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Introduction

Helly’s hundred years old Theorem is one of the cornerstones of discrete

geometry. After much progress in the past fifty years, Helly-type questions

are still a very actively researched area, see for example the recent survey of

Bárány and Kalai [BK21].

One way of stating Helly’s Theorem is that if we have a finite family of

convex sets from Rd such that every d+ 1 member of the family have a point

in common, then all the sets from the family have a point in common.

A useful generalisation, the Fractional Helly Theorem is about the case,

where not every subfamily of size d+1 intersect, but a linear fraction of them

do. It states the following. If we have a finite family C of convex sets from

Rd such that at least α
( |C|
d+1

)
of the d + 1 size subfamilies are intersecting,

then there is a linear size intersecting subfamily: C ′ ⊂ C with
⋂
C∈C′

C 6= ∅ and

|C ′| ≥ β|C|, where β depends on α and d, but does not depend on C [KL79].

Another generalisation, the Colorful Helly Theorem concerns more than

one family of convex sets. If C1, . . . , Cd+1 are families (color classes) of convex

sets from Rd with nonempty intersections of all the heterochromatic d + 1-

tuples, then there is a color class, Cj, such that
⋂
C∈Cj

C 6= ∅ [Lov74] [Bár82].

The main topic of this thesis is these two generalisation of Helly’s The-

orem, but in a different setting. Bárány, Katchalski and Pach examined a

Quantitative Helly Theorem, which states the following. There is a constant

c(d) > 0 depending on d only such that the following is true for every fi-

nite family C of convex bodies (compact convex sets with nonempty interior)

2



from Rd. If every 2d sets from C have intersection of volume at least 1, then⋂
C∈C

C has volume at least c(d). In [BKP82], it is proved that one can take

c(d) = d−2d2 and conjectured that it should hold with c(d) = d−cd for an

absolute constant c > 0. It was confirmed with c(d) ≈ d−2d by Naszódi

[Nas16], whose argument was refined by Brazitikos [Bra17], who showed that

one may take c(d) ≈ d−3d/2.

Our starting points are two recent result. One is a result by Damásdi,

Földvári and Naszódi, who showed a Quantitative Colorful Helly Theorem

with 3d color classes [DFN21]. The other one is a result by Holmsen, who

proved, that a certain colorful Helly property for hypergraphs implies a cer-

tain fractional helly property [Hol20].

Our two main contributions follow. First, in Theorem 7, we establish a

new quantitative variant of the Fractional Helly Theorem of Katchalski and

Liu [KL79], where the Helly Number is 3d+ 1, improving the previous O(d2)

bound. This part of the work has been published earlier this year in [JN22].

In addition to this result, we prove that a certain Quantitative Colorful Helly

Theorem implies a Quantitative Fractional Helly Theorem with a purely com-

binatorial proof (Theorem 8). The latter, combined with the Quantitative

Colorful Helly Theorem of Damásdi, Földvári and Naszódi [DFN21], implies

a Quantitative Fractional Helly Theorem with Helly Number 3d as is shown

in Corollary 5.

The structure of the thesis is the following. In Chapter 1 we state and

prove Helly’s Theorem and the Fractional and Colorful Helly Theorems. We

introduce quantitative Helly-type Theorems in Chapter 2, where we prove

Colorful and Fractional versions of the Quantitative Helly Theorem. Sec-

tion 2.4 contains Theorem 7, our first main result. In Chapter 3 we propose

a new combinatorial framework to analyze quantitative Helly-type Theo-

rems, and prove Theorem 8, our second main results. The thesis ends with

a discussion of open problems in Chapter 4.
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insightful and encouraging discussions during the past more than two years.

His inspiring personality affected greatly my attitude towards mathematics.

4



Contents

1 Helly-type Theorems 6

1.1 Helly’s Theorem and Radon’s Lemma . . . . . . . . . . . . . . 6

1.2 Colorful and Fractional versions of Helly’s Theorem . . . . . . 8

2 Quantitative Helly-type Theorems 11

2.1 Quantitative versions of Helly’s Theorem . . . . . . . . . . . . 11

2.2 Quantitative Colorful and Fractional Helly Theorems with large

intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Helly-type Theorems for translates of a convex body . . . . . 16

2.4 Quantitative Colorful and Fractional Helly Theorems with small

intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Quantitative Helly-type Hypergraph Chains 22

3.1 Helly-type Hypergraphs . . . . . . . . . . . . . . . . . . . . . 22

3.2 Helly-type Hypergraph Chains . . . . . . . . . . . . . . . . . . 24

3.3 Proof of Theorems 8 and 9 . . . . . . . . . . . . . . . . . . . . 26

3.4 Geometric Consequences . . . . . . . . . . . . . . . . . . . . . 29

4 Discussion 32

5



Chapter 1

Helly-type Theorems

In this chapter, we state and prove Helly’s Theorem and the Colorful and

Fractional Helly Theorems.

1.1 Helly’s Theorem and Radon’s Lemma

Helly found his theorem in 1913, but could not publish it until 1923 due to

World War 1 [Hel23]. Radon’s proof appeared in 1921 [Rad21].

Theorem 1 ([Hel23]). Let C be a finite family of convex sets in Rd. If every

d + 1 sets of C have a point in common, then all the sets of C have a point

in common.

Proof of Theorem 1. We prove Helly’s Theorem by induction on the size of

C. The first nontrivial case is when |C| = d+2. Let C = {C1, . . . , Cd+2}. The

assumption of the Theorem is that for every i ∈ [d + 2] = {1, 2, . . . , d + 2}
there is an xi ∈ ∩j 6=iCj. Let X = {x1, . . . , xd+2}. We will need Radon’s

Lemma, an easy consequence of affine dependency.

Lemma 1 ([Rad21]). We can partition every d + 2 point set X ⊂ Rd into

two disjoint subsets X = X+ ∪X− such that conv(X+) ∩ conv(X−) 6= ∅.
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Proof of Lemma 1. Since every d + 2 vector in Rd are affinely dependent,

there are real numbers α1, . . . , αd+2 not all of them 0 such that
∑
αi = 0 and∑

αixi = 0. If I+ = {i ∈ [d + 2] : αi ≥ 0} and I− = {i ∈ [d + 2] : αi < 0},
then ∑

i∈I+
αixi = −

∑
i∈I−

αixi = x.

Let S =
∑

i∈I+ αi and X+ = {xi : i ∈ I+}, X− = {xi : i ∈ I−}. This

is a good partition, since x ∈ conv(X+) ∩ conv(X−), as x =
∑

i∈I+
αi
S
xi is a

convex combination and x =
∑

i∈I−
−αi
S
xi is also a convex combination.

Now we can continue the proof of the case, when |C| = d+ 2. Let C and

X be as before and let X+ ∪ X− = X and x ∈ conv(X+) ∩ conv(X−) as

in Radon’s Lemma. We claim, that x ∈ Ci for all i ∈ [d + 2]. If i ∈ I+,

then X− ⊂ Ci and so x ∈ conv(X−) ⊂ Ci. If i ∈ I−, then X+ ⊂ Ci and

x ∈ conv(X+) ⊂ Ci.

For the induction step, let us assume, that Helly’s Theorem holds if the

size of the family is n, and let C = {C1, . . . , Cn+1} be a family of convex

sets from Rd such that every d + 1 of them have a point in common. Let

C ′ = {C1, C2, . . . , Cn−1, Cn ∩ Cn+1}. If the sets from C ′ have a point in

common, then the sets from C also have a point in common. We claim that

every d + 1 sets from C ′ have a point in common. It is indeed true, since

if Cn ∩ Cn+1 is not among the d + 1 sets, then our assumption about C
guarantees that the d + 1 sets intersect. On the other hand, if Cn ∩ Cn+1 is

among the d + 1 chosen sets, say {Ci1 , . . . , Cid , Cn ∩ Cn+1}, then any d + 1

sets from {Ci1 , . . . , Cid , Cn, Cn+1} intersect and Helly’s Theorem with d + 2

sets implies that all of them have a point in common. Now since every d+ 1

sets intersect from the family of n convex sets C ′, the induction hypotheses

yields a point x in all the members of C ′.

One might argue that Helly’s Theorem is a purely combinatorial conse-

quence of Radon’s Lemma. This is a usual case in Helly-type Theorems. We
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will see more of this phenomenon later. One way of formalizing the notion

of “purely combinatorial consequence” will be presented in Section 3.1.

1.2 Colorful and Fractional versions of Helly’s

Theorem

In this section, we prove two generalisations of Helly’s Theorem. As a tech-

nical tool, we need the lexicographic ordering of Rd. We say that a point

x ∈ Rd is lexicographically smaller than a point y ∈ Rd, in notation, x <lex y,

if for the first coordinate j where they differ, xj < yj. Any compact subset

C ⊂ Rd has a unique minimum point according to this ordering, we will

denote it by lexmin(C).

Lemma 2 ([Mat02], Lemma 8.1.2). If C is a finite family of compact, convex

sets of Rd with nonempty intersection, then there exists a subfamily C ′ ⊂ C
of size at most d such that lexmin(C ′) = lexmin(C).

Proof of Lemma 2. Let L = {x ∈ Rd : x <lex lexmin(C)}. The family C ∪
{L} has empty intersection, so by Helly’s Theorem, there are at most d + 1

members, whose intersection alone is nonempty. The set L must be one of

the d + 1, since every subfamily of C alone has nonempty intersection. The

other d convex sets from the d+ 1 can form C ′.

Now we are ready to state and prove the above mentioned two gener-

alisations of Helly’s Theorem. The first one is the Colorful Helly Theo-

rem discovered by Lovász [Lov74] (and with the first published proof by

Bárány [Bár82]).

Theorem 2 (Colorful Helly Theorem). If C1, . . . , Cd+1 are finite families of

convex sets from Rd and for every colorful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1,

the intersection ∩iCi is nonempty, then there is a color class Cj such that all

the sets from Cj have a point in common.
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Proof of Theorem 2. Note that it is enough to prove the theorem for compact

convex sets. Otherwise choose a point from every possible intersection from

C, let the set of these points be X, and replace every C ∈ C with the convex

hull of X ∩ C.

Let C1, . . . , Cd+1 be finite families of compact convex sets from Rd and

assume that all the colorful intersections are nonempty. Let C∗1 , . . . , C
∗
d+1

be such that lexmin(∩iC∗i ) is the maximum of the set {lexmin(∩iCi) : C1 ∈
C1, . . . , Cd+1 ∈ Cd+1}. According to Lemma 2, we can rearrange the color

classes so that lexmin(∩d+1
i=1C

∗
i ) = lexmin(∩di=1C

∗
i ) = x∗. We claim that

x∗ ∈ ∩C∈Cd+1
C. This follows from the stronger statement, that for the highest

lexicographic minimum x∗ = lexmin(∩di=1C
∗
i ∩ C) for all C ∈ Cd+1. This is

indeed true, since on the one hand lexmin(∩di=1C
∗
i ∩ C) ≤lex lexmin(∩di=1C

∗
i )

by the definition of the C∗i s and on the other hand lexmin(∩di=1C
∗
i ∩ C) ≥lex

lexmin(∩di=1C
∗
i ), because the lexicographic minimum can not decrease if we

add one more set to the intersection.

Note that it is enough to prove the theorem for compact convex sets.

Choose a point from every possible intersection from C, let the set of these

points be X, and replace every C ∈ C with the convex hull of X ∩ C.

Note that if we take C1 = . . . = Cd+1, then we recover Helly’s Theorem

as a consequence. The second discussed generalisation of Helly’s Theorem is

the Fractional Helly Theorem of Katchalski and Liu [KL79].

Theorem 3 (Fractional Helly Theorem). There is a function β[0, 1]→ [0, 1]

such that if C is a finite family of convex sets from Rd such that among the

possible
( |C|
d+1

)
subfamilies of size d + 1 at least α

( |C|
d+1

)
are intersecting then

there is a subfamily C ′ ⊂ C with |C ′| ≥ β(α)|C| such that all the sets from C ′

have a point in common.

One of the many proofs of the Fractional Helly Thoerem is somewhat

similar to the proof of the Colorful Helly Theorem. It first appeared in

[Mat02].
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Proof of Theorem 3. Let n = |C| and C = {C1, . . . , Cn}. Similarly to the

proof of Theorem 2, it is enough to prove the theorem for compact sets. We

say that a d + 1 element index set I ∈
(

[n]
d+1

)
is good, if ∩i∈ICi 6= ∅, and

that a d element index set S ∈
(

[n]
d

)
is a seed of a good index set I ⊃ S,

if lexmin(∩s∈SCs) = lexmin(∩i∈ICi). By Lemma 2, each good index set has

a seed. Since there are α
(
n
d+1

)
good index sets and only

(
n
d

)
possible seeds,

there is an index set S which is the seed of at least

α
(
n
d+1

)(
n
d

) =
α(n− d)

d+ 1

good index sets. Let I1, . . . , Iα(n−d)
d+1

be good index sets whose seed is S. Since

for all Ii, there is an index j such that Ii = S ∪ {j}, there are at least
α(n−d)
d+1

convex sets Cj such that lexmin(∩i∈SCi) ∈ Cj and j 6∈ S. Together

with the sets Cs : s ∈ S, the point lexmin(∩s∈SCs) is contained in at least
α(n−d)
d+1

+ d ≥ αn
d+1

convex sets from C.

For the value of β, the above proof gives β(α) = α
d+1

. Helly’s Theorem

states, that β(1) = 1. Kalai proved that the optimal β is β(α) = 1 − (1 −
α)1/(d+1) [Kal84]. One important feature of Kalai’s function is that β → 1 as

α→ 1.
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Chapter 2

Quantitative Helly-type

Theorems

We present quantitative analogues of the three Helly-type Theorem from

the previous chapter, where instead of finding points in the intersection of

convex sets, we give lower bounds on the volume of the intersection. For

such questions, we consider convex bodies, ie. compact convex sets with

nonempty interior.

2.1 Quantitative versions of Helly’s Theorem

The starting point for Quantitative Helly-type Theorems is an article of

Bárány, Katchalski and Pach [BKP82], where they show the following.

Theorem 4. There is a constant c(d) > 0 such that the following holds. Let

C1, . . . , Cn be convex sets in Rd. Assume that the intersection of any 2d of

them is of volume at least 1. Then
n⋂
i=1

Ci is of volume at least c(d).

In [BKP82], it is proved that one can take c(d) = d−2d2 and conjectured

that it should hold with c(d) = d−cd for an absolute constant c > 0. It was
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confirmed with c(d) ≈ d−2d by Naszódi [Nas16], whose argument was refined

by Brazitikos [Bra17], who showed that one may take c(d) ≈ d−3d/2.

It is common to approximate the volume of a convex body with that of

the largest inscribed ellipsoid. As a consequence of John’s Theorem [Joh48],

for any convex body C ⊂ Rd, if E ⊂ C is its largest volume inscribed

ellipsoid, then the relation C ⊂ dE holds if E is origin centered. That

implies vol (E) ≤ vol (C) ≤ ddvol (E) for the volumes. So the volume of the

largest inscribed ellipsoid approximates the volume of a convex body up to

a factor of dd. It might seem a very weak approximation at first sight, but

approximating the volume of convex bodies is a hard problem. For example,

as a result of Bárány and Füredi asserts, there is no deterministic polynomial

time algorithm approximating the volume of convex bodies better than up

to a factor of
(

cd
log d

)d
[BF87]. So, at least from an algorithmic point of view,

the approach is justified.

The proofs in [BKP82], [Nas16] and [Bra17] use ellipsoids and John’s

Theorem to approximate the volume of convex bodies. In special, Theorem 4

follows from the following result about ellipsoids.

Theorem 5 ([Bra17]). Let C1, . . . , Cn be convex sets in Rd. Assume that the

intersection of any 2d of them contains an ellipsoid of volume at least one.

Then
n⋂
i=1

Ci contains an ellipsoid of volume at least cdd−3d/2 with an absolute

constant c > 0.

From now on, we will state quantitative Helly-type theorems in terms of

volumes of inscribed ellipsoids.

A variant of Theorem 5 is the following observation from [DFN21]. We

assume larger subfamilies to have an intersection whose largest inscribed

ellipsoid is of volume 1, but in return we get a volume 1 ellipsoid contained

in all the convex bodies, not just an ellipsoid of volume ≈ d−cd. We state it

here without proof.
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Proposition 1 ([DFN21, Proposition 1.1]). Let C1, . . . , Cn be convex bodies

in Rd. Assume that the intersection of any d(d + 3)/2 of them contains an

ellipsoid of volume at least one. Then
n⋂
i=1

Ci contains an ellipsoid of volume

at least one.

If we are interested in ellipsoids contained in convex bodies, it is a useful

variant of the previous Theorem, but in terms of approximating the volume

of the intersection of convex bodies it is not very useful, since John ellipsoids

approximate the volume only up to a factor of dd. In other words, Proposi-

tion 1 has a stronger assumption than Theorem 5, but we do not obtain a

much stronger conclusion in return (at least in terms of volumes).

As an informal notion, we will call quantitative Helly-type theorems where

we assume O(d2)-size intersecting subfamilies theorems with large intersec-

tion and theorems where we assume only O(d)-size intersecting subfamilies

theorems with small intersections. Since for the Colorful and Fractional Helly

Theorems only weaker forms of Theorem 5 are avaible, we present also the

variants with large intersection.

2.2 Quantitative Colorful and Fractional Helly

Theorems with large intersections

When proving quantitative Helly-type theorems with large intersection, one

can usually maintain the structure of the proofs of the classical theorems.

The “combinatorial part” of the proofs remains the same, but we need new

“geometrical tools”.

The proof of the Colorful and Fractional Helly Theorems depended on

the lexicographic minima of convex sets and on Lemma 2. As an analogue,

the following definition and two lemmas introduce the unique lowest ellipsoid

of volume one contained in a convex body.

13



Definition 1. For an ellipsoid E, we define its height as the largest value of

the orthogonal projection of E on the last coordinate axis.

The proof of the following claim can be found in [DFN21].

Lemma 3 (Uniqueness of Lowest Ellipsoid, [DFN21, Lemma 2.5]). Let C be

a convex body, such that it contains an ellipsoid of volume one. Then there

is a unique ellipsoid of volume one such that every other ellipsoid of volume

one in C has larger height. We call this ellipsoid the lowest ellipsoid in C.

The lowest ellipsoid will play the role of the lexicographic minimum in

quantitative theorems with large intersections. The following is an analogue

of Lemma 2 for the lowest ellipsoid.

Lemma 4 (Lowest ellipsoid determined by O(d2) members of an intersection

[DFN21, Lemma 3.1]). Let C1, . . . , Cn be a finite family of convex bodies in

Rd whose intersection contains an ellipsoid of volume one. Then, there are

d(d+3)/2−1 indices i1, . . . , id(d+3)/2−1 ∈ [n] such that
n⋂
i=1

Ci, and
d(d+3)/2−1⋂

j=1

Cij

have the same unique lowest ellipsoid.

For a proof see [DFN21]. The lowest ellipsoid is determined by d(d+3)
2
− 1

members of the intersection instead of d as in the case of lexicographic min-

imum and Lemma 2. Now we are ready to state and prove Quantitative

Colorful and Fractional Helly Theorems with large intersections. The follow-

ing is from [Dam17].

Proposition 2 (QCH – large subfamilies [Dam17]). Let C1, . . . , Cd(d+3)/2 be

finite families of convex bodies in Rd. Assume that for all colorful selec-

tions C1 ∈ C1, . . . Cd(d+3)/2 ∈ Cd(d+3)/2 the intersection
d(d+3)/2⋂
i=1

Ci contains an

ellipsoid of volume one.

Then, there is a j with 1 ≤ j ≤ d(d + 3)/2 such that
⋂
C∈Cj

contains an

ellipsoid of volume one.
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Proof. The following argument, due to Damásdi [Dam17], follows closely the

proof of Theorem 2, the only difference is the use of the unique lowest ellipsoid

of a convex body (Lemma 3) instead of its lexicographic minimum.

Let C∗1 ∈ C1, . . . , C
∗
d(d+3)/2 ∈ Cd(d+3)/2 be such, that the lowest ellipsoid of

d(d+3)/2⋂
i=1

C∗i is the highest among all lowest ellipsoids of the colorful intersec-

tions. Let Emax denote this highest one of the lowest ellipsoids. By Lemma 4

we can rearrange the color classes so that Emax is the lowest ellipsoid of
d(d+3)/2−1⋂

i=1

C∗i . We claim that Emax ⊂
⋂

C∈Cd(d+3)/2

C. This follows from the

stronger statement, that Emax is the lowest ellipsoid of C ∩
d(d+3)/2−1⋂

i=1

C∗i for

all C ∈ Cd(d+3)/2. This is indeed true, since on the one hand their lowest

ellipsoid can not be higher than Emax, since Emax is the highest, and on the

other hand it can not be lower than the lowest ellipsoid of
d(d+3)/2−1⋂

i=1

C∗i , since

we only added one more constraint.

Observe how much the proof of Proposition 2 is similar to that of The-

orem 2. One can do similarly with the Fractional Helly Theorem, as was

showed by the author and Naszódi in [JN22].

Proposition 3 (QFH – large subfamilies). For every dimension d ≥ 1 and

every α ∈ (0, 1) the following holds.

Let C be a finite family of convex bodies in Rd. Assume that among all

subfamilies of size d(d+3)
2

, there are at least α
( |C|
d(d+3)

2

)
for whom the intersection

of the d(d+3)
2

members contains an ellipsoid of volume one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that the

intersection of all members of C ′ contains an ellipsoid of volume one, where

β = 2α
d(d+3)

.

Proof of Proposition 3. The following argument follows closely the proof of

Theorem 3, the only difference is the use of the unique lowest ellipsoid of a

convex body (Lemma 3) instead of its lexicographic minimum.
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Let C = {C1, . . . , Cn}. We call an index set I ∈

(
[n]

d(d+3)
2

)
good, if the

corresponding intersection ∩i∈ICi contains an ellipsoid of volume at least

one. We say that a
(
d(d+3)

2
− 1
)

-element subset S ⊂ I of a good index set

I ∈

(
[n]

d(d+3)
2

)
is a seed of I, if ∩i∈ICi and ∩i∈SCi have the same lowest

ellipsoid. By Lemma 4, all good index sets have a seed.

Since we have α

(
n

d(d+3)
2

)
good index sets and only

(
n

d(d+3)
2
− 1

)
possible

seeds, there is a
(
d(d+3)

2
− 1
)

-tuple S ∈

(
[n]

d(d+3)
2
− 1

)
which is the seed of at

least

α

(
n

d(d+3)
2

)
(

n
d(d+3)

2
− 1

) = α
n− d(d+3)

2
+ 1

d(d+3)
2

good index sets. Every such good index set has the form S ∪ {i} for an

i. So we have α
n− d(d+3)

2
+1

d(d+3)/2
convex bodies containing the lowest ellipsoid of

∩i∈SCi, plus the (d(d+3)
2
−1) convex body from S. Hence, the lowest ellipsoid

of ∩i∈SCi is contained in at least

α
n+ 1− d(d+ 3)/2

d(d+ 3)/2
+
d(d+ 3)

2
− 1 ≥ 2αn

d(d+ 3)

convex bodies among the Ci, completing the proof of Proposition 3.

2.3 Helly-type Theorems for translates of a

convex body

Before discussing Quantitative Helly-type Theorems with small intersections,

let us state two easy consequence of the Colorful and Fractional Helly The-
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orems.

Proposition 4. Let C1, . . . , Cd+1 be finite families of convex bodies, and L a

convex body in Rd. Assume that for any colorful subfamily C1 ∈ C1, . . . , Cd+1 ∈

Cd+1, the intersection
d+1⋂
i=1

Ci contains a translate of L. Then for some j, the

intersection
⋂
C∈Cj

C contains a translate of L.

Proof. We use the following operation, the Minkowski difference of two con-

vex sets A and B:

A ∼ B :=
⋂
b∈B

(A− b).

It is easy to see that A ∼ B is the set of vectors t such that B + t ⊆ A.

Now, replace each convex set C in ∪iCi by C ∼ L, and apply the Colorful

Helly Theorem (Theorem 2).

Proposition 5. For every dimension d ≥ 1 and every α ∈ (0, 1), the follow-

ing holds.

Let C be a finite family of convex sets in Rd and let L be a convex set in Rd.

Assume that among all subfamilies of size d+ 1, there are at least α
( |C|
d+1

)
for

whom the intersection of the d+ 1 members contains a translate of L.

Then, there is a subfamily C ′ ⊂ C of size at least α
d+1
|C| such that the inter-

section of all members of C ′ contains a translate of L.

Proof. Replace each convex set C in C by C ∼ L, and apply the Fractional

Helly Theorem (Theorem 3).

2.4 Quantitative Colorful and Fractional Helly

Theorems with small intersections

In quantitative Helly-type theorems, where the assumption is about linear-

sized subfamilies, one usually needs more than a clever translation of the
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proofs of the classical theorems. In this section, we present ”linear-sized”

quantitative variants of the Colorful and Fractional Helly Theorems. Both

proof uses the propositions of the previous section and the following technical

Lemma.

Lemma 5 ([DFN21, Lemma 3.2]). Assume that the origin centered Euclidean

unit ball, Bd is the largest volume ellipsoid contained in the convex set C

in Rd. Let E be another ellipsoid in C of volume at least δvol
(
Bd
)

with

0 < δ < 1. Then there is a translate of δ
dd−1 B

d which is contained in E.

Proof of Lemma 5. If the length of all d semi-axes a1, . . . , ad of E are at least

λ for some λ > 0, then clearly, λBd + c ⊂ E, where c denotes the center of

E. We will show that all the semi-axes are long enough.

By John’s theorem, E ⊂ C ⊂ dBd. Therefore, ai ≤ d for every i =

1, . . . , d. Since the volume of E divided by the volume of Bd is a1 · . . . ·
ad ≥ δ, we have ai ≥ δ

dd−1 for every i = 1, . . . , d, completing the proof of

Lemma 5.

The following Quantitative Colorful Helly Theorem is shown in [DFN21].

Theorem 6 (Quantitative Colorful Helly Theorem). ] Let C1, . . . , C3d be finite

families of convex sets in Rd. Assume that for any colorful choice of 2d sets,

Cik ∈ Cik for each 1 ≤ k ≤ 2d with 1 ≤ i1 < . . . < i2d ≤ 3d, the intersection
2d⋂
k=1

Cik contains an ellipsoid of volume one.

Then, there is an i with 1 ≤ i ≤ 3d such that the intersection
⋂
C∈Ci

C contains

an ellipsoid of volume cd
2
d−5d2/2+d, where c is the universal constant from

Theorem 5.

The Quantitative Colorful Helly Theorem, Theorem 6 and its proof are

completely from [DFN21], they are presented here in order to help the com-

parison of the proofs of Theorem 6 and Theorem 7. The latter is one of the

main results of the thesis.
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Proof of Theorem 6. In this proof we will replace volume by normalized vol-

ume, which is the volume divided by the volume of the ball Bd of unit radius

centered at the origin.

To prove Theorem 6, we will assume that all colorful choices of 2d sets

contain an ellipsoid of normalized volume at least one.

Consider the lowest ellipsoid of normalized volume 1 in all colorful choices

of 2d− 1 sets. We may assume that the highest one of these ellipsoids is Bd.

By possibly changing the indices of the families, we may assume that the

choice is C1 ∈ C1, . . . , C2d−1 ∈ C2d−1. We call C2d, C2d+1, . . . , C3d the remaining

families.

Consider the half-space H1 ⊃ Bd with outer normal ed, bounded by a

supporting hyperplane of Bd. Clearly, Bd is the largest volume ellipsoid

contained in M := C1 ∩ . . . ∩ C2d−1 ∩H1.

Next, take an arbitrary colorful choice C2d ∈ C2d, C2d+1 ∈ C2d+1, . . . , C3d ∈
C3d of the remaining d+ 1 families. We claim that the intersection of any 2d

sets of

C1, . . . , C2d−1, H1, C2d, . . . , C3d

contains an ellipsoid of normalized volume at least 1. Indeed, if H1 is not

among those 2d sets, then our assumption ensures this. If H1 is among them,

then by the choice of H1, the claim holds.

Therefore, by Theorem 5, the intersection

3d⋂
i=1

Ci ∩H1

contains an ellipsoid E of normalized volume at least δ := cdd−3d/2. Clearly,

E ⊂M .

Since Bd is the maximum volume ellipsoid contained in M , by Lemma 5,

we have that there is a translate of δ
dd−1 B

d which is contained in E and thus

in
3d⋂
i=2d

Ci.
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Thus, we have shown that any colorful choice C2d ∈ C2d, . . . , C3d ∈ C3d of

the remaining d+ 1 families,
3d⋂
i=2d

Ci contains a translate of the same convex

body cdd−5d/2+1Bd. It follows from Corollary 4 that there is an index 2d ≤ i ≤
3d such that

⋂
C∈Ci

C contains a translate of cdd−5d/2+1Bd, which is an ellipsoid

of normalized volume cd
2
d−5d2/2+d, finishing the proof of Theorem 6.

A Quantitative Fractional Helly Theorem was shown by the author and

Naszódi in [JN22]. The proof of Theorem 7 uses the same tools as that of

Theorem 6, but has a different structure. It is the first main result of the

thesis.

Theorem 7 (Quantitative Fractional Helly Theorem). For every dimension

d ≥ 1 and every α ∈ (0, 1), there is a β ∈ (0, 1) such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfam-

ilies of size 3d+ 1, there are at least α
( |C|

3d+1

)
for whom the intersection of the

3d+ 1 members contains an ellipsoid of volume one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that the intersec-

tion of all members of C ′ contains an ellipsoid of volume at least cd
2
d−5d2/2+d,

where c is the universal constant from Theorem 5.

Proof of Theorem 7. Let C = {C1, . . . , Cn}. We call an index set I ∈
(

[n]
3d+1

)
good, if the corresponding intersection ∩i∈ICi contains an ellipsoid of volume

at least one. We say that a 2d-element subset S ⊂ I of a good index set

I ∈
(

[n]
3d+1

)
is a seed of I, if the volume of the John ellipsoid of ∩i∈SCi is at

most c−dd3d/2 times the volume of the John ellipsoid of ∩i∈ICi, where c is the

absolute constant from Theorem 5. By Theorem 5, all good index sets have

a seed.

Since we have α
(

n
3d+1

)
good index sets and only

(
n
2d

)
possible seeds, there

is a (2d)-tuple S ∈
(

[n]
2d

)
which is the seed of at least

α
(

n
3d+1

)(
n
2d

) ≥ γ

(
n

d+ 1

)
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good index sets. Here γ depends on α and d, but not on n.

Let I1, . . . , Iγ( n
d+1)

be good index sets whose seed is S. Denote the John

ellipsoid of the intersection ∩i∈SCi by E and the John ellipsoid of ∩i∈IjCi by

Ej. By Lemma 5, for every j, there is a vj ∈ Rd such that cdd−5d/2E+vj ⊆ Ej.
Thus, we have shown that at least γ

(
n
d+1

)
of the (d+ 1)-wise intersections

contain a translate of cdd−5d/2+1E . We can apply Proposition 5 with L =

cdd−5d/2+1E , which implies that there are γ
d+1

n such Ci, that their intersection

contains a translate of cdd−5d/2+1E . And, since E has volume at least one, this

ellipsoid has volume at least cd
2
d−5d2/2+d, completing the proof of Theorem 7.

Note, that since the largest inscribed ellipsoid approximates the volume

of a convex body up to a factor of dd, we get the following corollaries of

Theorems 6 and 7.

Corollary 1 (Corollary of Theorem 6). Let C1, . . . , C3d be finite families of

convex sets in Rd. Assume that for any colorful choice of 2d sets, Cik ∈ Cik
for each 1 ≤ k ≤ 2d with 1 ≤ i1 < . . . < i2d ≤ 3d, the intersection

2d⋂
k=1

Cik is

of volume at least one.

Then, there is an i with 1 ≤ i ≤ 3d such that vol

( ⋂
C∈Ci

C

)
≥ cd

2
d−5d2/2 with

a universal constant c.

Corollary 2 (Corollary of Theorem 7). For every dimension d ≥ 1 and

every α ∈ (0, 1), there is a β ∈ (0, 1) such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfam-

ilies of size 3d+ 1, there are at least α
( |C|

3d+1

)
for whom the intersection of the

3d+ 1 members is of volume one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that the inter-

section of all members of C ′ is of volume at least cd
2
d−5d2/2 with a universal

constant c.
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Chapter 3

Quantitative Helly-type

Hypergraph Chains

In this chapter we propose a new combinatorial framework in which quan-

titative Helly-type questions can be analyzed. But first, we show how the

classical Helly-type Theorems can be stated as properties of certain hyper-

graphs.

3.1 Helly-type Hypergraphs

We describe Helly’s Theorem and the Fractional and Colorful Helly The-

orems in the language of hypergraphs. Let V be a (possibly infinite) set.

A hypergraph on the base set V is any family of its subsets, in notation

H ⊂ 2V . A hypergraph is downwards closed, if H ∈ H and G ⊂ H im-

plies G ∈ H. A downwards closed hypergraph H has Helly Number h, if

for every finite subset S ⊂ V the relation
(
S
h

)
⊂ H implies S ∈ H. Now

let us denote the family of convex sets of Rd by Cvx(d) and the hypergraph

which contains the subfamilies of convex sets with nonempty intersection by

Kd = {C ⊂ Cvx(d) : ∩C∈CC 6= ∅}. Helly’s Theorem states that Kd has

Helly-number d+ 1.
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A downwards closed hypergraph H over a base set V has Fractional Helly

Number k, if there exists a function β : (0, 1) → (0, 1) such that whenever

S ⊂ V is a finite subset such that
∣∣H ∩ (S

k

)∣∣, the number of edges of H of size

k in S is at least α
(|S|
k

)
with an α ∈ (0, 1), then there exists a subset S ′ ⊂ S

of size at least β|S| such that S ′ ∈ H. The Fractional Helly Theorem states

that Kd has Fractinal Helly Number d+ 1.

We turn to phrasing the Colorful Helly Theorem in an abstract set-

ting. Let S1, . . . , Sk be (not necessarily disjoint) sets, which we will call

color classes, and let S = ∪ki=1Si be their union. We will call elements

of S1 × · · · × Sk colorful selections. With slight abuse of notation, if s ∈
S1 × · · · × Sk is a colorful selection and H ⊂ 2V is a hypergraph on V ⊃ S,

we will write s ∈ H, if s, considered as an unordered subset of S, is in

H. With this convention, we will use the notation H ∩ (S1 × · · · × Sk) and

(S1 × · · · × Sk) ⊆ H.

A downwards closed hypergraph H over a base set V has Colorful Helly

Number k, if for every k finite subset S1, . . . , Sk ⊂ V such that (S1 × · · · ×
Sk) ⊆ H, there exists a color class Sj with Sj ∈ H. The Colorful Helly

Theorem states that Kd has Colorful Helly Number d+ 1.

Can we phrase our quantitative results in the language of hypergraphs?

Let Ed(v) be the hypergraph whose vertices are convex bodies from Rd and

whose edges are those sets of convex bodies from Rd, whose intersection

contains an ellipsoid of volume v. Propositions 1, 2 and 3 states that Ed(v) has

Helly Number, Colorful Helly Number and Fractional Helly Number d(d+3)
2

for every v > 0. What about Theorems 5, 6 and 7? Their assumptions and

conclusions are about two different kinds of intersection, so their statements

can not be translated into a property of only one hypergraph.

Alon, Kalai, Matoušek and Meshulam [AKMM02] considered Helly-type

results in the abstract setting. They showed, that if a hypergraph has

bounded Fractional Helly Number, then it also has the so called (p, q) prop-

erty (see the definition in [AKMM02]). Holmsen [Hol20], in a recent break-
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through, showed that if a hypergraph has Colorful Helly Number k, then it

has Fractional Helly Number at most k. In this sense, the Fractional Helly

Theorem can be deduced from the Colorful Helly Theorem with a purely

combinatorial proof. Similarly, Proposition 2 implies Proposition 3. But

note that Holmsen’s result does not immediately imply a similar relationship

between Theorem 6 and Theorem 7. Our goal is to lay the ground for such

results.

3.2 Helly-type Hypergraph Chains

When one considers quantitative geometric Helly-type results, the transla-

tion to the abstract theory is not straightforward. We propose to consider

hypergraph chains as follows.

Definition 2. Let V be a (possibly infinite) base set. The infinite sequence

(H`)`∈Z of hypergraphs over the base set V is a hypergraph chain, if every H`

is downwards closed and for all ` ∈ Z, H` ⊂ H`+1.

Hypergraph chains are generalisations of downwards closed hypergraphs

in the sense, that if H is a hypergraph, then (H)`∈Z is a hypergraph chain.

In this sense, (Kd)`∈Z and (Ed(v))`∈Z for any v ∈ R+ are hypergraph chains.A

more interesting example is
(
Ed
(
v`
))
`∈Z where v ∈ (0, 1) is a real number

and for an ` ∈ Z, a family of convex bodies from Rd is an edge in Ed
(
v`
)
,

if and only if their intersection is conatins an ellipsoid of volume at least v`.

A similar, but different hypergraph is when a family of convex bodies is an

edge, if and only if their intersection is of volume at least v`. Let us denote

this hypergraph by Qd
(
v`
)
. In the rest of the chapter we will use

(
Ed
(
v`
))
`∈Z

to demonstrate results about hypergraph chains, but similar results hold also

for
(
Qd
(
v`
))
`∈Z.

Now we turn to phrase quantitative Helly-type results in the language of

hypergraph chains.
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Definition 3. A hypergraph chain (H`)`∈Z over a base set V has Helly Num-

ber h, if for every S ⊆ V ,
(
S
h

)
⊂ H` implies S ∈ H`+1.

According to Helly’s Theorem, (Kd)`∈Z has Helly Number d+ 1. Propsi-

tion 1 implies that (Ed(v))`∈Z for any v ∈ R+ has Helly Number d(d+3)
2

.

More interestingly, Theorem 5 states that if v ≈ d−3d/2, then
(
Ed
(
v`
))
`∈Z

has Helly Number 2d.

Definition 4. A hypergraph chain (H`)`∈Z over a base set V has Colorful

Helly Number k, if whenever S1, . . . , Sk are finite subsets (color classes) of V

and S1 × . . .× Sk ⊂ H`, then there is a color class Sj with Sj ∈ H`+1.

Note that by taking S1 = S2 = ... = Sk = S, a hypergraph chain with

Colorful Helly Number k has Helly Number h ≤ k.

According to the definition, (Kd)`∈Z has Colorful Helly Number d+ 1.

More interestingly, the Quantitative Colorful Helly Theorem, Theorem 6

may be stated as follows. If v ≈ d−cd
2

from Theorem 6, then
(
Ed
(
v`
))
`∈Z has

Colorful Helly Number 3d.

Definition 5. A hypergraph chain (H`)`∈Z over a base set V has Fractional

Helly Number k, if there exists a function β : (0, 1) → (0, 1) such that for

every finite set S ⊂ V , if |H` ∩
(
S
k

)
| ≥ α

(|S|
k

)
with some α ∈ (0, 1), then there

exists an S ′ ⊂ S with |S ′| ≥ β(α)|S| and S ′ ∈ H`+1.

As in the previous two cases, (Kd)`∈Z has Fractional Helly Number d+ 1

and Theorem 7 states, that if v ≈ d−cd
2

from Theorem 7, then
(
Ed
(
v`
))
`∈Z

has Fractional Helly Number 3d+ 1.

Now we are ready to state our main result, which is a quantitative ana-

logue of Theorem 3 from [Hol20].

Theorem 8. If the hypergraph chain (H`)`∈Z has Colorful Helly Number k,

then (H(k+1)l)`∈Z has Fractional Helly Number k.
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Here, the obtained Fractional Helly Number is the same as the assumed

Colorful Helly Number, but not for the exact same hypergraph chain: we can

only take every (k+1)st element from the original chain. Can the Fractional

Helly number be less than the Colorful Helly number? If for a hypergraph

chain, the Helly Number is smaller than the Colorful Helly Number, the

answer is a partial yes. We can show a stability version of the Helly property

under the addition assumption of the colorful Helly property.

Theorem 9. If the hypergraph chain (H`)`∈Z has Helly Number h and Col-

orful Helly Number k ≥ h, then there exists a function β : (0, 1)→ [0, 1) with

limα→1 β(α) = 1 such that for every finite set S ⊂ V , if |H` ∩
(
S
h

)
| ≥ α

(|S|
h

)
with some α ∈ (0, 1), then there exists an S ′ ⊂ S with |S ′| ≥ β(α)|S| and

S ′ ∈ H`+2.

As far as we know, the best possible β here might assign 0 to a large

fraction of αs from (0, 1), this is the difference from hypergraph chains with

Fractional Helly Number 2d, where this is not possible. But at least, if α is

very close to 1, then β(α) is also close to 1.

3.3 Proof of Theorems 8 and 9

Let us begin with an analogue of Lemma 3.1 from [Hol20]. We denote by

ωh(H`|S) the size of the largest h-clique of S, ie. the size of the largest subset

K ⊂ S such that
(
K
h

)
⊂ H`.

Lemma 6. If (H`)`∈Z is a hypergraph chain with Colorful Helly Number k

over the base set V , then for every finite subset S ⊂ V and every positive

integer h ≤ k the inequality∣∣∣∣(Sh
)
\ H`

∣∣∣∣ ≥ (kh
)−1( 1

h
(|S| − ωh(H`+1|S))

h

)
holds.
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Proof of Lemma 6. Let ` ∈ Z be fixed and assume ωh(H`+1|S) ≥ h, otherwise

there is nothing to prove. Let M1, . . . ,Mt ∈
(
S
h

)
\H`+1 be a maximum number

of disjoint missing edges from H`+1, each of size h. Since
(
S\(M1∪...∪Mt)

h

)
⊂

H`+1, we have ωh(H`+1|S) ≥ |S \ (M1 ∪ . . .∪Mt)| = |S| − th or, equivalently,

t ≥ 1
h
((|S| − ωh(H`+1|S))).

Since (H`)`∈Z has Colorful Helly Number k, for every I ∈
(

[t]
k

)
, there is

a J ∈
(
I
h

)
and an M ∈

(
S
h

)
\ H` such that |M ∩Mj| = 1 for every j ∈ J .

One particular M can appear at most
(
t−h
k−h

)
times in this way, so there are

at least
(
t
k

)
/
(
t−h
k−h

)
=
(
t
h

)
/
(
k
h

)
missing edges M ∈

(
S
h

)
\ H`.

This Lemma alone is enough to prove Theorem 9.

Proof of Theorem 9. Assume for an ` ∈ Z, that the largest edge of H`+2 in S

is of size at most (1− ε)|S| for some ε > 0. Since (H`)`∈Z has Helly Number

h, this implies ωh(H`+1|S) ≤ (1− ε)|S|. Now Lemma 6 implies
∣∣(S
h

)
\ H`

∣∣ ≥(
k
h

)−1(ε|S|
h

)
≥ δ
(|S|
h

)
with some δ(ε, k, h) > 0, proving Theorem 9.

Before proving Theorem 8, we need the following technical Lemma, which

is an analogue of Lemma 3.2 from [Hol20] and can be proved using Lemma 6.

Lemma 7. Let (H`)`∈Z be a hypergraph chain with Colorful Helly Number

k over a base set V and S ⊂ V a finite subset with |S| = n large enough.

If for an ` ∈ Z and c ∈ (0, 1) the inequality ωh(H`+1|S) ≤ cn/2 holds, then

given any i ∈ [k] and a family Fi ⊂
(
S
i

)
with |Fi| ≥ c

(
n
i

)
there exists another

family Fi−1 ⊂
(
S
i−1

)
and an M ∈

(
S
h

)
\ H` such that |Fi−1| ≥

(
c

12kh

)h ( n
n−1

)
and A ∪ {v} ∈ Fi for all A ∈ Fi−1 and v ∈M .

Proof of Lemma 7. For every A ∈
(
S
i−1

)
let ΓA = {v ∈ S : A∪{v} ∈ Fi} and

let

P = {(A,M) : A ∈
(

S

i− 1

)
,M ∈

(
ΓA
h

)
\ H`}.

We want to lower bound |P|. By Lemma 6, for a fixed A ∈
(
S
i−1

)
there are

at least
(
k
h

)−1( 1
h

(|ΓA|−(c/2)n)

h

)
distinct M ∈

(
ΓA
h

)
\ H` such that (A,M) ∈ P .

Jensen’s inequality gives
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|P| ≥
(
k

h

)−1 ∑
A∈( S

i−1)

(
1
h

(|ΓA| − (c/2)n)

h

)

≥
(
k

h

)−1(
n

i− 1

)(( n
i−1

)−1 1
h

∑
A∈( S

i−1)
(|ΓA| − (c/2)n)

h

)
.

Since ∑
A∈( S

i−1)

|ΓA| = i|Fi| ≥ ic

(
n

i

)
> (n− i)c

(
n

i− 1

)
,

we get

∑
A∈( S

i−1)

(|ΓA| − (c/2)n) > (n− i)c
(

n

i− 1

)
− (c/2)n

(
n

i− 1

)
,

and thus

|P| ≥
(
k

h

)−1(
n

i− 1

)(
nc
2h
− ci

h

h

)
.

If n is large enough compared to i, k and h, then

|P| ≥
( c

12hk

)h( n

i− 1

)(
n

h

)
.

Since there are
(
n
h

)
possible M ∈

(
S
h

)
, there is an M , with at least(

c
12hk

)h ( n
i−1

)
different A ∈

(
S
i−1

)
such that (A,M) ∈ P . These As will form

Fi−1.

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Let f(x) =
(

x
12hk

)h
, α0 = α, αi+1 = f(αi) and β =

αk−1. Fix an ` and suppose for contradiction, that
∣∣H` ∩

(
S
k

)∣∣ ≥ α
(
n
k

)
, but

H`+k+1 has no edge of size at least βn inside S. Since (H`)`∈Z has Colorful
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Helly Number k, it has Helly Number h ≤ k, so H`+k+1 having no edge of

size at least βn implies ωh(H`+k|S) < βn.

Let Fk = H` ∩
(
S
k

)
. Since (H`)`∈Z is a hypergraph chain, Fk ⊂ H`+i for

all i ≥ 0, in particular, Fk ⊂ H`+k. We have |Fk| ≥ α
(
n
k

)
and ωh(H`+k|S) <

βn ≤ (α/2)n, so we can apply Lemma 7 with c = α to obtain an Fk−1 ⊂
(
S
k−1

)
with |Fk−1| ≥ α1

(
n
k−1

)
and an M1 ∈

(
S
h

)
\H`+k−1 such that A∪{v} ∈ Fk for all

A ∈ Fk−1 and v ∈ M1. Now we have |Fk−1| ≥ α1

(
n
k−1

)
and ωh(H`+k−1|S) ≤

ωh(H`+k|S) < βn ≤ (α1/2)n and we can apply Lemma 7 again, this time

with c = α1, to obtain an Fk−2 ⊂
(
S
k−2

)
with |Fk−2| ≥ α2

(
n
k−2

)
and an

M2 ∈
(
S
h

)
\ H`+k−2 such that A ∪ {v} ∈ Fk−1 for all A ∈ Fk−2 and v ∈ M2.

Note that A ∪ {v1, v2} ∈ Fk = H` ∩
(
S
k

)
for all A ∈ Fk−2, v1 ∈M1, v2 ∈M2.

After repeating this process k− 1 times, we get an F1 ⊂
(
S
1

)
with |F1| ≥

αk−1n = βn and M1, . . . ,Mk−1 ∈
(
S
k

)
\ H`+1 such that A ∪ {v1, . . . , vk−1} ∈

H` ∩
(
S
k

)
for all A ∈ F1, v1 ∈ M1, . . . , vk−1 ∈ Mk−1. Since ωh(H`+2|S) < βn,

the set of vertices of F1, V (F1) is not an h-clique in H`+2 and there must be

an Mk ∈
(
V (F1)
h

)
\ H`+1 by (H`)`∈Z having Helly Number h. But regarding

M1, . . . ,Mk as color classes, (H`)`∈Z having Colorful Helly-number k yields

a contradiction, since M1 × . . .×Mk ⊂ H`, but there is no color class Mi ∈
H`+1.

3.4 Geometric Consequences

If v ≈ d−cd
2

from Theorem 6, then
(
Ed
(
v`
))
`∈Z has Colorful Helly Number

3d by Theorem 6, so the following Corollary follows from Theorem 8.

Corollary 3. For every dimension d ≥ 1 and every α ∈ (0, 1), there is a

β ∈ (0, 1) such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfam-

ilies of size 3d, there are at least α
(|C|

3d

)
for whom the intersection of the 3d

members contains an ellipsoid of volume at least one.
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Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that
⋂
C∈C′

C

contains an ellipsoid of volume at least d−cd
3

with a universal constant c > 0.

Proof. The above claim is equvivalent to saying that
(
Ed
(
v`
))
`∈Z has Frac-

tional Helly Number 3d, if v = d−cd
3

with a universal constant c. Theorem 6

states that
(
Ed
(
v`
))
`∈Z has Colorful Helly Number 3d, if v = d−c

′d2 as in

Theorem 6. By applying Theorem 8 to the latter Hypergraph Chain, we

can conclude, that
(
Ed
(
v(3d+1)`

))
`∈Z has Fractional Helly Number 3d and

v = d−c
′d2 . But this is equvivalent to

(
Ed
(
v`
))
`∈Z having Fractional Helly

Number 3d if v = d−cd
3

with a constant c.

This is a slight improvement on the Fractional Helly Number, which was

3d + 1 in Theorem 7. Can we go below 3d? Theorem 9 implies at least a

stability version of the Quantitative Helly Theorem with Helly Number 2d

as follows.

Corollary 4. For every positive integer d there exists a function β : (0, 1)→
[0, 1) with limα→1 β(α) = 1 such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfam-

ilies of size 2d, there are at least α
(|C|

2d

)
for whom the intersection of the 2d

members contains an ellipsoid of volume at least one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that
⋂
C∈C′

C

contains an ellipsoid of volume at least d−cd
2

with a universal constant c > 0.

Proof. Since
(
Ed
(
v`
))
`∈Z, with v = d−cd

2
from Theorem 6, has Helly Number

2d by Theorem 5 and Colorful Helly Number 3d by Theorem 6, we can apply

Theorem 9. The assumption of Corollary 4 states that for a finite subset

of convex sets C, the inequality
∣∣Ed(v0) ∩

( C
2d

)∣∣ ≥ α
(|C|

2d

)
holds with some

α ∈ (0, 1), where v can be v = d−cd
2

from Theorem 6. Theorem 9 yields a

subfamily C ′ ⊂ C with C ′ ∈ Ed(v2) and |C ′| ≥ β(α)|C|, where β is the function

from Theorem 9. For C ′, the inequality vol

( ⋂
C∈C′

C

)
≥
(
d−cd

2
)2

= d−2cd2

holds.
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The above two Corollaries has analogues in the case where we use Theo-

rems 8 and 9 for the hypergraph chain
(
Qd
(
v`
))
`∈Z. We state them here for

the readers convenience.

Corollary 5. For every dimension d ≥ 1 and every α ∈ (0, 1), there is a

β ∈ (0, 1) such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfam-

ilies of size 3d, there are at least α
(|C|

3d

)
for whom the intersection of the 3d

members is of volume at least one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that vol

( ⋂
C∈C′

C

)
≥

d−9d3.

Corollary 6. For every positive integer d there exists a function β : (0, 1)→
[0, 1) with limα→1 β(α) = 1 such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfam-

ilies of size 2d, there are at least α
(|C|

2d

)
for whom the intersection of the 2d

members is of volume at least one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that vol

( ⋂
C∈C′

C

)
≥

d−cd
2

with a universal constant c > 0.
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Chapter 4

Discussion

One important question about quantitative Helly type Theorems is whether

we can achieve Helly Number 2d in Quantitative Colorful and Fractional

Helly Theorems.

Conjecture 1. There is a constant c(d) > 0 such that whenever C1, . . . , C2d

are finite families of convex bodies from Rd with every colorful intersection

having volume at least 1, then there is a family Cj, such that
⋂
C∈Cj

C is of

volume at least c(d)?

Conjecture 2. There is a constant c(d) and a function β : (0, 1) → (0, 1)

such that the following is true.

Whenever C is a finite family of convex bodies from Rd such that at least

α
(|C|

2d

)
of the 2d-wise intersections from C is of volume at least 1 with α ∈

(0, 1), then there is a subfamily C ′ ⊂ C such that |C ′| ≥ β(α)|C| and
⋂
C∈C′

C is

of volume at least c(d).

Our whole thesis can be viewed as a collection of attempts trying to solve

these conjectures. Corollaries 1 and 5 are the current records with Helly

Number 3d instead of the conjectured 2d for both questions. Our Theorem 8

shows, that proving Conjecture 1 would also confirm Conjecture 2. In the
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end, our Corollary 6 is a partial result towards Conjecture 2 by showing the

existence of the function β at least in a small neighbourhood of 1.
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