StabGL2,m,n(Lϵ)) = GL(2,K).

Proof. Let M ∈ GL(2,K). Then from Proposition 4.2.3 it follows that (M, I, I)Lϵ is
indecomposable. But from Theorem 2.2.7 we know that the only indecomposable matrix

pencil of size ϵ× (ϵ+ 1) is Lϵ, so (M, I, I)Lϵ ∼∼∼ Lϵ.

Remark 4.2.5. This proposition can also be proved constructively using the following
lemma.

Lemma 4.2.6. If [λ : µ], [α : β], [α′ : β′] ∈ KP1 such that [λ : µ] ̸= [α : β] and [λ : µ] ̸= [α′ :
β′] then

(1) (αs+ βt)Aϵ + (λs+ µt)Bϵ ∼∼∼ (α′s+ β′t)Aϵ + (λs+ µt)Bϵ;

(2) (λs+ µt)Aϵ + (αs+ βt)Bϵ ∼∼∼ (λs+ µt)Aϵ + (α′s+ β′t)Bϵ;

(3) (αs+ βt)Hϵ + (λs+ µt)Iϵ ∼∼∼ (α′s+ β′t)Hϵ + (λs+ µt)Iϵ.

Proof. We will only prove the �rst assertion as the other ones can be derived similarly.
The equation system

α′y − λx = α

β′y − µx = β

has a unique solution (x, y) because [λ : µ] ̸= [α′ : β′] and y ̸= 0 because [λ : µ] ̸= [α : β]. If
we add x times the last column of (αs+ βt)Aϵ + (λs+ µt)Bϵ to the one before it, then we
have 

(αs+ βt) (λs+ µt)
(αs+ βt) (λs+ µt)

. . .
. . .

(αs+ βt) (λs+ µt)
(α′ys+ β′yt) (λs+ µt)

 .

If we now add x times the penultimate column to the one before it, then we obtain
(αs+ βt) (λs+ µt)

(αs+ βt) (λs+ µt)
. . .

. . .

(α′ys+ β′yt) (λs+ µt)
(α′xys+ β′xyt) (α′ys+ β′yt) (λs+ µt)

 .

Now if we subtract x times the penultimate row from the last one then we will get
(αs+ βt) (λs+ µt)

(αs+ βt) (λs+ µt)
. . .

. . .

(α′ys+ β′yt) (λs+ µt)
(αs+ βt) (λs+ µt)

 .
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We can now see that we might propagate that (α′ys+ β′yt) upwards to obtain
(α′ys+ β′yt) (λs+ µt)

(αs+ βt) (λs+ µt)
. . .

. . .

(αs+ βt) (λs+ µt)
(αs+ βt) (λs+ µt)

 .

By adding x times the last column to the penultimate one we can create another (α′ys+β′yt),
and we can propagate it up with the method above. Iterating this we get

(α′ys+ β′yt) (λs+ µt)
(α′ys+ β′yt) (λs+ µt)

. . .
. . .

(α′ys+ β′yt) (λs+ µt)
(α′ys+ β′yt) (λs+ µt)

 .

Now we multiply the ith row by 1
yi

and the jth column by yj−1 for i = 1, ..., ϵ and j =
1, ..., ϵ+ 1 to obtain the �rst statement of the lemma.

Proposition 4.2.7. For every tensor of the form T = diag
(
0, Lϵ1 , ..., Lϵp , L

T
ν1 , ..., L

T
νq

)
it

stands that π1(StabGL2,m,n(T )) = GL(2,K).

Proof. Let M ∈ GL(2,K). Then (M, I, I)Lϵi ∼∼∼ Lϵi for i ∈ {1, ..., p} from Proposition 4.2.4

and similarly (M, I, I)LT
νi ∼∼∼ LT

νi for i ∈ {1, ..., q}. By Lemma 4.2.2 (M, I, I)T ∼∼∼ T .

Proposition 4.2.8. If K is an in�nite �eld, then every tensor T ∈ K2 ⊗Kn ⊗Kn that is
regular as a matrix pencil is on the same GL2,n,n-orbit as some sI+ tJ with J in generalized
Jordan normal form.

Proof. Clearly it is enough to prove this for tensors T already in Kronecker normal form.
Let T = diag(Nu1 , ..., Nur , sI

′ + tJ ′), where I ′, J ′ are f × f matrices. Let 0 ̸= µ ∈ K such

that − 1
µ is not an eigenvalue of J ′ (this exists since K is in�nite), and let M =

(
1 µ
0 1

)
.

Let sA′+ tB′ = (M, I, I)diag(Nu1 , ..., Nur), sA
′′+ tB′′ = (M, I, I)(sI ′+ tJ ′), and sA+ tB =

diag(sA′ + tB′, sA′′ + tB′′) = (M, I, I)T .
A′ and A′′ are both square matrices. A′ has maximal rank because it is a lower triangular

matrix whose diagonal elements are all µ. We claim that A′′ is also of maximal rank. Indeed,

if kJ ′ is the characteristic polynomial of J ′, then kJ ′

(
− 1

µ

)
̸= 0 since − 1

µ is not an eigenvalue

of J ′, and

det(A′′) = det(I ′ + µJ ′) = det

(
µ ·
(
1

µ
I ′ + J ′

))
= µkkJ ′

(
− 1

µ

)
̸= 0.

This means that A = diag(A′, A′′) is a square matrix of maximal rank. Then by Theorem

2.2.7 sA + tB ∼∼∼ sC + tD where sC + tD is in Kronecker normal form and C is a square

matrix of maximal rank. The only possibility is sC+ tD = sI+ tJ for some J in generalized

Jordan normal form. Then (M, I, I)T ∼∼∼ sI + tJ .
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Proposition 4.2.9. If K is an in�nite �eld, then every tensor T ∈ K2⊗Km⊗Kn is on the
same GL2,m,n-orbit as some diag(0, Lϵ1 , ..., Lϵp , L

T
ν1 , ..., L

T
νq , sI + tJ) (a tensor in Kronecker

normal form which has no blocks of the type Nu).

Proof. Clearly it is enough to prove this for tensors T already in Kronecker normal form.
Let T = diag(0, Lϵ′1

, ..., Lϵ′p , L
T
ν′1
, ..., LT

ν′q
, Nu1 , ..., Nur , sI

′+ tJ ′). Then from Proposition 4.2.8

there is someM ∈ GL(2,K) such that (M, I, I)diag(Nu1 , ..., Nur , sI
′+ tJ ′) ∼∼∼ sI+ tJ . From

Proposition 4.2.7, Proposition 4.2.1 and Lemma 4.2.2

(M, I, I)T ∼∼∼ diag(0, Lϵ′1
, ..., Lϵ′p , L

T
ν′1
, ..., LT

ν′q
, sI + tJ).

Proposition 4.2.10. Let

T = diag(0, Lϵ1 , ..., Lϵp , L
T
ν1 , ..., L

T
νq , S), T

′ = diag(0, Lϵ′1
, ..., Lϵ′p , L

T
ν′1
, ..., LT

ν′q
, S′)

with S, S′ regular. Then T ≈ T ′ if and only if the zero blocks in the beginning are of the
same size, ϵi = ϵ′i for i = 1, ..., p, νj = ν ′j for j = 1, ..., q (after possibly reordering the blocks),
and S ≈ S′.

Proof. For the "only if" part assume that T ≈ T ′. Then for some M ∈ GL(2,K)

T ′ ∼∼∼ (M, I, I)T ∼∼∼
(
(M, I, I)diag(0, Lϵ1 , ..., Lϵp , L

T
ν1 , ..., L

T
νq) 0

0 (M, I, I)S

)
so from Proposition 4.2.7 and Lemma 4.2.2

diag(0, Lϵ1 , ..., Lϵp , L
T
ν1 , ..., L

T
νq , (M, I, I)S) ∼∼∼ T ′ = diag(0, Lϵ′1

, ..., Lϵ′p , L
T
ν′1
, ..., LT

ν′q
, S′).

Then it is clear from Theorem 2.2.7 that (M, I, I)S ∼∼∼ S′ (so S ≈ S′), the zero blocks in the

beginning are the same, and the rest of the blocks are the same up to reordering.

Now we shall prove the "if" statement. Assume that (M, I, I)S ∼∼∼ S′ and the zero blocks

in the beginning are the same size (we might assume that we do not need to reorder them).

Then from Proposition 4.2.7 and Lemma 4.2.2 it follows that (M, I, I)T ∼∼∼ T ′.

Proposition 4.2.11. Let us assume that the set of tensors (Si
α)α∈Ai classi�es the orbits of

the regular matrix pencils in K2 ⊗Ki ⊗Ki (this makes sense because of Proposition 4.1.7)
for all i ∈ N, i.e. every regular matrix pencil of size i × i is on the same GL2,i,i-orbit as
exactly one of the Si

α. Then every tensor in K2 ⊗Km ⊗Kn is on the same GL2,m,n-orbit
as a block diagonal pencil of the following form: diag(0, Lϵ1 , ..., Lϵp , L

T
ν1 , ..., L

T
νq , S

i
α) with S

i
α

optional. This form is unique up to the reordering of the blocks.

Proof. Let T ∈ K2⊗Km⊗Kn be an arbitrary tensor. Then by Theorem 2.2.7 either we have

that T ∼∼∼ diag(0, Lϵ1 , ..., Lϵp , L
T
ν1 , ..., L

T
νq) (in which case we have reduced T to the necessary

form), or T ∼∼∼ diag(0, Lϵ1 , ..., Lϵp , L
T
ν1 , ..., L

T
νq , S) for regular pencil S. Clearly S ≈ Si

α for

some α ∈ Ai, i ∈ N, so from Proposition 4.2.10 T ≈ diag(0, Lϵ1 , ..., Lϵp , L
T
ν1 , ..., L

T
νq , S

i
α).

This form is unique from Proposition 4.2.10.
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This means that we only need to classify orbits of regular matrix pencils in K2⊗Ki⊗Ki

and from this everything else will follow.

Corollary 4.2.12. There are �nitely many GL2,m,n-orbits in K
2⊗Km⊗Kn (m ≤ n) if and

only if there are �nitely many GL2,i,i-orbits in the space of regular pencils in K2 ⊗Ki ⊗Ki

for i = 1, ...,m.

4.3 Regular matrix pencils

Notation 4.3.1. Let Ĵ denote the set of homogeneous binary forms f(s, t) over the �eld
K such that either

� f(s, 1) is irreducible and t does not divide f ;

� or f(s, t) = λ · t for λ ∈ K\{0}.

Let ∼ denote the equivalence relation on Ĵ that equates forms that are scalar multiples of
one another, and let

J = Ĵ⧸∼.

Remark 4.3.2. Observe that if f(s, t) is a homogeneous binary form then f ∈ Ĵ if and
only if f is irreducible.

Notation 4.3.3. If
q(t) = a0 + a1s+ ...+ ans

n ∈ K[t],

then let
q(s, t) = a0t

n + a1t
n−1s+ ...+ ans

n

be the binary form of degree n associated to q.

We will use the following corollary of Kroneckers classi�cation theorem.

Corollary 4.3.4. If X ∈ K2 ⊗Kn ⊗Kn is an indecomposable regular matrix pencil, then
there exists

� either a u positive integer such that X ∼∼∼ Nu;

� or a generalized Jordan block J such that X ∼∼∼ sI − tJ.

Furthermore this normal form is unique.

Proof. For the uniqueness observe that Nu ≁∼∼ sI − tJ since if sA+ tB ∼∼∼ sC + tD then the

ranks of A and C have to be the same. If sI − tJ ∼∼∼ sI − tJ ′, then P (sI − tJ)Q = sI − tJ ′,

so Q = P−1, which means PJP−1 = J ′, so J = J ′ from Theorem 2.1.3.
As for the existence, if the �rst case does not hold, then we know from Theorem 2.2.7

that X ∼∼∼ sI+ tJ ′ where J ′ is a generalized Jordan block. Then −J ′ is similar to a matrix J

in generalized Jordan form. J has to be a generalized Jordan block, because −J is similar
to J ′ and J ′ is a generalized Jordan block, so it cannot have a block diagonal form. Then

X ∼∼∼ sI + tJ ′ = sI − t(−J ′) ∼∼∼ sI − tJ.
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Notation 4.3.5. Let R denote the set of GL(·,K)×GL(·,K)-orbits in the set of all regular
matrix pencils. Let R0 ⊆ R denote the set of indecomposable orbits. (This makes sense

because if X ∼∼∼ Y , and X is indecomposable and regular, then so is Y .)

Proposition 4.3.6. Let q(t) be a monic polynomial, then clearly det(sI − tC(q)) = q(s, t).
Let p(s) = f(s, 1) for f ∈ J , where f(s, t) ̸= λ · t. We can assume that p(s) is monic. If

X = sI −


C(p) 0 0 · · · 0
U C(p) 0 · · · 0
0 U C(p) · · · 0
...

...
. . .

. . .
...

0 0 · · · U C(p)

 t,

with U as in De�nition 2.1.2, then det(X) = p(s, t)n = f(s, t)n (there are n C(p)-s in the
main diagonal).

Proof. Clear.

De�nition 4.3.7. Let

ψ0 : J × N+ → R0

(f, n) 7→ X if f(s, t) ̸= λ · t
(f, n) 7→ Nn if f(s, t) = λ · t for λ ∈ K\{0}

with X as in Proposition 4.3.6.

Proposition 4.3.8. The mapping ψ0 is well de�ned and bijective.

Proof. It is clearly well de�ned, and the bijective property follows from Corollary 4.3.4.

Remark 4.3.9. It is clear from the multiplicative property of the determinant that if X ∼∼∼
Y , then det(X) = λ det(Y ) for some λ ∈ K\{0}. Moreover one can observe that the
determinants of di�erent indecomposable normal forms (in the sense of Corollary 4.3.4) are
not scalar multiples of one another, so for indecomposable regular matrix pencils, it is
true that

X ∼∼∼ Y ⇔ det(X)

det(Y )
∈ K.

This means that if X is an arbitrary regular indecomposable matrix pencil, and Y is its
normal form in Corollary 4.3.4, then we can compute ψ−1

0 (X) by factoring det(X).

De�nition 4.3.10. We will now de�ne an action of GL(2,K) on J . If M =

(
a b
c d

)
∈

GL(2,K), and f ∈ J , then M · f(s, t) = f(as + ct, bs + dt). This makes sense because on
one hand if f is reducible, then M · f is reducible, but also f =M−1 · (M · f), so if M · f is
reducible, then so is f , which means that

f ∈ J ⇔ f is irreducible as a binary form ⇔M · f is irreducible ⇔M · f ∈ J .
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Proposition 4.3.11.

ψ0(M · f, n) ∼∼∼ (M, I, I)ψ0(f, n).

Proof. We have seen that det(ψ0(f, n)) = f(s, t)n. If ψ0(f, n) = sA+ tB, then

det((M, I, I)ψ0(f, n)) = det((M, I, I)(sA+ tB)) = det((as+ ct)A+ (bs+ dt)B) =

=M · det(ψ0(f, n)) =M · f(s, t)n,

and
det(ψ0(M · f, n)) = (M · f)n = f(as+ ct, bs+ dt)n =M · f(s, t)n.

Thus the statement is clear from Remark 4.3.9.

De�nition 4.3.12. Let M denote all multisets with elements from J × N+. Let

ψ : M → R
[(f1, n1), ..., (fk, nk)] 7→ diag(ψ0(f1, n1), ..., ψ0(fk, nk)).

The action of GL(2,K) introduced in De�nition 4.3.10 induces an action of GL(2,K)
on the set M in the obvious way.

Proposition 4.3.13. If m ∈M, and M ∈ GL(2,K), then

ψ(M ·m) ∼∼∼ (M, I, I)ψ(m).

Proof. Clear from Proposition 4.3.11.

Proposition 4.3.14. If m1,m2 ∈ M, then m1 and m2 are on the same GL(2,K)-orbit if
and only if ψ(m1) ≈ ψ(m2).

Proof. Let m1 = [(f1, k1), ..., (fp, kp)], and m2 = [(g1, l1), ..., (gn, ln)]. Then ψ(m1) ≈ ψ(m2)

is equivalent to saying that for someM ∈ GL(2,K), it stands that ψ(m1) ∼∼∼ (M, I, I)ψ(m2),

but from Proposition 4.3.13 (M, I, I)ψ(m2) ∼∼∼ ψ(M · m2), so that is the same as ψ(M ·
m2) ∼∼∼ ψ(m1). Because of the fact that the indecomposable summands of ψ(m1) are the

matrix pencils ψ0(f1, k1), ..., ψ0(fp, kp), and the indecomposable summands of ψ(M ·m2) are
ψ0(M · g1, l1), ..., ψ0(M · gn, ln), this means from Theorem 2.2.7, that it is equivalent to the
following two conditions:

(1) p = n;

(2) and there is a bijection φ : {1, ..., p} → {1, ..., p} such that ψ0(fi, ki) ∼∼∼ ψ0(M ·gφ(i), lφ(i))
for i = 1, ..., p.

Then from Corollary 4.3.4 it follows that condition (2) is equivalent to ki = lφ(i) and fi =
λi ·M · gφ(i) for some λi ∈ K, so fi = M · gφ(i) in J , but this is the same as m1 being on
the same GL(2,K)-orbit as [(gφ(1), lφ(1)), ..., (gφ(p), lφ(p))] = [(g1, l1), ...(gn, ln)] = m2, so we
are done.
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Corollary 4.3.15. The regular GL2,k,k-orbits in K
2 ⊗Kk ⊗Kk are in a natural bijection

(explained above) with their GL(2,K)-orbits in Mk, where

Mk =

{
[(f1, l1), ..., (fp, lp)] ∈ M :

p∑
i=1

li deg(fi) = k

}
.

In particular, from Proposition 4.2.11, the problem of classifying GL2,m,n-orbits inK
2⊗Km⊗

Kn is equivalent to the problem of classifying the GL(2,K)-orbits in Mk for k ≤ min{m,n}.

Since for algebraically closed �elds, J = {sλ+tµ : [λ : µ] ∈ KP1} = KP1 (the projective
line over K), we have the following for K algebraically closed.

Corollary 4.3.16. Let K be algebraically closed. Let us consider the multisets with
elements from KP1×N+. By the size of a multiset we mean the sum of the natural numbers
in the second component of its elements. The set of regular GL2,k,k-orbits in K

2⊗Kk ⊗Kk

is in bijection with the set of PGL(2,K)-orbits of multisets of size k with elements from
KP1 × N+. In particular, the problem of classifying GL2,m,n-orbits in K2 ⊗ Km ⊗ Kn is
equivalent to the problem of classifying the PGL(2,K)-orbits of multisets with elements
from KP1 × N+ of size k ≤ min{m,n}.

Notation 4.3.17. Let K be algebraically closed. If m ∈ M, then let us write m =
[(p1, k1), ..., (pn, kn)] for pi ∈ KP1. The pi-s need not be pairwise distinct, so let Hm denote
the set of pi-s. If p ∈ Hm, then let Hp

m denote the set of pairs (a, b) ∈ N+ × N+ such that
(p, a) appears b times in m.

Corollary 4.3.18. Let K be algebraically closed. If ψ(m1) ≈ ψ(m2), then there is a
bijective correspondence

φ : Hm1 → Hm2

such that for all p ∈ Hm1 it stands that Hp
m1 = Hφ(p)

m2 .

Proposition 4.3.14 also yields essentially the following Proposition, but we will present a
more constructive proof to help �nd the matrices that transform a given matrix pencil into
its normal form.

Proposition 4.3.19. If K is algebraically closed, then let X ∈ K2 ⊗Kk ⊗Kk be a regular
matrix pencil. Then from Proposition 4.2.8 we know that there exist matrices Hi in Jordan
canonical form of size ϵi × ϵi, such that every eigenvalue is zero (i.e. all the diagonal
elements are zero) for i = 1, ..., k, and there exist λ1, ..., λk ∈ K pairwise distinct such that
the following holds. If λ ∈ K then let

Ji(λ) = (s+ λt) Iϵi + tHi,

and
Ni = tIϵi + sHϵi ,

then
diag (J1(λi), ..., Jk(λk)) ≈ X.

The statement of this proposition is that

diag (J1(λi), ..., Jk(λk)) ≈ diag (N1, J2(0), J3(1), J4(µ4), ..., Jk(µk))

with 0, 1, µ4, ..., µk ∈ K pairwise distinct.
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Proof. If k < 3, then let us de�ne either λ2, λ3, or just λ3 such that λ1, λ2, λ3 are pairwise
distinct. Let

M =

(
−λ1(λ3 − λ2) (λ3 − λ2)
−λ2(λ3 − λ1) (λ3 − λ1)

)
,

then we can see that detM = (λ2 − λ1)(λ3 − λ1)(λ3 − λ2), so M ∈ GL(2,K), and

M(s+ λ1t) = ν1t

M(s+ λ2t) = ν2s

M(s+ λ3t) = ν3(s+ t)

where ν1 = (λ1 − λ2)(λ3 − λ1), ν2 = (λ2 − λ1)(λ3 − λ2), ν3 = (λ3 − λ1)(λ3 − λ2), so
ν1, ν2, ν3 ∈ K\{0}. Clearly(

M,
1

ν1
I, I

)
J1(λ1) = tIϵ1 + (ηs+ η′t)H1

with η = λ3−λ2
ν1

̸= 0, and from (3) of Lemma 4.2.6

tIϵ1 + (ηs+ η′t)H1 ∼∼∼ N1.

Similarly

(M, I, I)J2(λ2) ∼∼∼ J2(0), (M, I, I)J3(λ3) ∼∼∼ J3(1),

and
(M, I, I)Ji(λi) ∼∼∼ Ji(µi) for i = 4, ..., k

for some µ4, ..., µk. Clearly 0, 1, µ4, ..., µk are pairwise distinct, so from Lemma 4.2.2 we are
done.

Remark 4.3.20. The proposition says that if J is a matrix in Jordan normal form with k
di�erent eigenvalues, then we can choose the values of the �rst three arbitrarily to obtain a
new matrix J ′ such that sI + tJ ≈ sI + tJ ′. By choosing these values the other eigenvalues
may change too, but the number of Jordan blocks, and their sizes will not. The block Ni

corresponds to the "eigenvalue" ∞.

Remark 4.3.21. We can see that the proof does not use the fact that K is algebraically
closed, so over any �eld (using the same notation as in the proposition) it holds that

diag (J1(λi), ..., Jk(λk)) ≈ diag (N1, J2(0), J3(1), J4(µ4), ..., Jk(µk))

with 0, 1, µ4, ..., µk ∈ K pairwise distinct.

4.4 Classi�cation of orbits in K2 ⊗K2 ⊗Kn

Notation 4.4.1. In this subsection f(s, t) will denote a homogeneous quadratic irreducible
binary form. Let D(f) be the discriminant of the polynomial f(s, 1), which is quadratic
since f is irreducible.
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Lemma 4.4.2. Denote by K the algebraic closure of K. Let λ, µ ∈ K. If µ ̸= 0, then

f(λ, µ) = 0 if and only if f
(
λ
µ , 1
)
= 0.

Proof. Clearly µ2 · f
(
λ
µ , 1
)
= f(λ, µ).

Proposition 4.4.3. If for λ ∈ K it holds that f(λ, 1) = 0, then K(λ) = K
(√

D(f)
)
.

Proof. Follows from the facts that because of the quadratic formula, λ ∈ K
(√

D(f)
)
and√

D(f) ∈ K(λ).

Proposition 4.4.4. If f and g are on the same GL(2,K)-orbit, then K
(√

D(f)
)

=

K
(√

D(g)
)
.

Proof. Because of symmetry it is enough to prove K
(√

D(g)
)
≤ K

(√
D(f)

)
. Let λ ∈ K

be a root of f(s, 1), and let M ∈ GL(2,K) be such that M · g = f . Then

0 = f(λ, 1) = (M · g)(λ, 1) = g(aλ+ c, bλ+ d).

If bλ + d = 0, then aλ + c ̸= 0 because M ∈ GL(2,K), so since g(s, 0) is a scalar multiple
of s2 it follows that g(s, 0) = 0, but then this means that t divides g(s, t), which contradicts
the irreducibility of g. Consequently bλ + d ̸= 0, so from Lemma 4.4.2 g(µ, 1) = 0 with
µ = aλ+c

bλ+d . This means that µ ∈ K(λ), so using Proposition 4.4.3

K
(√

D(g)
)
= K(µ) ≤ K(λ) = K

(√
D(f)

)
.

Lemma 4.4.5. If d1, d2 ∈ K, then K
(√
d1
)
= K

(√
d2
)
if and only if for some g ∈ K,

d1 = g2d2.

Proof. The "if" part is obvious.
As for the "only if" part, if

√
d1 or

√
d2 is in K then the proof is clear so we can assume

that this is not the case. We claim that

K
(√

d2

)
= {a+ b

√
d2 : a, b ∈ K}.

The containment ⊇ is trivial, and the other direction follows from the fact that the right
side is a �eld (this is easily checked). Then√

d1 = a+ b
√
d2

for some a, b ∈ K. Then

K ∋ d1 =
(
a+ b

√
d2

)2
= a2 + b2d2 + 2ab

√
d2,

so 2ab = 0. If b = 0 then
√
d1 ∈ K, which would be a contradiction, so a = 0. This means

that
√
d1 = b

√
d2, so by choosing g = b we have completed the proof.
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Proposition 4.4.6. If d1, d2 ∈ K\{0}, then(
s d1t
t s

)
≈
(
s d2t
t s

)
if and only if for some g ∈ K, it holds that d1 = g2d2.

Proof. The "if" part follows from the fact that((1
g 0

0 1

)
,

(
g 0
0 1

)
,

(
1 0
0 g

))(
s d2t
t s

)
=

(
s d1t
t s

)
.

For the "only if" statement assume that

(
s d1t
t s

)
≈
(
s d2t
t s

)
. Then, applying the

triple

((
1 0
0 −1

)
, I, I

)
to both sides we have that

(
s −d1t
−t s

)
≈
(
s −d2t
−t s

)
. From

Proposition 4.3.14 it follows that s2 − d1t
2 and s2 − d2t

2 are on the same GL(2,K)-orbit.
Then, after substituting t = 1, their discriminants are respectively 4d1, 4d2. Then from
Proposition 4.4.4 it follows that

K
(√

d1

)
= K

(
2
√
d1

)
= K

(
2
√
d2

)
= K

(√
d2

)
.

Then Lemma 4.4.5 completes the proof.

Proposition 4.4.7. Let us consider the factor group K
×
⧸(K×)2. Let us exclude from this

the equivalence class of 1 and let H denote the remaining set (we can think of H as the set
containing exactly one representative of each equivalence class except the identity's). Then
the following tensors classify the regular orbits in K2 ⊗K2 ⊗K2:(

t 0
0 t

)
,

(
t 0
0 s

)
,

(
t 0
s t

)
,

(
s dt
t s

)
(d ∈ H),

where the last element is a family of tensors parametrized by H.

Proof. Proposition 4.3.14 and Proposition 4.4.6 yield the fact that the listed tensors are on

di�erent GL2,2,2-orbits, using the fact that clearly

(
s dt
t s

)
≈
(
s −dt
−t s

)
.

What remains of the proof is showing that each regular matrix pencil T ∈ K2⊗K2⊗K2

is on the same GL2,2,2-orbit as one of the listed tensors. Proposition 4.2.8 yields that we
can assume T = sI+ tJ with J in generalized Jordan normal form. If J is in regular Jordan
normal form then from Proposition 4.3.19 and Remark 4.3.21 we know that T is on the same
orbit as one of the �rst three items in the list, so we can assume that this is not the case.

Therefore T =

(
s −c0t
t s− c1t

)
with s2− c1st+ c0t2 irreducible, which means that c21− 4c0

is not a square. Clearly

T ≈
(
s c0t
−t s+ c1t

)
,
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and s2 + c1st+ c0t
2 is also irreducible, and since(
s− c1

2
t
)2

+ c1

(
s− c1

2
t
)
t+ c0t

2 = s2 +

(
c0 −

c21
4

)
t2,

it holds that s2 + c1st + c0t
2 is on the same GL(2,K)-orbit as s2 +

(
c0 −

c21
4

)
t2, so from

Proposition 4.3.14 it follows that(
s c0t
−t s+ c1t

)
≈

(
s

(
c0 −

c21
4

)
t

−t s

)
=

(
s −dt
−t s

)
≈
(
s dt
t s

)
,

where d =
c21
4 − c0 is clearly not a square, since d =

c21−4c0
4 .

Remark 4.4.8. In K2⊗K1⊗K1 there is only one regular orbit: if λs+µt ∈ K2⊗K1⊗K1

and either λ or µ is nonzero, then there is a matrixM ∈ GL(2,K) such thatM

(
λ
µ

)
=

(
1
0

)
,

so (M, 1, 1)(λs+ µt) = s.

Corollary 4.4.9. The classi�cation of orbits in K2⊗K2⊗Kn now follows from Proposition
4.4.7, Remark 4.4.8 and Proposition 4.2.11.

Corollary 4.4.10. Q2 ⊗ Q2 ⊗ Q2 has in�nitely many GL2,2,2-orbits, and therefore Qk1 ⊗
...⊗Qkr has in�nitely many orbits, if r ≥ 3 and ki ≥ 2 for i = 1, ..., r.

Proof. The �rst observation follows from Proposition 4.4.7 and the fact that
∣∣∣Q×

⧸(Q×)
2

∣∣∣ =
ℵ0. The second observation follows from Corollary 3.2.8.
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5 Proof of Parfenov's theorem

5.1 Classi�cation of regular orbits in K2⊗K2⊗K2, K2⊗K3⊗K3, K2⊗K4⊗K4

for K algebraically closed

In this subsection we shall classify all the GL2,i,i-orbits of the regular matrix pencils in the
spaces K2 ⊗K2 ⊗K2,K2 ⊗K3 ⊗K3,K2 ⊗K4 ⊗K4 when K is algebraically closed. This
makes sense because of Proposition 4.1.7. Proposition 4.2.8 is very useful here as it states
that every regular matrix pencil in K2⊗Ki⊗Ki is on the same GL2,i,i-orbit as some sI+tJ
with J in Jordan canonical form, if K is algebraically closed.

Remark 5.1.1. Richard Ehrenborg classi�ed all the GL2,2,2-orbits in C2 ⊗ C2 ⊗ C2 in his
article [8].

Proposition 5.1.2. For arbitrary K (it need not be algebraically closed) let

Ti =


µis+ µ′it 0 0 0

0 λis+ λ′it 0 0
0 0 ϑis+ ϑ′is 0
0 0 0 αis+ α′

it

 for i = 1, 2

such that [µi : µ
′
i], [λi : λ

′
i], [ϑi : ϑ

′
i], [αi : α

′
i] ∈ KP1 are four distinct points for both i = 1, 2.

Then there exists M ∈ GL(2,K) such that (M, I, I)T1 = T2 if and only if

([µ1 : µ
′
1], [λ1 : λ

′
1], [ϑ1 : ϑ

′
1], [α1 : α

′
1]) = ([µ2 : µ

′
2], [λ2 : λ

′
2], [ϑ2 : ϑ

′
2], [α2 : α

′
2]),

i.e. the cross-ratios of the coe�cients coincide.

Proof. Follows from the fact that two pairs of four distinct points of the projective line have
the same cross-ratio if and only if there exists a projective transformation that maps one of
them to the other (see for example [9] Theorem 8.6.3).

Notation 5.1.3. If

T =


µs+ µ′t 0 0 0

0 λs+ λ′t 0 0
0 0 ϑs+ ϑ′s 0
0 0 0 αs+ α′t

 ,

where [µ : µ′], [λ : λ′], [ϑ : ϑ′], [α : α′] ∈ KP1 are all distinct points, then let

CrossRatio(T ) := ([µ : µ′], [λ : λ′], [ϑ : ϑ′], [α : α′]).

Remark 5.1.4. If we have four projective points P1, P2, P3, P4 with cross-ratio a then with

the reordering of the Pi-s we can get exactly the values
{
a, 1a , 1− a, 1

1−a ,
a−1
a , a

a−1

}
for the

new cross-ratio ([9] Corollary 8.6.8).
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Corollary 5.1.5. Let K be an arbitrary �eld. If a, b ∈ K\{0, 1}, and

T =


t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 0 s+ a · t

 , S =


t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 0 s+ b · t

 ,

then T ≈ S if and only if b ∈
{
a, 1a , 1− a, 1

1−a ,
a−1
a , a

a−1

}
.

Proof. Clearly CrossRatio(T ) = a and CrossRatio(S) = b. If T ≈ S, then for some
M,P,Q it stands that (M,P,Q)S = T . Then for T ′ = (M, I, I)S, CrossRatio(T ′) =

CrossRatio(S) = b from Proposition 5.1.2. Also T ′ ∼∼∼ T , so from Theorem 2.2.7 the diagonal

elements in T ′ are a reordering of those in T , so by Remark 5.1.4,

CrossRatio(T ′) = b ∈
{
a,

1

a
, 1− a,

1

1− a
,
a− 1

a
,

a

a− 1

}
.

If b ∈
{
a, 1a , 1− a, 1

1−a ,
a−1
a , a

a−1

}
, then there exists a reordering of [0 : 1], [1 : 0], [1 :

1], [1 : b] such that their cross-ratio is a by Remark 5.1.4. Let us put this reordering into the

main diagonal of the diagonal matrix pencil T ′′. Then T ′′ ∼∼∼ T , and CrossRatio(T ′′) = a,

so from Proposition 5.1.2 there exists an M ∈ GL(2,K) such that (M, I, I)S = T ′′. This
proves the statement of the corollary.

Lemma 5.1.6. 
t 0 0 · · · 0
s t 0 · · · 0
0 s t · · · 0
...

...
. . .

. . .
...

0 0 · · · s t

 ∼∼∼


−t 0 0 · · · 0
s −t 0 · · · 0
0 s −t · · · 0
...

...
. . .

. . .
...

0 0 · · · s −t


Proof. If we multiply the right hand side by −1 then it follows from (3) in Lemma 4.2.6.

Lemma 5.1.7.

diag (Nu1 , ..., Nur , sI + tJ) ≈ diag (Nu1 , ..., Nur , sI − tJ) .

Proof. Apply the triple

((
1 0
0 −1

)
, I, I

)
to both sides, then it follows from Lemmas 5.1.6

and 4.2.2.

Remark 5.1.8. In Proposition 4.3.14, the representatives of the orbits are given in the form
diag (Nu1 , ..., Nur , sI − tJ) , which is not in Kronecker normal form, but because of Lemma
5.1.7, we can substitute it easily to a tensor in Kronecker normal form.

Notation 5.1.9. Let us introduce an equivalence relation on the set K ∪ {∞}: a ∼ b if

b ∈
{
a, 1a , 1− a, 1

1−a ,
a−1
a , a

a−1

}
. Remark 5.1.4 shows that this is indeed an equivalence.

Clearly {0, 1,∞} is an equivalence class, and let us introduce the notation

H = K\{0, 1}⧸∼.
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Proposition 5.1.10. If K is algebraically closed, then the following tables contain exactly
one tensor from each regular orbit in K2 ⊗K2 ⊗K2, K2 ⊗K3 ⊗K3, and K2 ⊗K4 ⊗K4.
To help with the proof the corresponding multisets from De�nition 4.3.12 are included in
the tables (because of Lemma 5.1.7 and Remark 5.1.8 these are indeed the multisets that
correspond to the orbits).

Tensor The corresponding multiset(
t 0
0 t

)
[(∞, 1), (∞, 1)](

t 0
0 s

)
[(∞, 1), (0, 1)](

t 0
s t

)
[(∞, 2)]

Tensor The corresponding multisett 0 0
s t 0
0 s t

 [(∞, 3)]t 0 0
0 t 0
0 s t

 [(∞, 1), (∞, 2)]t 0 0
0 s 0
0 t s

 [(∞, 1), (0, 2)]t 0 0
0 t 0
0 0 t

 [(∞, 1), (∞, 1), (∞, 1)]t 0 0
0 s 0
0 0 s

 [(∞, 1), (0, 1), (0, 1)]t 0 0
0 s 0
0 0 s+ t

 [(∞, 1), (0, 1), (1, 1)]

Tensor The corresponding multiset
t 0 0 0
s t 0 0
0 s t 0
0 0 s t

 [(∞, 4)]


t 0 0 0
0 t 0 0
0 s t 0
0 0 s t

 [(∞, 1), (∞, 3)]
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t 0 0 0
0 s 0 0
0 t s 0
0 0 t s

 [(∞, 1), (0, 3)]


t 0 0 0
s t 0 0
0 0 t 0
0 0 s t

 [(∞, 2), (∞, 2)]


t 0 0 0
s t 0 0
0 0 s 0
0 0 t s

 [(∞, 2), (0, 2)]


t 0 0 0
0 t 0 0
0 0 t 0
0 0 s t

 [(∞, 1), (∞, 1), (∞, 2)]


t 0 0 0
0 s 0 0
0 0 s 0
0 0 t s

 [(∞, 1), (0, 1), (0, 2)]


t 0 0 0
0 t 0 0
0 0 s 0
0 0 t s

 [(∞, 1), (∞, 1), (0, 2)]


t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 t s+ t

 [(∞, 1), (0, 1), (1, 2)]


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

 [(∞, 1), (∞, 1), (∞, 1), (∞, 1)]


t 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s

 [(∞, 1), (0, 1), (0, 1), (0, 1)]


t 0 0 0
0 t 0 0
0 0 s 0
0 0 0 s

 [(∞, 1), (∞, 1), (0, 1), (0, 1)]


t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 0 s+ t

 [(∞, 1), (0, 1), (1, 1), (1, 1)]
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t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 0 s+ a · t

 (a ∈ H) [(∞, 1), (0, 1), (1, 1), (a, 1)]

Proof. We will �rst prove that all regular matrix pencils can be reduced to the ones listed in
the tables above. By Proposition 4.2.8 we only need to prove this for matrix pencils sI + tJ
with J in Jordan normal form, and for these the statement follows from Proposition 4.3.19.

The fact that all of the tensors listed are on di�erent orbits follows from Proposition
4.3.18 and Corollary 5.1.5, after we switch the tensors out in the table using Lemma 5.1.7
and Remark 5.1.8.

Remark 5.1.11. The elements of H are equivalence classes and not elements of K, so the

notation


t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 0 s+ a · t

 does not strictly make sense for a ∈ H. We can think of

this in two ways:

� we might consider H as a subset in K containing exactly one representative of each
equivalence class in H;

� or we can say that we take the tensor
t 0 0 0
0 s 0 0
0 0 s+ t 0
0 0 0 s+ a · t


for each element a ∈ K\{0, 1}, and two of these are on the same orbit if and only if
they are in the same equivalence class in H.

Corollary 5.1.12. If K is algebraically closed, then for the 3-tuples (2, 2, n), (2, 3, n) there
are �nitely many GLk1,k2,k3-orbits in K

k1 ⊗Kk2 ⊗Kk3 .

Proof. Follows from Corollary 4.2.12, Proposition 5.1.10 and Remark 4.4.8.

Corollary 5.1.13. Let K be an arbitrary in�nite �eld. If 4 ≤ m ≤ n, then K2⊗Km⊗Kn

has in�nitely many GL2,m,n-orbits.

Proof. Because of Corollary 3.2.8 we only need to prove this for m = n = 4. For this case
it follows from Corollary 5.1.5.

5.2 Orbits in K3 ⊗K3 ⊗K3

De�nition 5.2.1 ([19] De�nition 4.4). Assume G acts on the K-vector space V , and µ :
V ×G→ GL(U) for K-vector space U , then R : V → U is a relative invariant of weight µ,
if for all g ∈ G, v ∈ V

R(g · v) = µ(v, g) ·R(v).
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De�nition 5.2.2 ([7] Section 2). Let us de�ne the polynomial functions fi,j,k : K3 ⊗K3 ⊗
K3 → K for i, j, k ∈ {1, 2, 3} with the following equations:

det(t1A1 + t2A2 + t3A3) =
∑

i+j+k=3

ti1t
j
2t

k
3fi,j,k (e1 ⊗A1 + e2 ⊗A2 + e3 ⊗A3)

where A1, A2, A3 ∈ K3⊗K3 are matrices and (ei)i=1,2,3 is the standard basis of K3. Let us
also de�ne h, q : K3⊗K3⊗K3 → K: let h (e1 ⊗A1 + e2 ⊗A2 + e3 ⊗A3) be the coe�cient
of t21t

2
2t

2
3 in

det

(
t2A2 t1A1

t1A1 t3A3

)
,

and let q (e1 ⊗A1 + e2 ⊗A2 + e3 ⊗A3) be the coe�cient of t21t2t
2
3t4t

2
5t6 in

det

 0 t1A1 t2A2

t4A1 0 t3A3

t5A2 t6A3 0

 .

Finally let

H = h− 1

3
f2,1,0f0,1,2 −

1

3
f2,0,1f0,2,1 +

2

3
f1,2,0f1,0,2 +

1

12
f21,1,1,

Q = q − 1

2
hf1,1,1 +

3

2
f3,0,0f0,3,0f0,0,3 −

1

2
f3,0,0f0,2,1f0,1,2 −

1

2
f0,3,0f2,0,1f1,0,2

−1

2
f0,0,3f2,1,0f1,2,0 −

1

2
f1,1,1f1,2,0f1,0,2 +

1

2
f2,1,0f1,0,2f0,2,1 +

1

2
f1,2,0f2,0,1f0,1,2.

Remark 5.2.3. The previous de�nitions are from [7], and it is established there that H and
Q are SL(3,K) × SL(3,K) × SL(3,K) invariants on K3 ⊗K3 ⊗K3, and as we shall point
out below, they are relative invariants with respect to the action of GL(3,K)×GL(3,K)×
GL(3,K). It is easy to see that if we divide two relative invariants of the same weight, then
we get a rational absolute invariant.

Proposition 5.2.4. Let us assume that charK = 0. If T ∈ K3⊗K3⊗K3, and (A,B,C) ∈
GL(3,K)×GL(3,K)×GL(3,K), then

H((A,B,C)T ) = det(A)2 det(B)2 det(C)2H(T ),

and
Q((A,B,C)T ) = det(A)3 det(B)3 det(C)3Q(T ),

i.e. H and Q are relative invariants with weights

µ1 : ((A,B,C), T ) 7→ det(A)2 det(B)2 det(C)2,

µ2 : ((A,B,C), T ) 7→ det(A)3 det(B)3 det(C)3,

respectively.
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Proof. It is enough to prove this for K algebraically closed, because any �eld can be
embedded in an algebraically closed �eld. Then if A is a three by three matrix, then
A = 3

√
det(A) · A

3
√

det(A)
, where

det

(
A

3
√

det(A)

)
=

(
1

3
√
det(A)

)3

· det(A) = 1,

so A
3
√

det(A)
∈ SL(3,K).We know from [7] that H and Q are SL(3,K)×SL(3,K)×SL(3,K)

invariants, so

H((A,B,C)T ) = H
(

3
√
det(A) 3

√
det(B) 3

√
det(C)T

)
,

Q((A,B,C)T ) = Q
(

3
√

det(A) 3
√

det(B) 3
√
det(C)T

)
,

This means that we need to prove that for λ ∈ K,

H(λT ) = λ6H(T ),

Q(λT ) = λ9H(T ),

and these are clear from the following three facts that follow directly from the de�nitions
above

� h(λT ) = λ6h(T );

� q(λT ) = λ9q(T );

� fi,j,k(λT ) = λ3fi,j,k(T ) for i, j, k ∈ {1, 2, 3}.

Corollary 5.2.5. Let charK = 0, and let T, S ∈ K3⊗K3⊗K3 such that Q(T ) ̸= 0 ̸= Q(S).

If H(T )3

Q(T )2
̸= H(S)3

Q(S)2
, then T and S are on di�erent GL(3,K)×GL(3,K)×GL(3,K)-orbits.

Notation 5.2.6. In what follows we shall introduce a notation for elements of K3⊗K3⊗K3

similar to the notation of matrix pencils. If T = e1⊗A1+e2⊗A2+e3⊗A3 ∈ K3⊗K3⊗K3,
then we shall denote

T = s ·A1 + t ·A2 + u ·A3

for variables s, t, u.

Corollary 5.2.7. If charK = 0, then there are in�nitely many GL(3,K) × GL(3,K) ×
GL(3,K)-orbits in K3 ⊗K3 ⊗K3.

Proof. The function invariant at the end of the SageMath ([22]) code in Appendix A

computes the value of H3

Q2 . Using this code we can compute that

H3

Q2

s u 0
t s λu
0 t s

 =
1

432

λ6 − 30λ5 − 303λ4 − 1060λ3 + 303λ2 − 30λ+ 1

λ4 − 2λ3 + λ2
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(the notation is as in Appendix A). We will prove that for di�erent choices of λ this will
yield in�nitely many di�erent possible results, thereby proving the statement. Clearly since
K is an in�nite �eld (charK = 0 implies the in�niteness of K) it is su�cient to prove that
for any value µ ∈ K there are only �nitely many λ-s such that

H3

Q2

s u 0
t s λu
0 t s

 = µ,

but this is clear because these λ-s are exactly the roots of the nonzero polynomial

λ6 − 30λ5 − 303λ4 − 1060λ3 + 303λ2 − 30λ+ 1− 432µ(λ4 − 2λ3 + λ2).

5.3 Orbits in K2 ⊗K2 ⊗K2 ⊗K2

Notation 5.3.1. If A,B are two by two matrices, then let

A ·B = det(A+B)− det(A)− det(B).

Notation 5.3.2 ([5]). Let T ∈ K2 ⊗K2 ⊗K2 ⊗K2, and let (ei)i=1,2 be the standard basis
of K2. Then for some matrices A,B,C,D ∈ K2 ⊗K2

T = e1 ⊗ e2 ⊗A+ e1 ⊗ e2 ⊗B + e2 ⊗ e1 ⊗ C + e2 ⊗ e2 ⊗D.

We can think of T as an array in the following way(
A B

C D

)
.

Then let

det : K2 ⊗K2 ⊗K2 ⊗K2 → K

T 7→ det

(
A B
C D

)
,

and

det0 : K
2 ⊗K2 ⊗K2 ⊗K2 → K

T 7→ A ·D −B · C.

The map det0 is Cayley's hyperdeterminant.

Remark 5.3.3 ([5]). The functions det and det0 are SL(2,K) × SL(2,K) × SL(2,K) ×
SL(2,K) invariants, and they are relative GL(2,K) × GL(2,K) × GL(2,K) × GL(2,K)-
invariants of the following weights

µ1 : ((A,B,C,D), T ) 7→ det(A)2 det(B)2 det(C)2 det(D)2,

µ2 : ((A,B,C,D), T ) 7→ det(A) det(B) det(C) det(D),

respectively.
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Corollary 5.3.4. The map det
det20

: K2⊗K2⊗K2⊗K2 → K is a rational absolute invariant.

Corollary 5.3.5. If K is an in�nite �eld, then there are in�nitely many GL(2,K) ×
GL(2,K)×GL(2,K)×GL(2,K)-orbits in K2 ⊗K2 ⊗K2 ⊗K2.

Proof. Clearly

det

det20


λ 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

 =
λ

λ2 + 2λ+ 1
.

This can take on in�nitely many values, because for each µ there are only �nitely many λ-s
such that

λ

λ2 + 2λ+ 1
= µ,

because if that is the case, then λ is the root of the nonzero polynomial

µλ2 + (2µ− 1)λ+ µ.

5.4 Finishing the proof

We have now proved Parfenov's Theorem 3.1.1 about the �niteness of the number of orbits
in Ck1 ⊗ ...⊗ Ckr :

� if r ≤ 2, then there are �nitely many orbits by Remark 3.1.2;

� if r = 3, k1 = 2 and k2 ≤ 3, then there are �nitely many orbits by Proposition 5.1.10,
Remark 4.4.8 and Corollary 4.2.12;

� if r = 3, k1 = 2 and k2 ≥ 4, then there are an in�nite number of orbits by Corollary
5.1.13;

� if r = 3, k1 ≥ 3, then there are in�nitely many orbits by Corollary 3.2.7 and Corollary
5.2.7;

� if r ≥ 4, then the number of orbits is in�nite by Corollary 3.2.8 and Corollary 5.3.5.

We have proved a little bit more general result as K need not be the �eld of complex
numbers, it only needs to be algebraically closed with characteristic 0.
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6 Classi�cation over R

In this section we will classify the GL(2,R) × GL(n,R) × GL(n,R)-orbits of the regular
matrix pencils in the spaces R2 ⊗R2 ⊗R2, R2 ⊗R3 ⊗R3 and R2 ⊗R4 ⊗R4. By Proposition
4.2.11 this means that we will have classi�ed all the GL2,m,n-orbits in R2 ⊗Rm ⊗Rn, where
2 ≤ m ≤ n and m ≤ 4. It will follow from the classi�cation that there are �nitely many
orbits exactly when m ≤ 3, which is the same as in the algebraically closed case.

Remark 6.0.1. In the article [23] the classi�cation of GL2,m,n-orbits in R2⊗Rm⊗Rn (here
2 ≤ m ≤ n) is computed for m = n = 2, and in [6] the same is done for m ≤ 3.

Remark 6.0.2. From Proposition 4.2.8 we know that if T ∈ R2 ⊗Rn ⊗Rn is regular, then
T ≈ sI + tJ with J in generalized Jordan normal form. If J is in regular Jordan normal
form, then we know form Remark 4.3.21 that (if n ≤ 4 then) T is on the same orbit as one of
the tensors listed in Proposition 5.1.10. The tensors listed there are also clearly on di�erent
orbits as the proof for that never uses the fact that K is algebraically closed: Proposition
5.1.5 does not assume K to be algebraically closed and while Corollary 4.3.18 is stated for
algebraically closed �elds, the fact that the listed tensors are on di�erent orbits really follows
directly from Proposition 4.3.14.

This means that the task is to classify the orbits that are on the same GL2,n,n-orbit
as some sI + tJ where J is in generalized Jordan normal form, but not in regular Jordan
normal form.

6.1 R2 ⊗ R2 ⊗ R2

The following Proposition is a special case of Proposition 4.4.7.

Proposition 6.1.1 ([23], [6]). In R2⊗R2⊗R2 the tensor listed in Proposition 5.1.10 together

with

(
s −t
t s

)
classify all the regular orbits.

6.2 R2 ⊗ R3 ⊗ R3

Proposition 6.2.1 ([6]). In R2 ⊗ R3 ⊗ R3 the tensors that classify the regular orbits are
the ones listed in Proposition 5.1.10 ands −t 0

t s 0
0 0 s

 .

Proof. Again it follows from Proposition 4.3.14 that the new tensor is on a di�erent orbit
compared to the ones in Proposition 5.1.10 so together with Remark 6.0.2 this means that
all the proposed tensors are on di�erent orbits.

If T ∈ R2 ⊗ R3 ⊗ R3 is regular then T ≈ sI + tJ with J in generalized Jordan normal
form (Proposition 4.2.8). Because of Remark 6.0.2 we can assume that J is not in regular
Jordan normal form. Because J must have an eigenvalue in R (since every cubic polynomial
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with real coe�cients has a root in R) it follows that J is block diagonal with a 2× 2 and a

1× 1 block, and from Proposition 6.1.1 we can assume that the 2× 2 block is

(
s −t
t s

)
, so

sI + tJ ≈

s −t 0
t s 0
0 0 λs+ µt

 .

If M =

(
λ µ
µ −λ

)
, then

det

(
(M, I, I)

(
s −t
t s

))
= (λ2 + µ2)s2 + (λ2 + µ2)t2,

so its Kronecker normal form can only be

(
s −t
t s

)
, so

(M, I, I)

(
s −t
t s

)
∼∼∼
(
s −t
t s

)
.

But (M, I, I)(λs+ µt) = (λ2 + µ2)s, so by Lemma 4.2.2

(M, I, I)

s −t 0
t s 0
0 0 λs+ µt

 ∼∼∼

s −t 0
t s 0
0 0 s

 .

6.3 R2 ⊗ R4 ⊗ R4

Lemma 6.3.1. For M =

(
a b
c d

)
∈ GL(2,R) and λ > 0 it holds that

(M, I, I)

(
s −λt
t s

)
∼∼∼
(
s −t
t s

)
if and only if

M ∈
{(

−
√
λd b√
λb d

)
,

( √
λd b

−
√
λb d

)}
.

Proof. First we shall prove the "only if" part. From the multiplicative property of the
determinant it is clear that

det

(
(M, I, I)

(
s −λt
t s

))
= det

(
as+ ct −λbs− λdt
bs+ dt as+ ct

)
= (a2 + λb2)s2 + (2ac+ 2λbd)st+ (c2 + λd2)t2

and

det

(
s −t
t s

)
= s2 + t2
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are scalar multiples of one another. This means that

a2 + λb2 = c2 + λd2

and
ac+ λbd = 0.

If we multiply the �rst equation with c2 and use the fact that a2c2 = λ2b2d2, which follows
from the second equation, then we get λ2b2d2 + λb2c2 = c4 + λd2c2, which is equivalent to

(c2 − λb2)(c2 + λd2) = 0.

Because M ∈ GL(2,R) it is clear that c2 + λd2 > 0 so c = ±
√
λb. Then a = ∓

√
λd.

For the "if" part assume

M ∈
{(

−
√
λd b√
λb d

)
,

( √
λd b

−
√
λb d

)}
.

Then

det

(
(M, I, I)

(
s −λt
t s

))
= det

(
as+ ct −λbs− λdt
bs+ dt as+ ct

)
= (λd2 + λb2)s2 + (λb2 + λd2)t2,

so it is a scalar multiple of s2+ t2, so the Kronecker normal form of (M, I, I)

(
s −λt
t s

)
can

only be

(
s −t
t s

)
.

Proposition 6.3.2. Let λ, µ ∈ R with λ, µ > 0. Then the matrix pencils

T =


s −t 0 0
t s 0 0
0 0 s −λt
0 0 t s

 and

S =


s −t 0 0
t s 0 0
0 0 s −µt
0 0 t s


are on the same GL(2,R)×GL(4,R)×GL(4,R)-orbit if and only if either λ = µ, or λ = 1

µ .

Proof. First we will prove the "if" part. If λ = µ, then T = S, so we might assume that
λ ̸= µ, which is to say µ = 1

λ . Then(0 1
1 0

)
,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 − 1

λ


T = S.
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Now let us prove the "only if" part and assume T ≈ S. Let M =

(
a b
c d

)
∈ GL(2,R)

such that (M, I, I)T ∼∼∼ S.

(
s −t
t s

)
,

(
s −λt
t s

)
and

(
s −µt
t s

)
are all indecomposable

matrix pencils (as their determinant is irreducible), so from Theorem 2.2.7 it follows that
there are two cases.

(1) The �rst case is when

(M, I, I)

(
s −t
t s

)
=

(
as+ ct −bs− dt
bs+ dt as+ ct

)
∼∼∼
(
s −t
t s

)
,

and

(M, I, I)

(
s −λt
t s

)
∼∼∼
(
s −µt
t s

)
.

Then from Lemma 6.3.1

M ∈
{(

−d b
b d

)
,

(
d b
−b d

)}
.

Then also

det

(
(M, I, I)

(
s −λt
t s

))
= (d2 + λb2)s2 + (±2bd∓ 2λbd)st+ (b2 + λd2)t2

and

det

(
s −µt
t s

)
= s2 + µt2

are scalar multiples of each other. Then

b2 + λd2 = µ(d2 + λb2)

and
±2bd(1− λ) = 0.

From the �rst equation we get that if λ = 1 then so is µ (since b2 + d2 > 0 from
M ∈ GL(2,R)) so we can assume that λ ̸= 1, from which it follows that bd = 0. If
d = 0 then from the �rst equation b2 = µλb2, so µ = 1

λ , and if b = 0, then λd2 = µd2,
so λ = µ.

(2) The second case is when

(M, I, I)

(
s −λt
t s

)
=

(
as+ ct −bs− dt
bs+ dt as+ ct

)
∼∼∼
(
s −t
t s

)
,

and

(M, I, I)

(
s −t
t s

)
∼∼∼
(
s −µt
t s

)
.

Then from Lemma 6.3.1

M ∈
{(

−
√
λd b√
λb d

)
,

( √
λd b

−
√
λb d

)}
,
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and the polynomials

det

(
(M, I, I)

(
s −t
t s

))
= (λd2 + b2)s2 + (±2λbd∓ 2bd)st+ (λb2 + d2)t2

and

det

(
s −µt
t s

)
= s2 + µt2

are scalar multiples of each other, so we are done, because the polynomials are the same
as in the �rst case except that b and d are switched.

Proposition 6.3.3. Let [λi : µi] ∈ RP1 and

Ti =


s −t 0 0
t s 0 0
0 0 s 0
0 0 0 λis+ µit


for i = 1, 2. Then T1 and T2 are on the same GL(2,R) × GL(4,R) × GL(4,R)-orbit if and
only if either [λ1 : µ1] = [λ2 : µ2], or [λ1 : µ1] = [λ2 : −µ2] in RP1.

Proof. As for the "if" part, if [λ1 : µ1] = [λ2 : µ2] then T1 ≈ T2 by multiplying the last
column by an appropriate scalar, and if [λ1 : µ1] = [λ2 : −µ2], then(1 0

0 −1

)
,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 ϑ


T1 = T2,

where ϑ is an appropriate scalar.

For the "only if" part assume that T1 ≈ T2 and letM ∈ GL(2,R) such that (M, I, I)T1 ∼∼∼

T2. Using the fact that

(
s −t
t s

)
is indecomposable, since its determinant is irreducible,

it follows from Theorem 2.2.7 that (M, I, I)

(
s −t
t s

)
∼∼∼
(
s −t
t s

)
. From Lemma 6.3.1 it

follows that for some b, d ∈ R

M ∈
{(

−d b
b d

)
,

(
d b
−b d

)}
.

From the fact that

(M, I, I)

(
s 0
0 λ1s+ µ1t

)
=

(
±ds∓ bt 0

0 (±λ1d+ µ1b)s+ (∓λ1b+ µ1d)t

)
∼∼∼
(
s 0
0 λ2s+ µ2t

)
and from Theorem 2.2.7 it follows that either b = 0 and

λ2(∓λ1b+ µ1d)︸ ︷︷ ︸
=λ2µ1d

= µ2(±λ1d+ µ1b),︸ ︷︷ ︸
=±µ2λ1d
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in which case λ2µ1 = ±λ1µ2, so [λ1 : µ1] ∈ {[λ2 : µ2], [λ2 : −µ2]}, or ∓λ1b + µ1d = 0 and
µ2 · (±d) = λ2 · (∓b). These conditions are equivalent to λ1b± µ1d = 0 and λ2b+ µ2d = 0,
respectively. Then both vectors (λ1,±µ1) and (λ2, µ2) are orthogonal to the nonzero vector
(b, d), so they are linearly dependent, which means that [λ2 : µ2] = [λ1 : ±µ1].

Lemma 6.3.4. Using Notation 4.3.1 and De�nition 4.3.10, every quadratic binary form f
over R such that f(s, 1) is quadratic and irreducible is on the same GL(2,R)-orbit as s2+ t2
in J .

Proof. Let as2 + bst+ ct2 be such a binary form. Then b2 − 4ac < 0, and since

a

(
s− b

2a
t

)2

+ b

(
s− b

2a
t

)
t+ ct2 = as2 +

(
c− b2

4a

)
t2,

we can say that as2+bst+ct2 is on the same GL(2,R)-orbit as λs2+µt2 where λ, µ ∈ R\{0}
and their signs are the same. We can assume that they are both positive since we can
multiply by scalars. Then dividing s by

√
λ and t by

√
µ we are done.

Proposition 6.3.5. In R2⊗R4⊗R4 the regular orbits are classi�ed by the tensors listed in
Proposition 5.1.10 (with real parameter value a for the last type in the list) together with
the following tensors and families of tensors parametrized by 0 < λ ≤ 1 and 0 ≤ µ:

s −t 0 0
t s 0 0
0 t s −t
0 0 t s

 ,


s −t 0 0
t s 0 0
0 0 s −λt
0 0 t s

 ,


s −t 0 0
t s 0 0
0 0 s 0
0 0 0 s+ µt

 ,


s −t 0 0
t s 0 0
0 0 s 0
0 0 0 t

 ,


s −t 0 0
t s 0 0
0 0 s 0
0 0 t s

 .

Proof. If we switch out the tensors above to the clearly GL2,4,4-equivalent
s t 0 0
−t s 0 0
0 −t s t
0 0 −t s

 ,


s t 0 0
−t s 0 0
0 0 s λt
0 0 −t s

 ,


s t 0 0
−t s 0 0
0 0 s 0
0 0 0 s− µt

 ,


s t 0 0
−t s 0 0
0 0 s 0
0 0 0 t

 ,


s t 0 0
−t s 0 0
0 0 s 0
0 0 −t s

 ,

then Proposition 4.3.14, together with Propositions 6.3.2 and 6.3.3, yields that all of the
proposed tensors are on di�erent orbits.

Let T ∈ R2 ⊗R4 ⊗R4 be a regular matrix pencil, then from Proposition 4.2.8 it follows
that T ≈ sI+tJ with J in generalized Jordan normal form. Also of course sI+tJ ≈ sI−tJ .

We can assume from Remark 6.0.2 that J is not in regular Jordan normal form. Then
J is either a 4 × 4 generalized Jordan block, or it is block diagonal either with two 2 × 2
block, or one 2× 2 and two 1× 1 blocks.
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If J is a 4× 4 generalized Jordan block, then, using the notation from De�nition 4.3.12,
sI − tJ = ψ([(f, 2)]), where f is a binary quadratic form for which f(s, 1) is irreducible.
But f is on the same GL(2,R)-orbit as s2 + t2 from Lemma 6.3.4, so

sI − tJ ≈ ψ([(s2 + t2, 2)]) =


s t 0 0
−t s 0 0
0 −t s t
0 0 −t s

 ≈


s −t 0 0
t s 0 0
0 t s −t
0 0 t s

 .

If J has a 2× 2 block and two 1× 1 blocks, then grouping them we have a 3× 3 and a
1× 1 block. We know that the 3× 3 block is not on the same GL2,3,3-orbit with any of the
ones listed in Proposition 5.1.10 so from Proposition 6.2.1 it follows that the 3× 3 block is
on the same GL2,3,3-orbit as s −t 0

t s 0
0 0 s

 ,

so

sI + tJ ≈


s −t 0 0
t s 0 0
0 0 s 0
0 0 0 as+ bt

 ,

and we can divide the last column by a if a ̸= 0, otherwise by b. If a ̸= 0 then we can assume
b
a ≥ 0 from Proposition 6.3.3.

In the rest of the proof we can assume that J has two 2× 2 blocks. From the fact that
J is not in Jordan canonical form and from Proposition 6.1.1 we can assume that the �rst

block is

(
s −t
t s

)
. The second block is either a regular or a generalized Jordan block. Let

us �rst assume that it is the former, then

sI + tJ =


s −t 0 0
t s 0 0
0 0 s+ at 0
0 0 t s+ at

 .

If M =

(
1 a
−a 1

)
, then from Lemma 6.3.1 we know that (M, I, I)

(
s −t
t s

)
∼∼∼
(
s −t
t s

)
,

and

det

(
(M, I, I)

(
s+ at 0
t s+ at

))
= (1 + a2)2s2,

so since (M, I, I)

(
s+ at 0
t s+ at

)
is indecomposable from Proposition 4.2.3, its Kronecker

normal form can only be

(
s 0
t s

)
, which means that from Lemma 4.2.2,

sI + tJ ≈


s −t 0 0
t s 0 0
0 0 s 0
0 0 t s

 .
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We can now assume that the second block in J is a generalized Jordan block, then

sI + tJ =


s −t 0 0
t s 0 0
0 0 s −c0t
0 0 t s− c1t

 ,

where c21 − 4c0 < 0. Let M =

(
1 b
−b 1

)
(without knowing what b is at this point), then

(M, I, I)

(
s −t
t s

)
∼∼∼
(
s −t
t s

)
from Lemma 6.3.1, and

det

(
(M, I, I)

(
s −c0t
t s− c1t

))
= (c0b

2+c1b+1)s2+(c1b
2+(2−2c0)b−c1)st+(b2−c1b+c0)t2,

so here it is easy to see that the coe�cients of s2 and t2 are nonzero, but (c0 − 1)2 + c21 > 0
and with

b =
c0 − 1±

√
(c0 − 1)2 + c21
c1

,

it holds that

det

(
(M, I, I)

(
s −c0t
t s− c1t

))
= s2 + λt2

for λ = b2−c1b+c0
c0b2+c1b+1

̸= 0. The polynomial s2+λt2 is not a square, so if it were reducible, then

that would mean that the Kronecker normal form of (M, I, I)

(
s −c0t
t s− c1t

)
was a diagonal

matrix pencil. This cannot be the case because of Proposition 4.2.3, so s2+λt2 is irreducible,

which means λ > 0. The Kronecker normal form of (M, I, I)

(
s −c0t
t s− c1t

)
can therefore only

be

(
s −λt
t s

)
, so from Lemma 4.2.2,

sI + tJ ≈


s −t 0 0
t s 0 0
0 0 s −λt
0 0 t s

 ,

and from Proposition 6.3.2 we can assume that λ ≤ 1.

6.4 Parfenov's theorem over R

We have thus proved the following result, which follows from Remark 3.1.2, Propositions
4.2.11, 5.1.10, 6.1.1, 6.2.1 and 6.3.5 and Corollaries 3.2.8, 5.2.7 and 5.3.5. This result can
be found (with a somewhat di�erent proof) in [6].

Theorem 6.4.1 ([6]). There are a �nite number of GL(k1,R) × ... × GL(kr,R)-orbits
in the space Rk1 ⊗ ... ⊗ Rkr if and only if the r-tuple (k1, ..., kr) is one of the following:
(n), (m,n), (2, 2, n), (2, 3, n). Moreover, in each of these cases a complete irredundant list of
representatives of the orbits can be easily deduced from Propositions 4.2.11, 5.1.10, 6.1.1,
6.2.1.
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Appendices

A SageMath code for computing values of invariants in K3 ⊗
K3 ⊗K3

In the code we will be using Notation 5.2.6.

def zero_triple ():

return matrix ([[0 ,0 ,0] ,[0,0 ,0],[0,0 ,0]])

def S(triple):

return triple.subs(s=1,t=0,u=0)

def T(triple):

return triple.subs(s=0,t=1,u=0)

def U(triple):

return triple.subs(s=0,t=0,u=1)

def f(triple , i1 , i2 , i3):

poly = det(triple)

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(s, sparse = False)) > i1:

poly = poly.coefficients(s, sparse = False)[i1]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t, sparse = False)) > i2:

poly = poly.coefficients(t, sparse = False)[i2]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(u, sparse = False)) > i3:

return poly.coefficients(u, sparse = False)[i3]

else:

return 0

def h(triple):

poly = det(

block_matrix(

[

[t_2 * T(triple), t_1 * S(triple)],

[t_1 * S(triple), t_3 * U(triple)]

]

)

).full_simplify ()

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_1 , sparse = False)) > 2:

poly = poly.coefficients(t_1 , sparse = False)[2]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_2 , sparse = False)) > 2:

poly = poly.coefficients(t_2 , sparse = False)[2]

50



else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_3 , sparse = False)) > 2:

return poly.coefficients(t_3 , sparse = False)[2]

else:

return 0

def q(triple):

poly = det(

block_matrix(

[

[zero_triple (),t_1*S(triple),t_2*T(triple)],

[t_4*S(triple),zero_triple (),t_3*U(triple)],

[t_5*T(triple),t_6*U(triple),zero_triple ()]

]

)

)

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_1 , sparse = False)) > 2:

poly = poly.coefficients(t_1 , sparse = False)[2]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_2 , sparse = False)) > 1:

poly = poly.coefficients(t_2 , sparse = False)[1]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_3 , sparse = False)) > 2:

poly = poly.coefficients(t_3 , sparse = False)[2]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_4 , sparse = False)) > 1:

poly = poly.coefficients(t_4 , sparse = False)[1]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_5 , sparse = False)) > 2:

poly = poly.coefficients(t_5 , sparse = False)[2]

else:

return 0

if type(poly) != sage.rings.integer.Integer and len(poly.

coefficients(t_6 , sparse = False)) > 1:

return poly.coefficients(t_6 , sparse = False)[1]

else:

return 0

def H(triple):

return (h(triple) - (1/3)*f(triple ,2,1,0)*f(triple ,0,1,2) - (1/3)*f(

triple ,2,0,1)*f(triple ,0,2,1) + (2/3)*f(triple ,1,2,0)*f(triple ,1,0,2) +

(1/12)*f(triple ,1,1,1)^2).full_simplify ()

def Q(triple):
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return (q(triple) - (1/2)*h(triple)*f(triple ,1,1,1) + (3/2)*f(triple

,3,0,0)*f(triple ,0,3,0)*f(triple ,0,0,3) - (1/2)*f(triple ,3,0,0)*f(triple

,0,2,1)*f(triple ,0,1,2) - (1/2)*f(triple ,0,3,0)*f(triple ,2,0,1)*f(triple

,1,0,2) - (1/2)*f(triple ,0,0,3)*f(triple ,2,1,0)*f(triple ,1,2,0) - (1/2)*

f(triple ,1,1,1)*f(triple ,1,2,0)*f(triple ,1,0,2) + (1/2)*f(triple ,2,1,0)*

f(triple ,1,0,2)*f(triple ,0,2,1) + (1/2)*f(triple ,1,2,0)*f(triple ,2,0,1)*

f(triple ,0,1,2)).full_simplify ()

def invariant(triple):

return (H(triple)^3/Q(triple)^2).full_simplify ()
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