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Introduction

Quantum computing is a rapidly evolving field at the forefront of scientific research and tech-
nological advancements. Unlike classical computing, which relies on bits represented as 0s and 1s,
quantum computing harnesses the unique properties of quantum systems, such as superposition
and entanglement, to perform computations with quantum bits or qubits. For this reason, quan-
tum computing differs from classical computing due to the underlying physics involved, which
necessitates the development of new mathematical frameworks. The mathematical foundations
of this area were laid in the late 20th century, during which significant discoveries were made,
such as Shor’s algorithm and Grover’s algorithm. These notable breakthroughs demonstrated the
potential of quantum computers to outperform classical counterparts in specific computational
tasks. Interestingly, it is proven that quantum computers can solve the same problems as classical
computers, but with the advantage of potentially providing faster solutions for certain problems.

The central goal of quantum computing research is twofold. First, it aims to engineer and scale
up robust and stable quantum systems with a high number of qubits. Building a reliable quantum
computer is a formidable engineering challenge due to the delicate nature of quantum systems
and the need for precise control and mitigation of errors. Second, researchers strive to design and
develop quantum algorithms that exploit the unique capabilities of quantum computers, leading
to new approaches and insights across various scientific and technological domains.

At the present time, the best universal quantum computers don’t exceed the limits of classical
computation, although a few special-purpose quantum machines can work much better for some
specific problems. Many times, when applying classical methods to massive-scale dataset, we
must sacrifice accuracy in exchange for speed. There is high hope that with the help of quantum
computing we can overcome this trade-off. With a fast and accurate method in hand, one can
make significantly better predictions.

The major motivation for me to choose quantum algorithms as my thesis topic was to get to
know some of the problems for which there exists faster quantum algorithm than the best known
classical method. I chose the topic of matrix inversion which is a central and deeply studied
research area of recent mathematics.

The structure of my thesis is designed in a way that it starts by introducing frequently used
and well-known concepts, and then culminates in two sophisticated methods that build upon the
earlier concepts presented in the beginning. Throughout the work, I aimed to synthesize existing
knowledge and provide a comprehensive analysis in the context of these methods.

In the first chapter, I provide the necessary background to understand the latter parts of
the thesis. This part contains the relevant fundamental definitions, theorems and I touch upon
the most common techniques of quantum computing many of which are vast research topics
themselves. These are quantum encoding, Quantum Fourier Transform and Phase Estimation,
Hamiltonian simulation and Amplitude Estimation. Besides, I also give a short overview of linear
regression which is a classical supervised learning method of common occurrence, that will bear
fruit in chapter three.

The second chapter demonstrates a pioneering quantum algorithm (by Harrow, Hassidim
and Lloyd from 2008) for solving an Ax = b linear systems of equations (with some restrictions).
This is a crucial part of the thesis, not only because this task lies in the centre of many real-life
problem, but also further quantum algorithms use this as a subroutine. The discovery of this
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algorithm has given birth to quantum machine learning, which is a brand new field in quantum
computing. The core of this process is to calculate the inverse matrix. This way, applying A−1

to |b⟩ yields |x⟩ as the output. The steps of this algorithm will also serve as a template for other
methods. The HHL-method has definite limitations that are also mentioned in order to cover the
full picture.

The third chapter goes a little bit further. In this part, we focus on finding the best linear
regression model, which involves computing the pseudo-inverse of a given matrix. We will provide
two methods for this purpose. It is important to add that this task is more general than the
previous one, as the pseudo-inverse of an invertible matrix coincides with its inverse. At first, I
summarise the initial quantum algorithm to solve this problem, which stems from the authors of
the previous algorithm. This, however, heavily builds on the HHL-algorithm, for which reason, I
demonstrate another algorithm that utilizes more sophisticated methods.

When writing this thesis, I tried to focus my attention on the tasks in which quantum
computers outperform classical ones. A few of the algorithms in this work are of this kind,
however, we shouldn’t ignore the fact, that they have their limitations. I also tried to highlight
these when it was relevant.
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1 Preliminaries

1.1 Quantum basics

In this subsection, I provide the absolute necessary background to the mathematics of the quan-
tum world. I cover the basic notations, definitions and statements one needs to understand this
thesis. For further details, see [18] or [14].

In quantum algorithms, we work with special N -dimensional vectors (so-called quantum
states) which are conventionally written in the following form:

|ϕ⟩ = α0 |0⟩+ α1 |1⟩+ . . .+ αN−1 |N − 1⟩ ,

where |j⟩ is the jth basis vector in the N -dimensional space.

Its conjugate transpose is a row vector denoted by ⟨j| := |j⟩T .

Definition 1. The vector |ϕ⟩ = α |0⟩+ β |1⟩ ∈ C2 is a qubit if |α|2 + |β|2 = 1.

Definition 2. Vectors in the form of
N−1∑
j=0

αj |j⟩ ∈ CN , where N = 2n, are called n-qubit

registers if
N−1∑
j=0

|αj |2 = 1. The complex numbers, αj-s are called amplitudes.

Transforming a register into another one is defined as a multiplication by a matrix of the
respective size. The result of the multiplication should be a register as well, meaning that the
matrix should preserve the norm. For this reason, only unitary matrices are allowed: for which
∥Ax∥ = ∥x∥.

Property 1. The following two conditions are equivalent:

1. A is unitary,

2. A∗ = A−1, where A∗ = A
T per definition.

Here, I list the most common unitary operators:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Rϕ =

(
1 0
0 eiϕ

)
, H =

1√
2

(
1 1
1 −1

)
. (1)

Matrix X swaps |0⟩ and |1⟩ that corresponds to the classical negation, matrix Z puts a
negative sign in front of |1⟩ and Rϕ rotates the phase of the |1⟩-state by an angle |ϕ⟩.
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Another variation of Rϕ is Rs =

(
1 0

0 e2πi/2
s

)
. For s = 1, it is exactly Z, while for large s,

Rs is close to I.

Other than applying operators, we can measure the register
N−1∑
j=0

αj |j⟩ ∈ CN , which outputs

|k⟩ with probability |αk|2. Note that this definition makes sense since
N−1∑
j=0

|αj |2 = 1 holds.

The most frequently used matrix H is the so-called Hadamard, which has the following special
property:

H |j⟩ = 1

2

(
|0⟩+ (−1)j |1⟩

)
, j ∈ {0, 1}. (2)

This implies that applying H to either |0⟩ or |1⟩ and measuring the resulting state, gives the
output |0⟩ or |1⟩ with equal probability.

Applying more operations to one qubit can be done by multiplying the respective matrices.
Applying more operations to different qubits of a register simultaneously can be defined

by tensor products. For example, H |0⟩ ⊗ H |0⟩ =: H⊗2 |00⟩. In this case |00⟩ is equal to
|0⟩ ⊗ |0⟩ by definition. This notation is used for other cases: let bi ∈ {0, 1} for i = 1, . . . , k,
then |b1, . . . , bk⟩ := |b1⟩ ⊗ . . .⊗ |bk⟩.

Hadamard matrix has the following ubiquitous property:

Property 2. H⊗n |0n⟩ = 1√
2n

∑
j∈{0,1}n

|j⟩.

Operators can be extended to affect on two or more qubits simultaneously. First, I list the
most common 2-qubit gates.

A direct calculation shows that the following operator swaps the two qubits it acts on.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Another ubiquitous one is controlled-NOT.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

It can be verified by a quick calculation, that CNOT negates the second qubit of its input if
the first qubit is |1⟩, and behaves as identity if the first qubit is |0⟩.

More generally, if U is a unitary 1-qubit operator: U =

(
u11 u12
u21 u22

)
, then controlled-U is a

2-qubit operator defined as:

CU =


1 0 0 0
0 1 0 0
0 0 u11 u12
0 0 u21 u22

 .
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A short calculation shows that CU applies U to the second qubit if the first qubit is |1⟩ and
behaves as identity if the first qubit is |0⟩. The first qubit is called controlled-qubit, as it is left
unchanged.

Other than one- or two-qubit operators, many-qubit operators play important role, too. An
ubiquitous one is the so-called controlled-rotation. Let’s say we have a number 0 ≤ ϕ < 1, which
has a d-bit representation: ϕ = 0.ϕ1, . . . , ϕd, and it is stored in d qubits.

Then, there exists a d+ 1-qubit operation which rotates |0⟩ in the following way:

|ϕ⟩ |0⟩ → |ϕ⟩

(√
1− C

ϕ2
|0⟩+ C

ϕ
|1⟩

)
, (3)

where C is a normalizing constant. The exact implementation of this operation is not covered in
this thesis, it can be found in [11].

Applying a function f in quantum computing is usually done in the following way: |x⟩ |0⟩ →
|x⟩ |f(x)⟩. The same idea is used when reading an element of a matrix X and vector y. As we will
be working with matrices and vectors, we assume that the following operators (so-called queries
or black-box operators) exist for this purpose:

PX

(
|j⟩ |k⟩ |z⟩

)
= |j⟩ |k⟩ |z ⊕ xj,k⟩ ,

and
Py |j⟩ |z⟩ = |j⟩ |z ⊕ yj⟩ , for all j and k,

where ⊕ denotes the bitwise addition modulo 2. In both cases, the last register holds for a bit
string representing the entry at the position given by the first (two) registers. Both PX and Py

are unitary operators as they are permutation matrices.

In the algorithms presented in this thesis, we mostly work with multiple registers simulta-
neously. For clearer visibility, we use lower indices both for the registers and the operators that
indicates which operator acts on which register. In the following example, the first register is |ϕ⟩,
the second one is |ψ⟩ and the third one is |ν⟩, while operator Mj (j = 1, 2, 3) acts on the jth

register.

M1M2M3

(
|ϕ⟩1 |ψ⟩2 |ν⟩3

)
=
(
M1 |ϕ⟩1

)
⊗
(
M2 |ψ⟩2

)
⊗
(
M3 |ν⟩3

)
.

This notation will prove exceptionally useful in Section 1.4 and Section 2.1 and Section 3.2.

Until now, we introduced several matrices (operations) which can be used easily in theory.
However, building a quantum computer raises the questions which unitary operators to imple-
ment physically. According to the Solovay-Kitaev theorem ([14]), with the usage of H, Rπ/4 and
CNOT , any other unitary matrix can be arbitrarily well approximated.
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In the remaining part of the thesis, we call the set of matrices I already introduced (with the
exception of queries, PX and Py) elementary matrices, meaning that we take their implemen-
tation for granted. When calculating the complexity of each algorithm, we will count the number
of times they are utilized.

Definition 3. The number of times elementary gates are used is called gate complexity. The

number of the uses of PX and Py is called query complexity.

I will often refer to gate complexity as runtime, running time or simply complexity.

Remark. For an N ×N matrix X and N -dimensional vector y, we assume that PX and Py can

be implemented in O
(
poly(logN)

)
gate complexity.

Remark. All of the algorithms demonstrated in this thesis exclusively utilize elementary matrices

and queries (PX and Py for the respective matrix X and vector y).

The question naturally arises how to encode data in quantum states.
Method A is digital encoding : if we have a numerical value N in the decimal system whose

binary representation is y1, . . . , yn, where yjs are bits, then it can be associated with the quantum
state |y1⟩ ⊗ . . .⊗ |yn⟩. For example, number 5 is represented by |101⟩.

Method B is analog encoding : the N -dimensional data with complex entries y = (y1, . . . , yN )

is represented by
1√

N−1∑
j=0

y2j

N−1∑
j=0

yj |j⟩. Here – on the contrary with digital encoding – the infor-

mation is stored in the amplitudes.
Both of them have pros and cons: the first scheme is easier to execute but it can require too

many number of qubits. Later, in Chapter 2, both methods will be utilized. In many steps of the
algorithms, we will implicitly use that conversion between the two form is possible according to
[13].

1.2 Quantum Fourier Transform

Fourier transform is a widely used tool in many branches of engineering, computational sciences
and mathematics. Its faster version, the so-called Fast Fourier Transform was one of the most
significant milestones of the 20th century mathematics, which provides a speed-up for polynomial
multiplication, just to name its most well-known application.

However groundbreaking it was, its quantum counterpart ([7]) is even exponentially faster:
Fast Fourier Transform takes O(N log(N)) steps, while for Quantum Fourier Transform only
O(log2(N)) gates are needed. What more interesting is the fact that Fourier transform is the only
known tool in quantum computation which gives exponential advantage. The most significant
case where Quantum Fourier Transform is used as a subroutine is the Quantum Phase Estimation,
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which is an algorithm for estimating the eigenvalues of a unitary matrix. This is covered in Section
1.3.

In this part, I demonstrate how the Quantum Fourier Transform is implemented using simple
operations. Later in the thesis, this will pop up again in the linear equation solver algorithm (in
Chapter 2) as a subroutine.

Here, the operation we refer to as Fourier transform, is a 2n × 2n-size unitary matrix, all of
whose entries have the same magnitude. Let N = 2n and let FN denote the matrix mentioned

above. The (j, k)-entry of FN is
1√
N
e

2πi·jk
N .

As a quantum operation, it takes the following form:

FN |k⟩ = 1√
N

N−1∑
j=0

e
2πi·jk

N |j⟩ ∈ CN . (4)

Here, |k⟩ and |j⟩ are basis vectors of CN , therefore it is more convenient to use their binary
representation:

• k = k1, . . . , kn =
n∑

r=1
kr · 2n−r,

• j = j1, . . . , jn =
n∑

r=1
jr · 2n−r,

where each kr, jr ∈ {0, 1}.

The following lemma gives us an equivalent form of (4), which will suggest how the circuit
implementation should look like.

Lemma 1.1. [18] Let N = 2n and |k⟩ = |k1, . . . , kn⟩ be a basis vector in CN . Then,

FN |k⟩ =
n⊗

r=1

1√
2

(
|0⟩+ e

2πik
2r |1⟩

)
. (5)

Proof. First, we reformulate the left-hand side of the equation.

FN |k⟩ = 1√
N

N−1∑
j=0

e
2πijk
N |j⟩ = 1√

2n

N−1∑
j=0

e
2πijk
2n |j⟩ = 1√

2n

N−1∑
j=0

e
2πik
( n∑

r=1
jr2−r

)
|j⟩ .

Here we only used the binary representation of |j⟩ and the fact that j/2n =
n∑

r=1
jr2

−r.

From now on, let’s call
1√
2n

N−1∑
j=0

e
2πik
( n∑

r=1
jr2−r

)
|j⟩

left-hand side, and
n⊗

r=1

1√
2

(
|0⟩+ e

2πik
2r |1⟩

)
10



right-hand side.

It is trivial to see that they are both vectors of dimension 2n.

To prove their equality, let’s fix an index j′ ∈ {0, 1, . . . , 2n − 1}, whose binary representation

is j′1, . . . , j′n. We claim that the j′-th coordinate of the left-hand side and the right-hand side are

the same.

For clearer visibility, let us introduce a set of indices, S = {s ∈ {1, . . . , n} : j′s = 1}.
Equivalently, j′s = 1 ⇐⇒ s ∈ S.

The j′-th coordinate of the left-hand side is the coefficient of |j′⟩, hence it is
1√
2n
e
2πik
( n∑

r=1
j′r2

−r
)
.

This is equal to
1√
2n
e
2πik·

( ∑
r∈S

j′r2
−r
)
, since if jr = 0 for any r, then it doesn’t contribute to the

sum.

Using the definition of tensor product, the j′-th coordinate of the right-hand side is

exactly
1√
2n
e
2πik·

( ∑
r∈S

jr2−r
)
.

Let us see how it can be implemented in the simplified case of n = 4, N = 16. We have
k ∈ {0, 1, . . . , 15} whose binary form is k = k1, k2, k3, k4.

In this case, substituting into equation (5) gives us the following form:

F16 |k1, k2, k3, k4⟩ =

=
1√
2

(
|0⟩ + e2πi·0.k4 |1⟩

)
⊗ 1√

2

(
|0⟩ + e2πi·0.k3k4 |1⟩

)
⊗ 1√

2

(
|0⟩ + e2πi·0.k2k3k4 |1⟩

)
⊗ 1√

2

(
|0⟩ +

e2πi·0.k1k2k3k4 |1⟩
)
.

Here, we used that e2πi = 1 and j/2n =
n∑

r=1
jr · 2−r, which explains why the last r values of

k appeared in the n− r qubits.

To prepare F16, we will use a 4-qubit quantum circuit, where the initial qubits are |k1⟩ , |k2⟩ , |k3⟩
and |k4⟩.

The easiest one to prepare is
1√
2

(
|0⟩+ e2πi·0.k4 |1⟩

)
, as we only need to apply one Hadamard

to |k4⟩, based on (2) and the fact that e2πi·0.k4 = (−1)k4 .

Similarly, applying Hadamard to |k3⟩ gives us
1√
2

(
|0⟩ + e2πi·0.k3 |1⟩

)
. In order to set the

amplitude of |1⟩ to e2πi·0.k3k4 , we have to multiply with e2πi·0.0k4 . Applying one controlled-R2

does so, where the controlled qubit is |k4⟩. This should obviously come before applying Hadamard
to the fourth qubit.

The remaining two qubits are prepared in an analogue way, the only difference is in the
number controlled-Rs gates.
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As a quantum circuit (for n = 4), it pictures as follows:

|k1⟩ H R2 R3 R4

|k2⟩ H R2 R3

|k3⟩ H R2

|k4⟩ H

Figure 1. Quantum circuit of F16

The general case (where n is arbitrary) is quite analogous to this one.
We use at most n gates for any of the n qubits, which implies that the number of gates is

O(n2) = O(log2(N)).

It is important to add, that we can obtain the inverse Fourier transform (F−1
N ) by reversing

the order of the gates and interchanging operation H with H∗.

For the next part, we need the following special property of FN .

Remark. On |0n⟩, the Fourier transform FN has the same effect as H⊗n, where 2n = N :

FN |0n⟩ = 1√
N

N−1∑
j=0

|j⟩ . (6)

1.3 Quantum Phase Estimation

In this part, I will demonstrate the most common case, where Quantum Fourier Transform is
used as a subroutine. The name of this method is Quantum Phase Estimation (hereafter referred
to as QPE), which can be formulated as follows.

Given a unitary U and one of its |Φ⟩ eigenvector as a quantum state

U |Φ⟩ = λ |Φ⟩ , (7)

the eigenvalue, λ, is to be found.
We don’t assume to know Φ explicitly, all we need is to have it as a quantum state.
The fact the U is unitary implies that |λ| = 1, meaning that λ is on the unit circle. Formally,

λ = e2πiϕ for some ϕ ∈ [0, 1).
Let n denote the number of bits which describe ϕ: 0.ϕ1, . . . , ϕn and let’s assume that no

more bits are needed to accurately describe ϕ. Having fixed n, let N := 2n.
The algorithm demonstrated below will calculate ϕ, after which calculating λ can be done

using constant number of elementary gates.
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The Phase Estimation algorithm consists of three major steps.
The initial state is |0n⟩ |Φ⟩, to which we use the mapping FN ⊗ I. Because of (6), we obtain

1√
N

N−1∑
j=0

|j⟩ |Φ⟩ .

After this, we apply the map

|j⟩ |Φ⟩ → |j⟩U j |Φ⟩ = e2πiϕj |j⟩ |Φ⟩ , (8)

which gives us (
1√
N

N−1∑
j=0

e2πiϕj |j⟩
)⊗

|Φ⟩ .

By (4), this is equal to
(
FN |N · ϕ⟩

)
|Φ⟩ =

(
FN |2n · ϕ⟩

)
|Φ⟩ .

Now, we just apply the inverse Fourier transform F−1
N to the first n qubits and obtain

F−1
N FN |2nϕ⟩ |Φ⟩ = |2nϕ⟩ |Φ⟩ = |ϕ1, . . . , ϕn⟩ |Φ⟩ .

Theorem 1.2. [11] The operation defined in Eq. (8) can be implemented using O(2n) = O(N)

elementary gates.

Corollary 1.2.1. The runtime of QPE algorithm is O(2n) = O(N).

Remark. [11] Many times, one just needs the eigenvalue by n bit precision, where n is now an

arbitrary integer. The above procedure can be modified such that it outputs an n-bit estimation of

ϕ. The error of this modified algorithm cannot be more than 2−n, trivially. It can be shown that

the running time of this algorithm is also exponential in the number of the desired bit-precision,

therefore O(2n).

Alternatively, we could claim that the complexity of QPE is O(1/ε), where ε denotes the

desired precision.

The Quantum Phase Estimation turns up as a subroutine in many well-known algorithms.
The pioneering integer factoring algorithm of Shor is a typical example, although that one is not
covered in this thesis.

In Chapter 2, we will deal with system of linear equations, where, at some point, we will refer
back to this subsection invoking QPE as a subroutine.
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1.4 Hamiltonian simulation

Several times in this thesis, we want to utilize a Hermitian operator A (which means that A∗ = A
holds), that is not necessarily unitary. A typical way to remedy this issue is to convert it to a
unitary matrix

eiA =
(iA)0

0!
+
iA

1!
+

(iA)2

2!
+ . . .

and using this in the further steps. The main reason for doing so is that if Auj = λjuj , then
eiAuj = eiλjuj . First, we have to make sure that the expression eiA is unitary.

Lemma 1.3. If A ∈ CN×N is a Hermitian matrix, then eiA is unitary.

Proof. All we have to check is (eiA)−1 = (eiA)∗.

We work in the eigenbasis of A, so that the matrix representation of eiA is diagonal: if uj
denotes the jth eigenvector of A with eigenvalue λj (Auj = λjuj), then

eiA =


eiλ1

eiλ2

. . .

eiλN

 . (9)

It is straightforward to verify that (eiA)∗ = e−iA :

(eiA)∗ =

( ∞∑
n=0

(iA)n

n!

)∗

=
∞∑
n=0

(iA∗)n

n!
=

∞∑
n=0

(iA)n

n!
= e−iA, (10)

where in the third equation, we exploited the Hermitian property of A.

Using (9) and (10), we obtain that

(eiA)∗ = e−iA =


e−iλ1

e−iλ2

. . .

e−iλN

 .

Consequently, eiA(eiA)∗ = I = (eiA)∗eiA, which proves the statement.

The conversion of A → eiA is called Hamiltonian simulation, which we introduce in two
special cases. But first, we define a matrix property, which will play a crucial role further on.

Definition 4. Matrix M is s-sparse, if it has at most s nonzero elements in each row, where s

is a constant, independent of the size of M . We also use the term ’sparse’ and ’O(1)-sparse’.

Remark. When working with sparse matrices, we always suppose that there exists a polynomial

time classical algorithm which, given a row index r ∈ {1, . . . , N}, outputs the non-zero entries in

row r.
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Theorem 1.4. ([12]) Let A be an s-sparse Hermitian matrix of size N ×N . Then, simulating

e−iAt can be done with a quantum algorithm in time O(log(N)s2t).

We will make use of this theorem in the linear equation system solver algorithm, while the
next theorem will pop up in the quantum linear regression model.

Theorem 1.5. ([12]) Let H ∈ CN×N be a Hermitian operator in the following special form:

H =
(
⟨G| ⊗ I

)
U
(
|G⟩ ⊗ I

)
, where U ∈ CNd×Nd is a unitary and |G⟩ = Ĝ |0⟩ ∈ Cd.

Then, there exists an algorithm that simulates e−iHt with precision ε and failure probability

O(ε) by making O(t+ log(1/ε)) uses of controlled-Ĝ and controlled-U .

Corollary 1.5.1. Let X be a matrix of size N × d, whose singular values lie in [1/κ, 1] and let

matrix A be defined as

A := |0⟩ ⟨1| ⊗X + |1⟩ ⟨0| ⊗XT =

(
0 XT

X 0

)
.

Then, there exists an algorithm that simulates e−iAt with precision ε and failure probability

O(ε) by making O
(
d
(√
dt+ log

(
1
ε

)))
uses of PX .

Proof. All we have to do is to construct matrices G and U such that A =
(
⟨G| ⊗ I

)
U
(
|G⟩ ⊗ I

)
.

At first, let’s define σ = σ(X) :=
max1≤j≤N ∥xj∥2√

1

N

N∑
j=1

∥xj∥2
, where xj is the jth row of X and ∥.∥

denotes the conventional ℓ2-norm.

Next, we define matrix X̃ := X ·
√
N

σ
√
d
, where. This will make sense in equation (13), when

V is introduced.

Since all sj(X) singular value of X is at most 1, we obtain that

tr(XTX) =
d∑

j=1

s2j (X) ≤ d.

Hence,

max
1≤j≤N

∥xj∥ ≤ σ ·
√
tr(XTX)√
N

≤ σ
√
d√
N
. (11)

From equation (11), we get that:

max
1≤j≤N

∥x̃j∥ ≤ 1. (12)

Next, we construct the matrices that give us the desired mapping.

Let V be the operator which executes the following mapping:
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V :
(
|0, i⟩1

)
⊗
(
|0, 0m⟩2 |0⟩3

)
→ |0, i⟩1 ⊗

( d∑
j=1

x̃i,j |1, i⟩2 |0⟩3 +
√

1− ∥x̃i∥2 |1, 1⟩2 |1⟩3
)
, (13)

for 1 ≤ i ≤ N ,

and

V :
(
|1, j⟩1

)
⊗
(
|0, 0m⟩2 |0⟩3

)
→ |1, j⟩1 ⊗

1√
N

N∑
i=1

|0, i⟩2 |0⟩3 , (14)

for 1 ≤ j ≤ d and m = Θ(log(N)).

Note that in equation (13) we have a non-negative number under the square root due to (12).

The mapping V makes it possible to read the elements of X. In equation (13), a row index

can be set in the second part of the first register. This way, we gain access to the chosen row of

X through the amplitudes. While in equation (14), column index is free of choice.

With these operators in our pocket, let’s define operator U

U = V ∗ · (SWAP1,2 ⊗ I3
)
· V,

and |G⟩ as follows:

|G⟩ = |0, 0m⟩2 |0⟩3 .

Here Ĝ is the identity.

Going through the calculations, we obtain that

1

σ
√
d

(
0 X

XT 0

)
=
(
⟨G| ⊗ I

)
V ∗(SWAP1,2 ⊗ I3

)
V
(
|G⟩ ⊗ I

)
.

Equivalently, A = σ
√
d ·H, meaning that we reduced the problem to Thm 1.5.

What remained is to make sure that the whole process can be achieved using the query Px

no more than O(d) times.

We can clarify that SWAP can be implemented in time poly(log(N)). The mapping in (14)

can be implemented in O(log(N)) using Hadamard.

We only need to construct the mapping in (13) by using PX no more than O(d) times.

To do this, we first accomplish the transformation

|0, i⟩1 |0, 0
m⟩2 |0⟩3 → |0, i⟩1 |0, 0

m⟩2 |0⟩3
( d⊗

j=1

|xi,j⟩
)

4

.

This requires nothing else than O(d) uses of PX , as we just query all the d element of the ith

row of X.
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With the elements of X in the fourth register, we can get the state:

|0, i⟩1
( d∑

j=1

x̃i,j |1, j⟩2 |0⟩3 +
√
1− ∥x̃i∥2 |1, 1⟩2 |1⟩3

)( d⊗
j=1

|xi,j⟩
)

4

.

We won’t delve into the details of this step, but according to ([15]), it can be done in O(d log(N)).

Setting back the last register to |0⟩, leaves us with the desired state.

The fact that the whole procedure requires no more than O(d) uses of PX implies that the

whole algorithm fulfils all the requirements we demanded.

1.5 Amplitude Estimation

In this section, we demonstrate a well-known technique – based on articles on [4] and [11] –
to prepare a quantum state from an amplitude. This algorithm will be mostly invoked as a
subroutine in Chapter 3.2, where the amplitudes will store the information to be outputted.

Formally, we have the state

|y⟩ = √
p |ygood⟩+

√
1− p |ybad⟩ ,

where p << 1 and |ygood⟩ is orthogonal to |ybad⟩. The aim is to construct an algorithm that
estimates p and outputs it in a quantum state. But instead of |p⟩, the Amplitude Estimation
algorithm will output ϕ ∈ [0, π], for which p = sin(ϕ/2). It is equivalent to say, that the angle of
|y⟩ and |ygood⟩ is ϕ/2.

Here, we assume that we have access to two matrices. The first one, Sy, is the reflection
to the hyperplane orthogonal to |y⟩. The second one, Sgood is the reflection to the hyperplane
orthogonal to |ygood⟩, or equivalently, it reflects on |ybad⟩. Normally, the existence of Sgood is the
stronger assumption.

Hence, they are defined this way and also called Householder transformation.

Sy = I − 2 |y⟩ ⟨y| ,

and

Sgood = I − 2 |ygood⟩ ⟨ygood| .

Let G denote these two reflections after each other:

G = SySgood.

A straightforward calculations shows that in the orthonormal basis of {ygood, ybad} the matrix
representation is

Sgood =

(
−1 0
0 1

)
.

Similarly,

Sy =

(
− cos(ϕ) sin(ϕ)
sin(ϕ) cos(ϕ)

)
.
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Therefore, we obtain the following form of G:

G =

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
,

which is a rotation matrix.
Its two eigenvectors as quantum states are

|y±⟩ =
1√
2

(
|ygood⟩ ± i |ybad⟩

)
,

with eigenvalues e±iϕ. All we have to do is to apply Quantum Phase Estimation to get the
state e±iϕ.

Therefore, the total runtime of Amplitude Estimation is dependent of the precision with
which the Quantum Phase Estimation is invoked.

1.6 Classical linear regression

Given a data set:
(
xj , yj

)N
j=1

, the inputs, xj are elements of Rd, the outputs, yj are elements of
R. The vectors of inputs can be written in a matrix form: X = ((x))i,j ∈ RN×d, where the jth

row of X is xj . For simplicity, we will refer to X as ’data matrix’.
We are searching for a linear model in a given d-dimensional vector space, e.g. a vector

β = (β1, . . . , βd) such that β1xi,1 + . . .+ βdxi,d ≈ yi, ∀i = 1, . . . , N .
In a matrix form, this can be written as:

y ≈ Xβ.

Here we only consider the case when X has full rank.
First, assume that N > d, which means that we’ve got more data points than the dimension

of the vector space. This implies that the linear system of equations is overdetermined, meaning
that in a typical case there is no unique solution. A typical approach is to find β̂ such that

β̂ = argmin
β

∥Xβ − y∥2, (15)

which is called the least squares method. It is well-known that the solution of (15) is unique and
has the following closed form:

β̂ = (XTX)−1XT y.

We can introduce the notation X+ := (XTX)−1XT which is called the pseudo-inverse of X. The
β̂ also has a nice geometrical interpretation: the closest point to y from the subspace spanned
by the columns of X is Xβ̂.

Computing β̂ classically is normally done using QR-factorization in the following way. If X =
QR, where Q has orthonormal columns and R is an upper triangular with non-zero diagonals,
then X+ = R−1QT and consequently β̂ = R−1QT y. This way, we can avoid matrix inversion by
backward substitution. The bad news is, this approach takes O(Nd2) steps.

In many examples, the input-matrix X is complex valued. The following general definition
of pseudo-inverse covers this case as well.
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Definition 5. X+ .
= (X∗X)−1X∗.

The second case is when N < d. If X is assumed to be full rank, then the solution of y = Xβ
is not unique. Here, the so-called least norm approach is used: we search for a β̂ which minimizes
1
2∥β∥

2, with the condition of y = Xβ. In the quantum regression part of this thesis, I only care
about the first case, when N > d. However, it is important to add, that the solution of these two
cases show some similarities. In case of N < d, the sought-after β̂ has the following closed form:
β̂ = XT (XXT )−1y, and the definition of pseudo-inverse could easily be extended to this case.
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2 Linear system of equations

In this chapter, I mostly rely on the seminal article from 2008 ([10]) written by Harrow,
Hassidim and Lloyd, but I also make use of a lecture note ([8]) written by Sevag Gharibian.

This chapter consists of three parts: in Section 2.1, I present a well-known algorithm for solv-
ing linear system of equation. Then, in Section 2.2, I compute its running time and demonstrate
a theorem which pinpoints why this problem is so crucial. In Section 2.3, I show how it can be
applied to solve linear differential equations.

This, the so-called HHL algorithm, has given rise to the field of quantum machine learning
which is still in its infancy. Several quantum algorithms use this as a subroutine, therefore its
theoretical significance is unquestionable.

However meaningful it seems, it certainly has some deficiencies as Scott Aaronson pointed
out in his article ([1]). These eye-catching flaws of HHL algorithm (see below) raise the question
whether it can be used in any practical case or this whole method is exclusively of theoretical
significance. At the present time, we can conclude that the latter is the case. However, there is
a high chance that it will find practical uses in the long-term future.

2.1 HHL algorithm for matrix inversion

As an input, we are given a matrix A ∈ CN×N and a vector b ∈ CN , the task is to find an x ∈ CN

such that Ax = b.
The procedure, discussed below, solves this problem in logarithmic time in N , which is an

exponential speed-up over any classical algorithm solving the same problem. However, HHL-
algorithm doesn’t provide an improvement in every practical cases. One of its downsides is that
it outputs a quantum state which is always a vector of length 1 in CN , therefore it is only pro-
portionate to |x⟩. Also, it is not possible to query its elements, since a measurement spoils the
state leaving us with a basis vector. In those cases where we need |x⟩ just to perform further
operations on it, the algorithm (described in this section) can prove useful, indeed.

We will solve the system of equation in a specific way. The core of the method below is the
invertion of matrix A. With this in mind, solving the system reduces to applying the inverse
matrix to the input b, outputting the solution vector x in a quantum state.

Notice that, inverting a matrix with a classical algorithm takes as much time as solving the
system of equation. As pointed out in Section 1.2, Quantum Fourier Transform is exponentially
faster than its classical counterpart. This is the major reason behind the fact that HHL-algorithm
will provide an exponential acceleration to the best classical algorithm for solving linear system
of equations.

As we are talking about quantum algorithms, our current state is always an element of C2k

for a fixed k ∈ N. For this reason, we dispense from the normalizing factor: all we care about is
the angle of the given vector.

Definition 6. We say that vector v ∈ C2k and vector w ∈ C2k are proportional, if there exists a

constant c ∈ R − {0} such that v = cw, meaning that the direction of v and w are identical. For

simplicity, I use the following notation: v ∼ w. This relation is trivially symmetrical.
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Before moving on to the algoritms, let’s begin with the assumptions we need.

• First, A is full rank. This implicates the invertibility of A, which assumption cannot be
avoided.

• Without loss of generality, we can assume that A is a square matrix and Hermitian: A = A∗.
If this isn’t the case, solving

Ãx̃ = b̃, (16)

where Ã =

(
0 A
A∗ 0

)
, x̃ =

(
0
x

)
, and b̃ =

(
b
0

)
presents the solution of the original system

of equations.

• We also suppose that:

1. either b, as an input, is given in a quantum state: |b⟩,
2. or the assignment b→ |b⟩ can be made efficiently.

• Normally, the speed of the linear algebraic algorithms depends on the properties of the
input matrix. Here, we assume that ∥A∥∞ = 1, hence ∥A−1∥∞ = κ(A). This implies that
λmax(A) = 1 and λmin(A) =

1
κ(A) . This is equivalent to saying that A is well-conditioned.

• The sparseness of A is also supposed, which is by far the most severe restriction of all.

• Furthermore, we also assume that the eigenvalues λj of matrix A require no more than
O(log log(N)) bits to represent.

Another downside of the algorithm – as I pointed out earlier – that it outputs the quantum
state |x⟩ of log2(N) qubits. This can be useful, when for example we want to apply further
operations to this state or reveal statistical information about x, such as approximating the
value of an inner product ⟨x|z⟩, where z is some fixed vector.

As you can see, HHL-algorithm does not exactly solves Ax = b in general, but Ax = b with
the above conditions. On the top of that, it is also questionable whether it is possible to give a
classical algorithm for solving exactly the same problem with similar complexity. At the present
time, this is an open question. Having so many conditions raises the question if this algorithm
has any practical use. However, the only severe condition listed above is the sparseness of matrix
A. So far, the only known start-to-finish application of this algorithm is the speed-up of the
calculation of electromagnetic scattering cross-sections ([6]).

With these assumptions in hand, let’s delve into the details of the algorithm.
Since A is Hermitian, it can be written in a spectral form:

A =

N∑
j=1

λj |uj⟩ ⟨uj | , (17)

where A |uj⟩ = λj |uj⟩. The eigenvalues, λj-s are real and the eigenvectors, the |uj⟩ form an

orthonormal basis in CN , therefore |b⟩ =
N∑
j=1

βj |uj⟩ with some coefficients βj . The inverse matrix
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can also be expressed in a similar form:

A−1 =
N∑
j=1

1

λj
|uj⟩ ⟨uj | . (18)

Using these and the orthogonality of the eigenvectors, we get the following closed form of the
wanted output:

|x⟩ = A−1 |b⟩ =
N∑
j=1

1

λj
βj |uj⟩ . (19)

In order to get this state as an output, the key is to smuggle in the eigenvalues of A. For this
purpose, we will invoke the Quantum Phase Estimation algorithm described in Section 1.2.

First of all, A is not necessarily unitary, therefore applying the Hamiltonian simulation (Thm.

1.5) for A, we obtain eiA =
(iA)0

0!
+
iA

1!
+

(iA)2

2!
+ . . ., which is unitary according to Lemma 1.3.

For simplicity, we assume that this could be done efficiently.
Notice that Auj = λjuj ⇒ eiAuj = eiλjuj . Since |eiλj | = 1, we get that iλj = 2πiϕ for some

ϕ ∈ [0, 1), which is equivalent to λj = 2πϕ.

The algorithm is executed on three registers. Initially, |b⟩ is stored in the first one, the second
one is |0m⟩, where m = O(log(N)) while the third one is a single qubit set to |0⟩.

Since, the |uj⟩ form a basis, the quantum state |b⟩ is equal to
N∑
j=1

βj |uj⟩ for some unknown

βj-s. Formally, this means that the starting state is

N∑
j=1

βj |uj⟩1 |0
m⟩2 |0⟩3 .

In the first step, we apply the Quantum Phase Estimation for unitary eiA. After this, the
current state is

N∑
j=1

βj |uj⟩1 |λj⟩2 |0⟩3 .

Now that we have λj-s encoded in a quantum state, we use controlled-rotation (defined in
eq. (3)) to the second and third register:

|λj⟩2 |0⟩3 → |λj⟩2

(√
1− 1

λ2jκ
2(A)

|0⟩+ 1

λjκ(A)
|1⟩

)
3

. (20)

Having executed the controlled-rotation, we have the state

N∑
j=1

βj |uj⟩1 |λj⟩2

(√
1− 1

λ2jκ
2(A)

|0⟩+ 1

λjκ(A)
|1⟩

)
3

. (21)

The constant factor κ(A) is only needed so that we have a positive number under the square
root.
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In order to eliminate the eigenvalues, we apply the inverse of Quantum Phase Estimation to
the first two registers as the next step of the procedure. At this time, we are in the state of

N∑
j=1

βj |uj⟩1 |0
m⟩2

(√
1− 1

λ2jκ
2(A)

|0⟩+ 1

λjκ(A)
|1⟩

)
3

.

All we have to do is to measure the third register in a standard basis. If we get |0⟩ after the
measurement, we repeat the whole algorithm, until the measurement outputs |1⟩ in the third
register. After that, we ’remove the garbage’, e.g. apply operator X (defined in eq. (1)) to the
third register which resets |1⟩ to |0⟩.

To sum up, the algorithm, as a flow diagram, looks as follows:

|b⟩1 |0
m⟩2 |0⟩3 =

N∑
j=1

βj |uj⟩1 |0
m⟩2 |0⟩3

(1)−−→
N∑
j=1

βj |uj⟩1 |λj ⟩2 |0⟩3
(2)−−→

(2)−−→
N∑
j=1

βj |uj⟩1 |λj⟩2

(√
1− 1

λ2jκ
2(A)

|0⟩+ 1

λjκ(A)
|1⟩

)
3

(3)−−→

(3)−−→
N∑
j=1

βj |uj⟩1 |0
m⟩2

(√
1− 1

λ2jκ
2(A)

|0⟩+ 1

λjκ(A)
|1⟩

)
3

(4)−−→

(4)−−→
N∑
j=1

βj
1

λjκ(A)
|uj⟩1 |0

m⟩2 |0⟩3 ∼
N∑
j=1

1

λj
βj |uj⟩1 |0

m⟩2 |0⟩3 = |x⟩1 |0
m⟩2 |0⟩3 .

For further applications, it’s crucial to note that we can alter step (2) by setting the amplitude
of |1⟩ (and of |0⟩, evidently) to other values. Let’s call this step ’eigenvalue transformation’. With
this degree of freedom, we are armed with a general template to produce the powers of A, not
just its inverse.

In the figure below, I picture this general algorithm as a quantum circuit. The abbreviations
QPE and EVT stand for Quantum Phase Estimation and ’eigenvalue transformation’, respec-
tively.
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|b1⟩

QPE QPE∗

.

.

.
|bN ⟩

|0⟩⊗m

EV T

|0⟩

Figure 2. Quantum circuit for generalized HHL

2.2 Runtime analysis and BQP-completeness

From the description of the algorithm above, we can conclude the following:

Corollary 2.0.1. The runtime of the HHL algorithm is

O

(
κ2(A) ·

(
Tb + logN

))
, (22)

where Tb denotes the number of gates required for constructing |b⟩.

Proof. Measuring the third register gives us |1⟩ with probability κ2(A). Hence, the expected

number of times we have to repeat the whole algorithm is
1

1/κ2(A)
= κ2(A).

One running of the algorithm consists of two phases, indeed. First, we have to produce |b⟩,
which takes Tb time. In the remaining part of the algorithm, the major subroutine is the sparse

Hamiltonian simulation, as the Quantum Phase Estimation takes O(log(N)) runtime, as we

assumed that the eigenvalues need only O(log log(N)) bits to describe. According to Thm.1.4,

Hamiltonian simulation in this case takes O(ts2 log(N)) time. Considering that we applied it

with t = 1 and the fact that matrix A was sparse, we get the desired result.

Remark. If we demand κ(A), Tb ∈ polylog(N), then the complexity of the HHL-algorithm is

O(poly(log(N))). If, furthermore, A happens to be unitary, then κ(A) = 1 which reduces the

complexity even more.
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Remark. One of our assumption was that all eigenvalues can be written by O(log logN) bits.

There exists a modification of the aforementioned algorithm that does not rely on this assumption

and provides an estimation for the output vector, |x⟩. However, I did not address this aspect in

my thesis.

In the remaining part of this chapter, we prove that no significant improvement of the running
time is possible. In particular, any quantum computation can be encoded into an instance of
solving linear equations. For this purpose, we introduce some definitions and notations in the
first step.

Let P denote the set of problems that can be solved by classical deterministic computers
using polynomial time. Interchanging ’polynomial time’ with ’polynomial space’, we get the
definition of PSPACE. Another well-known classical complexity class is BPP. It denotes the
problems that can be solved by classical randomized computers using polynomial time with error
probability ≤ 1/3 on every input.

Its quantum counterpart is BQP (defined below) which can be thought of as the set of
problems that can be efficiently solved by quantum computers.

Definition 7. Let BQP denote the set of problems that can be solved by quantum circuits using

polynomial time with error probability ≤ 1/3 on every input. A problem is called BQP-complete,

if any other problem of BQP can be reduced to it in polynomial time.

The following series of containment holds.

Theorem 2.1. [18] P ⊆ BPP ⊆ BQP ⊆ PSPACE.

Only the latter containment is not trivial. It is also important to note that equation between
any two of these four complexity classes is not proved.

At this point, we must clarify that the proof of optimality will not be entirely precise in a
mathematical sense. We rely upon the conjecture that BQP ̸= PSPACE, which is generally
believed by mathematicians.

Having completed the preparations, we can now define the exact problem.

Definition 8. The so-called matrix inversion (MI) problem is the following:

The input is an invertible, Hermitian A ∈ CN×N matrix, for which
1

κ(A)
≤ λ(A) ≤ 1 for any

λ(A) eigenvalue of A. We also assume κ(A) to be in poly(log(N)).

Let |x′⟩ ∼ A−1
∣∣0N〉 be a unit vector and let Π = |1⟩ ⟨1| ∈ C2.

If ⟨x|Π⊗ I|x⟩ ≥ 2

3
, the output should be YES, if ⟨x|Π⊗ I|x⟩ ≤ 1

3
, the output should be NO,

and the output can be an arbitrary YES or NO otherwise.
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Theorem 2.2. [10] MI is BQP-complete.

Proof. The HHL-algorithm demonstrated in Section 2.1 proves the containment in BQP, thus

only the BQP-completeness remains to be shown. The proof goes by contradiction: the existence

of a quicker quantum algorithm consequences that BQP = PSPACE.

Let V = Vm·. . .·V1 be an arbitrary circuit in BQP, which acts on n qubits, wherem ∈ poly(n)

and n ∈ log(N). We also assume that each Vj acts on 2 qubits, which fact doesn’t spoil the

polynomial time.

Our aim is to show that with the inversion procedure in hand, we can recognize any language

that belongs to BQP. Thus, we want to map V to A, where the inverse of A behaves the same

way as V . For this purpose, we introduce a new operator U .

U := |1⟩ ⟨0| ⊗ V1 + |2⟩ ⟨1| ⊗ V2 + . . .+ |m⟩ ⟨m− 1| ⊗ Vm+

+ |m+ 1⟩ ⟨m| ⊗ V ⋆
m + |m+ 2⟩ ⟨m+ 1| ⊗ V ⋆

m−1 + . . .+ |2m− 1⟩ ⟨2m− 2| ⊗ V ⋆
2 +

+ |0⟩ ⟨2m− 1| ⊗ V ⋆
1 .

(23)

Then, U is a block matrix that looks like this:

U =



V ∗
1

V1

V2
. . .

Vm

V ∗
m

V ∗
m−1

. . .

V ∗
2


We can notice some important properties of U .

First of all, in the main diagonal of UU∗, we have either VjV ∗
j or V ∗

j Vj . Consequently, UU∗ =

I, which means that U is unitary.

Moreover, U has another important feature:

• ∀ 0 ≤ j ≤ m: U j
∣∣0logm〉 |0n⟩ = |j⟩Vj . . . V1 |0n⟩

• ∀ m+ 1 ≤ j ≤ 2m: U j |0⟩ |0⟩ = |j⟩V2m−j · . . . · V1 |0⟩,

which follows directly from the definition of U .
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In the next step of the proof, we introduce a new matrix:

A := I − U.

The inverse of A can be expressed as: A−1 =
∞∑
l=0

U l. Therefore, we get:

|x⟩ ∼ A−1
∣∣∣0(logm)+n

〉
=

( ∞∑
l=0

U l

)
|0⟩ ∼ |0⟩ |0n⟩+ |1⟩V1 |0n⟩+ . . . |m⟩Vm · . . . · V1 |0n⟩ .

Since |j⟩Vj · . . . · V1 |0n⟩ is a unit vector, the above expression can be simplified to:

|x⟩ = 1√
m+ 1

(
|0⟩ |0n⟩+ |1⟩V1 |0n⟩+ . . .+ |m⟩Vm · . . . · V1 |0n⟩

)
.

Measuring the first register, we get |m⟩V |0n⟩ with probability

1

m+ 1
. (24)

Using (24) and the assumption that V is in BQP, the following two statements hold.

If V accepts, then

⟨x|Π⊗ I|x⟩ ≥ 2

3

1

m+ 1
. (25)

If V rejects, then

⟨x|Π⊗ I|x⟩ ≤ 1

3

1

m+ 1
. (26)

Here, the notation Π stands for |1⟩ ⟨1| ∈ C2.

Our goal is to get rid of the 1
m+1 factor in these bounds in order to have probability bounds

2/3 and 1/3. This can be done using the error reduction for BQP.

Furthermore, we should match the remaining assumptions of MI-problem.

First of all, U is O(1)-sparse, based on the definition of U and the assumption that each gate

Vj acts on 2 qubits. This property is inherited to A, obviously.

In addition, we should make sure that A is an invertible, Hermitian matrix, with all of its

eigenvalues lying in the interval of [1/κ(A), 1] and κ(A) is polylogarithmic in N . In order to meet

these requirements, we modify the definition of A while still satisfying the properties we already

met.

In the first try, we can choose A to be

A = I − e−1/mU,

for scalar e−1/m. For this definition, κ(A) ∈ O(m). The reason behind this is that U is unitary

and the fact that for normal matrices, the eigenvalues are the singular values in absolute value.

Furthermore, A is now invertible.
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This is still not the final form of A: we need to make it Hermitian as well. For this purpose,

we set A to the following:

A =

(
0 I − e−1/mU

I − e−1/mU∗ 0

)
.

This way, A is trivially Hermitian, has a condition number of O(m), the eigenvalues still lie

in the desired interval while A remained to be invertible and sparse.

2.3 Solving differential equations

A very useful application of the HHL-algorithm took place in solving first-order ordinary linear
differential equations ([3]):

x′(t) = A(t)x(t) + b(t),

where A(t) ∈ CN×N , b(t) and x(t) ∈ CN and t ∈ [0, T ] for some T ∈ R. The most typical way
to solve this is discretization, using Euler-method on a uniform grid: ∆ := T/N , tk := k ·∆, for
k = 0, . . . , N . Let Ak = A(tk), bk = b(tk) and xk = x(tk).

The resulting discretized system becomes:

xk+1 − xk = ∆(Akxk + bk), k = 1, . . . , N.

This can be reformulated as an Ax̃ = b̃ linear system of equation, where A is a block matrix

A =


I

−(I +∆A1) I
−(I +∆A2) I

. . .
−(I +∆AN−1) I

 ,

x̃ = (x̃1, x̃2, x̃3, . . . , x̃N )T ,

and

b̃ =



(I +∆A0)x0 +∆ · b0
∆ · b1
∆ · b2

...

∆ · bN−1


.

We state without proof that in the special case when N = 1, A(t) = a ∈ C is constant and
Re(a) < 0, then the condition number of A in this case is κ(A) = O(1/∆). Hence, the running
time in this special case is O

(
(1/∆) · logN

)
.
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3 Quantum linear regression

In this part, we refer to the problem defined in Section 1.6. The only difference is that we
examine the case where the data matrix X of size N × d is complex valued. Note, that Def. 5
(on page 19) of pseudo-inverse covered this case as well.

The other notations remain the same: d denotes the number of adjustable parameters (e.g.
the dimension of the linear space in which we search for the best model), N is the size of the data
set and y ∈ Rd is the vector containing the outputs. As stated in Section 1.4, our goal is to output
the optimal β denoted by β̂, but now in a quantum state:

∣∣∣β̂〉 = X+ |y⟩ = (X∗X)−1X∗ |y⟩.
The classical linear regression approach left us with an algorithm which runs in poly(N, d). In

this chapter, I present two algorithms which run in poly(log(N), d). The condition number, κ, of
the data matrix and the desired precision ε also turn up in the running time, but the dependency
is polynomial.

3.1 The initial approach

In this section, I give a high-level overview of the chronologically first quantum algorithm ([17])
that outputs

∣∣∣β̂〉. This one will be quite similar to HHL-algorithm (demonstrated in Section 2.1):
the only subroutine we use is the general template of HHL (see Figure 2). For this reason, I will
delve deeper into a more efficient procedure in Section 3.2. Within this whole chapter, I follow
the traces of article [9], [16] and [17].

Let’ us start with the assumptions. Using the same trick as in Eq. (16), one can assume
that X is a square (N × N) Hermitian matrix. Similarly, we also live the assumption that y

can be loaded to a quantum state |y⟩ =
N∑
j=1

yj |j⟩ efficiently. Denoting the eigenvectors and the

respective eigenvalues of X by |uj⟩ and λj , we can observe that:

X∗ =
N∑
j=1

λj |uj⟩ ⟨uj | = X, (27)

and

X∗X =

N∑
j=1

λ2j |uj⟩ ⟨uj | . (28)

Here, we just used the singular-value decomposition of matrixX and the fact thatX is Hermitian.

We begin the algorithm with the state |y⟩. The procedure, as a flow diagram, will look like
this:

|y⟩ → X∗ |y⟩ → (X∗X)−1X∗ |y⟩ =
∣∣∣β̂〉 .

To realize this process, we have to call the general template of HHL (Figure 2) as a subroutine
twice.
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First, we would like to implement X∗. Note that we are not capable of doing this directly,
as it is not necessarily a unitary matrix. For this purpose, we apply the process demonstrated
in Figure 2. The step eigenvalue transformation (EVT) has to be set, so that the amplitude of
|1⟩ should be λj and the amplitude of |0⟩ will be

√
1− λ2j , consecutively. After this, we get the

state X∗ |y⟩.
Second, we apply (X∗X)−1, which requires an analogue trick, but the amplitude of |1⟩ will

be λ2j . This leaves us with the desired state
∣∣∣β̂〉.

The running time of this method is also polynomial in log(N).

3.2 A newer approach

Before delving deep into the algorithm, we define some frequently-used features of matrices and
vectors which can be decisive for the speed. These will only pop up later, at the running time
analysis.

Definition 9. Let ρ(y) =
max1≤j≤N |yj |√

1
N

N∑
j=1

|yj |2
, where y ∈ CN . We say that y is balanced, if ρ(y) =

O(1).

For example, if y1 = . . . = yN , then ρ(y) = 1, so this is balanced according to the definition.
However, in case y1 ̸= 0 and y2 = . . . = yN = 0, then ρ(y) =

√
N , which is not balanced.

A similar parameter for matrices is the following.

Definition 10. Let σ(A) =
max1≤j≤N ∥aj∥√

1
N

N∑
j=1

∥aj∥2
, where A ∈ CN×N and aj is the j-th row of A and

∥.∥ denotes the conventional ℓ2-norm. We say that A is balanced, if σ(A) = O(1).

For example, if A = IN , then σ(A) = 1, which means that A is balanced.
However, if the first row of A is the all-1 vector, the other rows are the all-0 vectors, then

σ(A) =
√
N . In this case, matrix A is not balanced.

Definition 11. Let τ(A, y) =
∥π(A)y∥2

∥y∥2
, where π(A) is the projection onto the column space of

A.

Note that τ(A, y) is always less than or equal to 1 for any A, y.

Remark. Note that ρ(y), σ(A) ≥ 1, for any A and y, as the numerator is always greater than

or equal to the denominator in both definitions.

On the contrary with the previous part, here the data matrix X, whose pseudo-inverse we
want to calculate, has size N × d.

The main algorithm uses three subroutines:
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• Subroutine 1 approximates |β̂i| for any i ∈ {1, . . . , d},

• Subroutine 2 approximates |β̂i − β̂i| for any i, j ∈ {1, . . . , d},

• Subroutine 3 determines if β or −β is δ-close to β̂, if it is certain that one of the two
cases holds.

In order to implement the first subroutine, we will need a lemma.

Lemma 3.1. ([7]) Let ε > 0 and define the following variables: δy = Θ

(
ε/
√
log
(
κ
ϵ

))
, δz =

Θ

(
1/κ
√
log
(
κ
ϵ

))
, J := Θ

(
κ
ε log

(
κ
ε

))
, K := Θ

(
κ log

(
κ
ε

))
. Let the function h(x) be defined as:

h(x) =
J∑

j=0

K∑
k=−K

i√
2π
kδyδ

2
z · ek

2δ2z/2 · e−i·x·jkδyδz .

Then, |h(x)− 1/x| ≤ ε for x ∈ [−1,−1/κ] ∪ [1/κ, 1].

The core idea behind the lemma is to rewrite the function 1/x as a weighted double integral
and approximate the integrals by finite sums. The precise calculations can be found in article
([14]).

The idea can be extended to matrices as the following corollary claims.

Corollary 3.1.1. Let ε > 0 and A a matrix whose nonzero eigenvalues are in the range Dκ :=

[−1,−1/κ] ∪ [1/κ, 1]. Then ∥h(A)−A+∥ ≤ ε.

Now, let’s move on to the first subroutine.

Subroutine 1 for ε-approximating |β̂i| for any i ∈ {1, . . . , d}.

The process consists of four steps. First, we apply a trick which already turned up in this
thesis: instead of the matrix X, we will use a broader block matrix by which trick we can handle
the nasty cases. Next, we give a function which helps us approximate the desired outcome.
Third, we introduce operators that will be applied to our input

∣∣0m+2
〉
|y⟩. Last, we measure the

obtained state which gives us a probability that contains the sought-after value.

Let the singular value decomposition of X be:

X =
d∑

j=1

sj |uj⟩ ⟨vj | ,

where sj ∈ [1/κ, 1], uj ∈ RN, vj ∈ Rd are of unit length, for all j ∈ {1, 2, . . . , d}.
In order to eliminate the cases where X is a non-square matrix or not Hermitian, we introduce

the following matrix:

A =

(
0 X
XT 0

)
,
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and
|b⟩ := |0⟩ |y⟩ .

Then, the spectral decomposition of A looks as follows: A =
d∑

j=1
sj |+j⟩ ⟨+j |+

d∑
j=1

sj |−j⟩ ⟨−j |,

where |±⟩ = 1√
2

(
|0⟩ |uj⟩ ± |1⟩ |vj⟩

)
. Let Dk = [−1,−1/κ] ∪ [1/κ, 1] denote the range in which

the nonzero eigenvalues of A lie in.
A simple substitution shows that A+ |b⟩ = |1⟩

∣∣∣β̂〉, which implies that

⟨1| ⊗ ⟨i| ·A+ |b⟩ = β̂i. (29)

In order to implement operation A+, we will use the function h defined in Lemma (3.1) and
keep the same notations. From Cor. (3.1.1), we know that ∥h(A)−A+∥ ≤ ε.

Thus,
∥h(A) |b⟩ −A+ |b⟩ ∥ ≤ ε, (30)

using the fact the |b⟩ is a unit vector.

For simplicity, we introduce two new variables such that

|z⟩ := A+ |b⟩ = |1⟩
∣∣∣β̂〉 ,

and ∣∣z′〉 := h(A) |b⟩ .

Then, the following short calculation shows that the ith coordinate of the second chunk of
|z′⟩ is ε-close to

∣∣∣β̂i〉, for any i ∈ {1, 2, . . . , d}.∣∣ ⟨1| ⊗ ⟨i| ·
∣∣z′〉− β̂i

∣∣ = ∣∣ ⟨1| ⊗ ⟨i| ·
∣∣z′〉− ∣∣ ⟨1| ⊗ ⟨i| · |z⟩

∣∣ ≤ ∥
〈
z′
∣∣− ⟨z| ∥ = O(ε), (31)

The last equation comes from (30).

In order to get the i-th component of the least-squares fit, we need to ε-approximate
(
⟨1| ⊗

⟨i|
)
· |z⟩, for which it is sufficient to give an ε-approximation of

(
|1⟩ ⊗ |i⟩

)
· ⟨z′|.

To simplify the formulas, we use the following notations: α(j, k) := i
2πkδyδ

2
ze

−k2δ2z/2, α :=
J−1∑
j=0

K∑
k=−K

|α(j, k)| and ν(j, k) = jkδzδy.

For approximating the βi, we introduce new operators. Let U :=W ⋆VW , where

• W : |0m⟩ → 1√
α

J−1∑
j=0

K∑
k=−K

√
|α(j, k)| |j, k⟩, m ∈ O(log(κ/ε))),

• V = i
J−1∑
j=0

K∑
k=−K

|j, k⟩ ⟨j, k| ⊗ sign(k)e−iAν(j,k).

In the description of this procedure, this is the only time when i denotes the imaginary unit, not
the index.
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It follows from the definitions that

U |0m⟩ |b⟩ = 1

α
|0m⟩h(A) |b⟩+ |λ⟩ =

(
∥h(A) |b⟩ ∥

α

)
|0m⟩ h(A) |b⟩

∥h(A) |b⟩ ∥
+ |λ⟩ , (32)

where |λ⟩ satisfies the equation of
(
|0m⟩ ⟨0m| ⊗ I

)
|λ⟩ = 0.

We need another unitary operator R such that:

• R : |0⟩ |1, i⟩ → |1⟩ |1, i⟩ ,

• R : |0⟩ |1, j⟩ → |0⟩ |1, j⟩ , 1 ≤ j ≤ N, j ̸= i,

• R : |0⟩ |0, j⟩ → |0⟩ |0, j⟩ , 1 ≤ j ≤ N .

The way operator R works is pretty similar to what controlled operators do. Note that R is
specific to the fixed index i, so it shouldn’t necessarily be the same for different indices.

The following equation sums up what R does:

R

( N∑
k=1

|0⟩
(
|1, k⟩+ |0, k⟩

))
= |1⟩ |1, i⟩+

∑
k ̸=i

|0⟩ |1, k⟩+
N∑
k=1

|0⟩ |0, k⟩ . (33)

By equations (32) and (33), we get that:

R2,3U1,3 |0m⟩1 |0⟩2 |b⟩3 =

=
⟨1, i|z′⟩
α

|0m⟩1 |1⟩2 |1, i⟩3 +
∑
i′ ̸=i

⟨1, i|z′⟩
α

|0m⟩1 |0⟩2
∣∣1, i′〉

3
+
∑
j

⟨0, j|z′⟩
α

|0m⟩1 |0⟩2 |0, j⟩3 .

After applying these operators, we make a measurement on the first m + 1 qubits. The
probability of getting |0m1⟩ as an output is obviously

p :=
1

α2
· |
〈
1, i
∣∣z′〉 |2, (34)

as this is the square of the respective amplitude of the first two register.

Using Amplitude Estimation, we can Θ

(
ε2

κ2

)
-approximate p by p̃. This will output α

√
p̃,

which is an O(ε)-approximation of | ⟨1, i|z′⟩ |, since
∣∣∣| ⟨1, i|z′⟩ | − α

√
p̃
∣∣∣= ∣∣∣α√p− α

√
p̃
∣∣∣= O(ε).

Complexity:
The above algorithm has a probability bound 3/4. In order to reach 1−δ, we repeat the same

process O(log(1/δ)) times.
The exact way of implementing V and W can be found in ([5]), here we just make use of

those results.
The implementation V needsO

(
d3/2·poly(log(κ/ε))

)
uses of PX andW needsO

(
κ·poly(log(κ/ε))

)
.

For R, only poly(log(N)) time is needed, trivially. To prepare |y⟩, O(log(κ/ε)) uses of Py is
enough.
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Therefore, the number of uses of PX and Py for this subroutine is:

O

(
d3/2κ3

ε2
· poly

(
log
(κ
ε

)
log

(
1

δ

)))
.

The
(
κ

ϵ

)2

factor comes from the Amplitude Estimation algorithm.

We assumed in Chapter 1.1 that the implementation of PX and Py can be constructed in
polynomial time of the logarithm of their size, therefore the total complexity of this subroutine
is

O

(
d3/2κ3

ε2
· poly(log(N)) · poly

(
log
(κ
ε

)
log

(
1

δ

)))
.

Subroutine 2 for ε-approximating |β̂i − β̂j | for any i, j ∈ {1, . . . , d}.

Here, we follow a similar route as in Subroutine 1: we introduce a new operator Q, apply
Q ·W ∗VW to the same initial state, make a measurement and apply Amplitude Estimation.

Let us introduce the notation |1,±i,j⟩ :=
1√
2
· |1⟩ ⊗ (|i⟩ ± |j⟩) and define unitary operator Q

which is a controlled-gate and satisfies the four properties below:

• Q |0⟩ |1,−i,j⟩ = |1⟩ |1,−i,j⟩

• Q |0⟩ |1,+i,j⟩ = |1⟩ |1,+i,j⟩

• Q |0⟩ |1, l⟩ = |0⟩ |1, l⟩ where 1 ≤ l ≤ N and l ̸= i, j

• Q |0⟩ |0, k⟩ = |0⟩ |0, k⟩ where 1 ≤ k ≤ N .

Note that Q is specific to two indices, i and j. If we choose another two indices when setting
the problem, operator Q might not be the same in that case.

The algorithm consists of two steps: applying operators (Q · U) and measuring.
By equation (32) and the above properties of Q, we get that:

Q2,3U1,3 |0m⟩1 |0⟩2 |b⟩3 =
⟨1,−i,j |z′⟩

α
|0m⟩1 |1⟩2 |1,−i,j⟩3 +

⟨1,+i,j |z′⟩
α

|0m⟩ |0⟩ |1,+i,j⟩+∑
l ̸=i,j

⟨1, l|z′⟩
α

|0m⟩1 |0⟩2 |1, l⟩3 +
∑
k

⟨0, k|z′⟩
α

|0m⟩1 |0⟩2 |0, k⟩3 .

The probability of getting |0m⟩ |1⟩ after measuring the first m+ 1 qubits is

| ⟨1,−i,j |z′⟩ |2

α2
=: p′′. (35)

The key is the following:

|β̂i − β̂j | =
√
2| ⟨1,−i,j |z⟩ | ≈

√
2|
〈
1,−i,j

∣∣z′〉 | = √
2α
√
p′′, (36)
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where in the last equation we used (35).
Using Amplitude Estimation we can get an O(ε/α)-additive approximation of p′′.

Complexity:
OperatorQ is practically a CNOT -gate, thereforeO(poly(log(N)) time is enough to construct

it. The implementation of V and W was covered at the end of Subroutine 1. Hence, this algorithm
makes

O

(
d3/2κ3

ε2
· poly

(
log
( κ
εδ

)))
uses of PX and Py.

Taking the complexity of constructing PX and Py into consideration, we get the complexity
of Subroutine 2:

O

(
poly(log(N))

d3/2κ3

ε2
· poly

(
log
( κ
εδ

)))
.

Subroutine 3 decides Suppose β ∈ Rd is give such that either ∥β + β̂∥ ≤ δ or ∥β − β̂∥ ≤ δ
for some δ < τ

2σρ
√
d
, where τ = τ(X, y), σ = σ(X) and ρ = ρ(y).

This part consists of two major pieces. First, we define a quantity which is a function of β.
Estimating this with a proper mistake will tell us which of the two cases holds. Next, we give
an algorithm to estimate this quantity. For this, we apply operator G (defined later), making a
measurement and using Amplitude Estimation.

First, we will obtain several upper bound estimations that will make sense when distinguishing
the two cases.

Let ŷ denote Xβ̂. Then, τ = ∥ŷ∥2 holds true. Combining all the information, we obtain the
following estimation.

√
τ ≤ ∥β̂∥ ≤ ∥X+y∥ = ∥X+ŷ∥ ≤ κ

√
τ . (37)

In (11), we showed that

∥xi∥ ≤ σ
√
d√
N
, 1 ≤ i ≤ N. (38)

Equations (37) and (38) imply that

|xTi β̂| ≤
σκ

√
τd√
N

, 1 ≤ i ≤ N. (39)

Using the fact that ∥y∥ = 1 and ρ(y) = ρ, we obtain that

|yi| ≤
ρ√
N
, 1 ≤ i ≤ N. (40)

Let q̂i = yi · xTi β̂ and qi = yi · xTi β for i = 1, . . . , N . A quick calculation shows that
N∑
i=1

q̂i = τ. (41)
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By (39) and (40), a trivial upper bound for |q̂i|
(
1 ≤ i ≤ N

)
can be stated:

|q̂i| ≤
ρσκ

√
τd

N
. (42)

Now, we go on to prove that the sum of qi-s differs significantly in the two cases. For this
purpose, we will use all of the calculations we have done above.

First case: ∥β − β̂∥ ≤ δ <
τ

2ρσ
√
d
.

Using the equations (38) and (40) we get

|qi − q̂i| ≤ |yi|∥xi∥∥β − β̂∥ ≤ ρ√
N

σ
√
d√
N
δ <

τ

2N
, 1 ≤ i ≤ N. (43)

Combining equations (41) and (43), we obtain that:

N∑
i=1

qi ≥
N∑
i=1

q̂i −
N∑
i=1

|qi − q̂i| > τ − τ

2
=
τ

2
. (44)

Second case: ∥β + β̂∥ ≤ δ <
τ

2ρσ
√
d
.

Equations (38) and (40) imply that

|qi + q̂i| ≤ |yi|∥xi∥∥β + β̂∥ ≤ ρ√
N

σ
√
d√
N
δ <

τ

2N
, 1 ≤ i ≤ N. (45)

Equations (41) and (45) give the following upper bound:

N∑
i=1

qi ≤ −
N∑
i=1

q̂i +
N∑
i=1

|qi + q̂i| < −τ + τ

2
= −τ

2
. (46)

Knowing from equation (44) and (46) that
N∑
i=1

qi is either strictly less than −τ
2

or strictly

more than
τ

2
, all that remains is to estimate

N∑
i=1

qi up to an additive error of τ/2.

For this purpose, we introduce operator G which works as follows:

G : |i⟩ |0⟩ → |i⟩ |ψi⟩ ,

where

|ψi⟩ :=

√
1

2
+

Nqi

4σρκ
√
d

|0⟩+

√
1

2
− Nqi

4σρκ
√
d

|1⟩ .
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In order to prove that G is a valid operator, we must make sure that

|qi| <
2σρκ

√
d

N
. (47)

In the first case, we meet the requirement of (47):

|qi| < |q̂i|+ |qi − q̂i| ≤
σρκ

√
τd

N
+

τ

2N
≤ 2σρκ

√
d

2N
+

1

2N
≤ 2σρκ

√
d

N
.

Here we used equations (42) and (43), then the fact that τ ≤ 1 and ρ, σ, κ, d ≥ 1.
For the second case, we use equation (42) and (45), but it works in a pretty similar way:

|qi| < |q̂i|+ |qi + q̂i| ≤
2σρκ

√
d

N
.

In order to get a τ/2-estimation of
N∑
i=1

qi, we apply G to
(

1√
N

N∑
i=1

|i⟩
)
|0⟩, which produces

the state
1√
N

N∑
i=1

|i⟩ |ψi⟩. The probability of obtaining 0 after measuring the second register is

p :=
1

2
+

N∑
i=1

qi

4σρκ
√
d
.

Using Amplitude Estimation, we can get an O(κ−1d−1/2) approximation of p in the form of a
quantum state.

Complexity:
To implement G, the most straightforward way is the following:
from |i⟩ |0⟩, where i ∈ [N ], the state |i⟩ |0⟩ |qi⟩ can be prepared by O(d) uses of PX and Py.

Having qi in the last register, we can get the state |i⟩ |ψi⟩ |qi⟩. Last, we diminish qi from the last
register which takes O(d) uses of PX and Py.

Considering that the construction of PX and Py takes O(poly(log(N)) runtime, the total
complexity of this subroutine is

O
(
d3/2κ · poly(logN)

)
.
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Having demonstrated the subroutines we need, let’s move on to describing the algorithm
itself.

Algorithm

Step 1: Subroutine 1 for all j ∈ {1, . . . , d}.

Let µj denote the estimation of βj we got. The remaining steps are about setting the signs

of these. Let Υ be the set of indices defined as: Υ :=
{
j ∈ {1, . . . , d} : µj >

2

3
ε′
}
.

Step 2: Pick an arbitrary j0 ∈ Υ and run Subroutine 2 with j0 for all j ∈ Υ.

Let γj denote the estimation of |β̂j0 − β̂j |.

Step 3: Define the signs by the following logic:

• if j /∈ Υ, then sj = 0,

• if j = j0, then sj = 1,

• if j ∈ Υ \ j0 and
∣∣|µj0 − µj | − γj

∣∣ ≤ ε′/2, then sj = 1,

• if Υ \ j0 and
∣∣|µj0 − µj | − γj

∣∣ > ε′/2, then sj = −1.

Let β′ ∈ Rd, where β′j := sjµj for all j = 1, . . . , d.

Step 4: Apply Subroutine 3 with β′.

Having performed these four steps, the algorithm outputs either β′ ∈ Rd or -β′ ∈ Rd.

Now, let’s move on to determine the runtime of the algorithm described above.
Complexity

Recall, that ε′ = min

(
τ

2σρd
, ε

)
and δ = min(1/d, ε), where τ ∈ Ω(1), σ, ρ ∈ O(1), implying

that ε′ ∈ Ω(δ).
Let’s calculate the complexity of the whole algorithm.
Subroutine 1 is called O(d) times (Step 1), therefore the complexity of this part is

O

(
d2.5κ3

δ2
· poly(log(N)) · poly

(
log

(
κd

δ

))
. (48)

Subroutine 2 is used O(d) times (Step 2), resulting the complexity of

O

(
d2.5κ3

δ2
· poly(log(N)) · poly

(
log

(
κd

δ

)))
. (49)
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Subroutine 3 is invoked constant times (Step 4), resulting

O

(
κd1.5 · poly(log(N))

)
(50)

runtime.
Combining (48), (49) and (50) the complexity of the whole algorithm is:

O

(
poly(log(N)) · d

2.5κ3

δ2
· poly

(
log

(
κd

δ

)))
.

Theorem 3.2. The above algorithm gives a correct estimation of β̂.

Proof. The proof can be partitioned into four major chunks. First, the some estimations are

listed, which are used in the latter parts. Next, we prove that S is not empty. Then, we check

that either all coordinates of β′ has the same sign as the respective coordinate of β̂ or they all

have an opposite sign. Last, we make sure that the vector β′ or −β′ is ε-close to the sought-after

β.

To begin with, let me collect some of the most important estimations that will be utilized in

the proof. We will only care about cases where the three subroutines succeed. The probability of

this happening is at least 2/3.

First of all, the following two equations hold as we did so:∣∣∣µi − |β̂i|
∣∣∣ ≤ ε′

6
, ∀i = 1, . . . , d, (51)

and ∣∣∣γj − |β̂j0 − β̂j |
∣∣∣ ≤ ε′

6
, j ∈ Υ, j ̸= j0. (52)

It is straightforward to verify that:

−
∣∣∣µi − |β̂i|

∣∣∣ ≤ |β̂i| − |µi| ≤
∣∣∣µi − |β̂i|

∣∣∣. (53)

By (53) and the definition of Υ, we obtain the next two bounds:

|β̂j | ≥ |µj | −
∣∣∣µj − |β̂j |

∣∣∣ ≥ 2ε′

3
− ε′

6
=

ε

2
, j ∈ Υ, (54)

and

|β̂j | ≤ |µj |+
∣∣∣µj − |β̂j |

∣∣∣ ≤ 2ε′

3
+
ε′

6
=

5ε

6
, j /∈ Υ. (55)
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In the next steps, we will prove that the set Υ is not empty. In equation (37), we showed

that ∥β̂∥ ≥
√
τ . This implies that there exists an i0 ∈ {1, . . . , d} such that

|β̂i0 | ≥
√
τ

d
≥ τ

σρd
≥ 2ε′. (56)

In the first estimation we used that ∥β̂∥ =

√
d∑

i=1
|β̂i|2. The second one is true due to the fact

that ρ, σ, d ≥ 1 and τ ≤ 1. Last, the definition of ε′ was exploited.

Equations (53) and (56) yield

µi0 ≥ |β̂i0 | −
∣∣∣µi0 − |β̂i0 |

∣∣∣ ≥ 2ε′ − ε′

6
>

2ε′

3
.

This means that i0 is an element of Υ.

Now, we prove that

sj = sgn(β̂j) · sgn(βj), ∀j ∈ Υ. (57)

To remind, the left side of this equation was defined as sj = sgn(β′j). This trivially implies

that either

sgn(β′j) = sgn(β̂j), ∀j ∈ Υ,

or

sgn(β′j) = −sgn(β̂j), ∀j ∈ Υ

holds.

To verify (57), we have to inspect three cases.

1. If j = j0, then (57) trivially holds.

2. If j ̸= j0 and sgn(β̂j) = sgn(βj0), we have the following sequence of estimations:

∣∣∣|µj0 − µj | − γj

∣∣∣≤ ∣∣∣µj0 − |β̂j0 |
∣∣∣+∣∣∣µj − |β̂j |

∣∣∣+∣∣∣γj − |β̂j0 − β̂j |
∣∣∣≤ 3 · ε

′

6
=
ε′

2
.

According to the algorithm, the sign, sj was set to 1, which justifies (57).

3. The last case, where j ̸= j0 and sgn(β̂j) = −sgn(βj0) is somewhat similar.∣∣∣β̂j0 − β̂j

∣∣∣= ∣∣∣|β̂j0 | − |β̂j |
∣∣∣+2 ·min{|β̂j0 |, |β̂j |} >

∣∣∣|β̂j0 | − |β̂j |
∣∣∣+ε′. (58)

In the last step, we exploited (53) for j and j0.

From (51), (52) and (58), we have the following:∣∣∣|µj0 − µj | − γj

∣∣∣≥ ε′ −
(∣∣∣µj0 − |β̂j0 |

∣∣∣+∣∣∣µj − |β̂j |
∣∣∣+∣∣∣γj − |β̂j0 − β̂j |

∣∣∣) > ε′ − 3 · ε
′

6
=
ε′

2
.
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This implicates sj = −1, which confirms (57).

What remains is to prove that either β′ or −β′ is ε-close to β̂.

It is enough to see that either

∥β′ − β̂∥∞ < ε′, (59)

or

∥β′ + β̂∥∞ < ε′, (60)

as it results that either

∥β′ − β̂∥ <
√
dε′ ≤ τ

2σρ
√
d
,

or

∥β′ + β̂∥ <
√
dε′ ≤ τ

2σρ
√
d
,

according to the definition of ε′.

For this purpose, we observe two cases.

First, if j /∈ Υ, then

|β′j − β̂j | = |β′j + β̂j | ≤
5ε′

6
.

Here, (55) was used and the fact that sj = 0 for j /∈ Υ.

Second, if j ∈ Υ, then sj ∈ {±1}, therefore |β′j | = |µj |. From (51), we know that∣∣∣|β′j | − |β̂j |
∣∣∣≤ ε′

6
.

If sgn(β′j) = sgn(β̂j), then ∣∣∣β′j − β̂j

∣∣∣≤ ε′

6
. (61)

If sgn(β′j) = −sgn(β̂j), then ∣∣∣β′j + β̂j

∣∣∣≤ ε′

6
. (62)

Since one of (61) and (62) is true, either (59) or (60) holds.

As ε′ ≤ ε, the output vector is close enough to the optimal β̂.
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