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Chapter 1

Introduction

In my thesis, I examine a special case of the "disjoint path problem". For a better
understanding, let us look at two examples of what this means.

Assume that we need to organise a journey between a starting and an end point for
a very important person. This may not sound difficult in itself, but it is useful to have
several possible routes that are not too close together, as it is possible that an accident
could occur somewhere that could close several sections of road that are close together.
However, we will try to ensure that, even in such a case, at most one selected road is
closed.

In our other example, we need to get a message from one point in a communication
network to another, but for some reason, this is not possible directly. Since we know in
advance that some elements of the network will be unavailable for some time, we send
the message along two routes, thus avoiding the possibility that the information will be
trapped if an entire group is unavailable.

The mathematical model of the task is briefly described: given an undirected, planar
graph and two vertices S and T. On this graph, a list is given, each element of which is
a set of edges (Shared Risk Link Group, SRLG for short) that can fail simultaneously.
An important condition is that each SRLG must be connected in the dual graph. We
would like to search for as many non-intersecting S-T paths as possible, such that each
SRLG shares an edge with at most one given path.

Previously, a polynomial algorithm was known for a special case of this problem,
where vertex disjoint paths had to be found. In this paper, I will present a generalized
model with a significantly different approach from the previous one.

The algorithm uses a min-max statement, where instead of searching for paths in
the dual graph, one has to step through the SRLGs from a given area to circumvent the
starting vertex as fast as possible, preferably several times. It can be seen that this task
is reducible to the search for a feasible potential in a graph with conservative weighting.
Here, depending on the chosen subroutine, the worst-case running time complexity can
be improved, or the problem can be solved in a near-linear expected time with a high
enough probability.

In the first two chapters, we will formulate the problem, and present the main re-
sults.

In the third chapter, we will check the necessity of the conditions and give two
examples, when the problem becomes N P -hard.

In the next chapter, we will show how to find the non-crossing s − t-paths.
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In the next chapters, we will analyse the time complexity of the algorithm and give
an approximation to the general non-crossing case.

And in the last chapters, we will analyse the running time of the implemented
algorithms.

Part of the thesis was published at the IEEE INFOCOM 2024 conference [1].
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Chapter 2

Overview

For a given graph G = (V ,E) with undirected topology, finding disjoint paths between
two nodes s, t is the central algorithmic problem for any backbone network mechanism
that aims to maintain connectivity in the event of a failure. Currently, the most widely
used algorithm for this is to find edge- or node-disjoint paths, which is perfect for
mechanisms dealing with single-point failures. However, extensive research [2–11] has
revealed that network failures can manifest as multi-point failures, where a significant
physical region experiences simultaneous equipment outages triggered by catastrophic
events such as earthquakes, hurricanes, tsunamis, tornadoes, and more. These multi-
point failures are often called regional failures or regions for brevity. Another widely
used terminology is the Shared Risk Link Group (SRLG), which is more general and
can be any set of edges subject to common failures [12–18]. We assumed that the list of
regions (or SRLGs) R ⊆ 2E is also part of the input, which was already identified during
the network design phase based on some historical data and exploration of network
vulnerabilities. Two st-paths are R-disjoint if there is no edge set in R intersecting
both paths.

The planarity of the network G is also assumed in our approach, similarly to the
work presented in [19]. To protect sensitive information related to the exact location
of network equipment, which is crucial for military and economic reasons, we do not
require knowledge of the precise positions. However, we are provided with the dual
representation of the planar topology graph, denoted as G∗ = (V ∗,E∗) and a one-to-
one mapping of primal and dual edges, see 3.3a. In the dual representation, each face
f in the primal graph G = (V ,E) corresponds to a node f ∗ ∈ V ∗ in the dual graph.
Similarly, each edge e that separates faces f1 and f2 in G corresponds to a dual edge
e∗ = ( f ∗

1 , f ∗
2 ) ∈ E∗ in G∗, and this mapping is also given. The term “region” emphasizes

that these edge sets can be the intersection of E with a connected subset U of the plane,
where the nodes u, v of an edge uv are considered as part of uv . This condition can
be captured accurately by assuming that for each region r ∈R, the corresponding dual
edges form a connected subgraph in G∗.

Even with the above assumptions, finding the maximum number of region-disjoint
st-paths problem is NP -hard [20]. This also holds for more restricted failure mod-
els, such as circular disk failures or line segment failures. To have a polynomial-time
solvable problem, [19] added one last assumption that the obtained paths should be
node-disjoint as well, or in other words, node failures should also be listed as regional
failures. This implicitly also holds when circular disk failures are considered [21].
Both [19, 21] have presented polynomial-time algorithms to address the respective
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problems. While their worst-case complexity is reasonable, we argue they may not
be suitable for practical applications. Both algorithms consist of two steps: firstly,
searching for an appropriate starting path, and secondly, iteratively extending the so-
lution with more region-disjoint paths. The second step is relatively straightforward;
the main theoretical and implementation challenges lie in the first step. The algorithms
proposed in [19,21] perform well only when more than two region disjoint paths exist,
which in our experience, is rare in practice. The study in [21] offered an algorithm
relying on the topological properties of the graph (e.g. the exact location of the nodes)
of solving the first step, which was further generalized in [19] such that knowing the
dual graph is sufficient. Nonetheless, the first step remains challenging to implement,
and it is not surprising that it was omitted in the implementation provided with [19].
Instead, a simple heuristic approach was employed, leading to satisfactory performance
for many practical instances of the problem.

The primary contribution of this paper is to present a fundamentally different ap-
proach that bypasses the challenging first step altogether. Instead, we directly solve
the problem using an auxiliary graph, the so-called regional dual graph, as depicted
in Figure 3.3. This alternative approach offers a novel perspective and overcomes the
complexities associated with the initial step of the previous algorithms. The main re-
sults of the thesis are the followings:

• We generalize the problem of maximum region-disjoint st-paths, and instead of
assuming disjointness of nodes, we just assume that the paths cannot cross, see
Figure 4.2. Our model generalizes all previous tractable ones mentioned in sec-
tion 8.1. We give a polynomial-time algorithm for this problem. Our method is
significantly different from previous approaches for similar problems, as it uses a
dual technique. It is also easy to implement, since it only needs a shortest path
algorithm on graphs with negative weights as a subroutine. We provide an efficient
C++ implementation that can solve networks with 10000 nodes in < 1 second.

• We prove that the optimum of the non-crossing model above gives a tight 2-additive
approximation for the NP -hard maximum region-disjoint paths problem in general
( 3), which is better than the multiplicative approximation given in [20].
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Chapter 3

Problem Formulations, Main
Results and Algorithm

3.1 Problem Formulations, Main Results and Algorithm
The input of the problem is a planar graph G = (V ,E) with vertex set V and edge set E .
Let the dual of G be denoted as G∗, which consists of vertices V ∗ and edges E∗. Each
edge e in E corresponds to an edge in the dual graph G∗, which is denoted as e∗. An
effcient way of storing such input graph is if the incident edges for every node is given
clockwise order, called a rotation system [22].

We will refer to nodes of the dual graph as faces. For a subset of edges X ⊆ E let
X ∗ denote the subset of dual edges corresponding to X . For a set of edges X ⊆ E let
V (X ) denote the set of nodes incident to at least one edge in X , and let G[X ] denote the
graph induced by X on G: G[X ] = (V (X ), X ).

With these notations, we say a subset of edges R ⊆ E is a region, if G∗[R∗] is a
connected graph. In other words, the duals of the edges in a region form a connected
subgraph in the dual G∗ (e.g., link set {t a, ad ,be} in Figure 3.3 a), depicted with dash-
dotted dual edges). It is easy to see that any connected disaster area in the plane can be
represented by a region.

Further, given a set R of regions, two st-paths are said to be region-disjoint, if
there is no region R ∈ R intersecting both paths (see Figure 3.3). Finally, given a set
R of regions, for a given pair of nodes s, t ∈ V , a set of regions X ⊆ R is a regional
st−cut if ∪R∈X R is an edge set separating s and t . E.g., in Figure 3.3 a), the purple-and-
dashed region does form a regional st-cut with the blue-and-densely-dashed region,
but does not form one with the green-and-dashdotted region. For a set of regions R let
∥R∥ :=∑

R∈R |R|.

3.1.1 Problem Statements and Main Results
Next, we define the two problems we are dealing with, the first one being the more
general one.

Unfortunately, Problem 1 is NP -hard [20, Thm. 6], and only a multiplicative ap-
proximation was known to its optimum [20]. In this paper, we give the first algorithmic
framework that enables to efficiently compute a nearly optimal solution of the problem.

8



s

t

(a) Non-crossing paths
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(b) Crossing paths

Figure 3.1: Example on non-crossing and crossing paths. Edges drawn with dashed
and solid lines refer to the two different paths.

Problem 1: Maximal number of region-disjoint st-paths
Input: A planar graph G = (V ,E), rotation system, nodes s, t ∈V , regions

R ⊂ 2E

Output: A maximum number of region-disjoint st-paths P1,P2 . . . ,Pk

Theorem 1. Let a planar graph G = (V ,E), rotation system, nodes s, t ∈ V , and re-
gions R ⊂ 2E be given such that ∪R∈RR = E . If k∗ denotes the maximum num-
ber of region-disjoint st-paths, a collection of k∗ − 2 such paths can be found in
O

(
log(k∗)∥R∥ 3

2 log(∥R∥)
)

deterministic worst case time complexity, or with high prob-

ability in O
(
log(k∗)∥R∥ log9(∥R∥)

)
expected time.

The proof of 1 will be immediate from 2 and 3. In a nutshell, the key in our proof
is that the optimum of an easily solvable special case of the above problem, when paths
are non-crossing, is a lower bound on the maximum number of paths. More formally,
we say two st-paths in G are non-crossing if after contracting their common edges
there is no node where the edges of the paths are alternating (Figure 4.2); k paths are
non-crossing, if they are pairwise non-crossing.

Problem 2: Maximum number of region-disjoint non-crossing st-paths
Input: A planar graph G = (V ,E), rotation system, nodes s, t ∈V , regions

R ⊂ 2E

Output: A maximum number of region-disjoint, non-crossing st-paths
P1,P2 . . . ,Pk

As presented throughout this paper, Problem 2 is efficiently solvable using a simply
implementable algorithmic framework.

Theorem 2. Given a planar graph G = (V ,E), rotation system, nodes s, t ∈ V , and
regions R ⊂ 2E such that ∪R∈RR = E , a maximum number of k∗ non-crossing region-
disjoint st-paths can be found in O

(
log(k∗)∥R∥ 3

2 log(∥R∥)
)

deterministic worst case

time complexity, or with high probability in O
(
log(k∗)∥R∥ log9(∥R∥))

)
expected time.

The main parts of our algorithmic framework are described in subsection 3.1.3. Its
details and the proof of correctness are presented in Chapter 5. Finally, the runtime
complexity is analyzed in Chapter 6.

For a maximal number of region-disjoint st-paths problem the corresponding min-
cut problem can be solved in polynomial time [20]. Next, we present a theorem com-
paring these optimum values.
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Figure 3.2: Example for the tightness of 3. If regions are only the five colored lines,
then MFnc = 1, MF = MC = 3. Paths of the crossing max-flow are depicted by the
dotted, dashed, and dashdotted arcs, respectively. By adding all node failures (except
from s and t), MF becomes 1.

t

a b c

d e f

s

(a) Graph G with its dual G∗, edge
colors/styles refer to regions R ∈R

(b) Regional dual D∗
R

corresponding
to graph G and set of regions R

Figure 3.3: Graph G , its dual G∗ and regional dual D∗
R

, respectively. Edge colors refer
to regions in R. Path s,d , a, t is region disjoint with path s, f ,c,b, t , but it is not with
s, f ,e,b, t , since links ad and eb are part of the same region (depicted with dashdotted
dual edges).

Theorem 3. Let a maximal number of region-disjoint st-paths problem instance and
its corresponding minimum regional st-cut problem be given, and let MF and MC
denote their optimal values, respectively. Moreover, let MFnc denote the optimal value
of the non-crossing version of the problem. Then MC −2 ≤ MFnc ≤ MF ≤ MC .

The proof of the theorem can be found in section 7.1. The example on Figure 3.2
show that the theorem is tight in the sense that both MF −MFnc and MC −MF can be
2 (and it is easy to give an example where MFnc = MC ).

3.1.2 Regional dual graph
The algorithm we will describe for Problem 2 works on an auxiliary directed graph,
which we will call regional dual of G , and denote by D∗

R
. Nodes of D∗

R
are faces in

V ∗, and the arcs are derived from R: for every region R we add a complete directed
graph on V (R∗) to A∗

R
. Note that on 3.3b, we draw an undirected version of D∗

R
,

omitting the arrowheads on the arcs, and for each arc pair u∗v∗ -v∗u∗ drawing only a
single edge u∗v∗. Every arc u∗v∗ belongs to a region R and we say that an oriented
path in G∗[R∗] is representing arc u∗v∗ ∈ A∗

R
if the path is completely in R∗. Note

that the regional dual is not necessarily planar and there can be parallel arcs.
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(a) Regional dual D∗
R

. Cost ck of black-
and-dotted, red-and-dashed, and blue-
and-dashdotted arcs is 1, 1−k, and 1+k,
resp. For ck≥5, the red closed arc en-
codes a negative cycle.

2 1 1

3 0 1

3 0 1

3 0 1

2 1 1
s

t

2

(b) Topology G , with the regions
being exactly the nodes v ∈ V \
{s, t }. Numbers on the faces form
a feasible potential for ck=4.

Figure 3.4: Example topology G being a 4×6 node grid lattice graph, with the regions
being exactly the nodes v ∈ V \ {s, t }. The st-path P in G is the shortest path, through
the three vertical edges.

3.1.3 Overview of the algorithm
The main idea of the algorithm is that the existence of k region-disjoint non-crossing
st-paths is equivalent to the non-existence of a negative cycle in D∗

R
with respect to

properly chosen arc weights ck (i.e. ck is conservative). Oversimplified, the vague
description of ck is the following. First, we fix a directed st-path P . Then if an arc a
of D∗

R
does not cross P , we set ck (a) = 1, if it crosses P from left to right ck (a) will

be 1−k, and finally, in case of a right-to-left crossing, ck (a) is set to 1+k. A formal
definition of weights ck will be provided in subsection 5.1.2.

We will see in the next section that if ck is conservative, we get a feasible potential
π : V ∗ →Z (that is, ck (uv)+π(u)−π(v) ≥ 0 for all uv ∈ A∗

R
), then create a correspond-

ing arc set F which describes the required paths P1, . . . ,Pk . Intuitively, the boundaries
between the mod k classes of faces of G according to π determine k non-crossing
R-disjoint paths (as depicted on 3.4b).

If ck is not conservative, we consider a negative cycle C ′ in D∗
R

(as the red closed
arc shows on 3.4a), which gives a witness for the non-existence of k paths, and then
move on to the next k.

The maximum k for which weighting ck is conservative (and a number of k non-
crossing st-paths exist) can be found via binary search (see algorithm 1).
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Algorithm 1: Algorithm for finding the maximum number of region-disjoint,
non-crossing st-paths

Input: Planar graph G = (V ,E), rotation system, nodes s, t ∈V , regions R ⊂ 2E

Output: Region-disjoint, non-crossing st-paths P1,P2 . . . ,Pk and witness for
non-existence of k +1 paths.

1 binary search on k (check existence of k paths with algorithm 2)2 =⇒ k∗ optimum
3 ck∗ =⇒π=⇒ paths P1, . . . ,Pk
// k region disjoint non-crossing paths

4 ck∗+1 =⇒C∗ // Witness of non-existence
5 return P1, . . . ,Pk and C∗

12



Chapter 4

Necessity of conditions

4.1 Necessity of conditions
In the previous chapter we formulated the problem, in this chapter we will prove the
necessity of the conditions and show that without some of the conditions the problem
is N P -hard. Consider the case when the regions might be unconnected in the dual
graph. In that case it is easy to see that the problem is N P -hard. Let us assume that
the graph G has n+2 nodes, s, t , v1, v2, . . . , vn , and we have a graph G ′ with n nodes.
For each i there is an edge between s and vi and another edge between vi and t . In G
each region contains two edges, between s-vi and s-v j for some i , j . For this region
there is a corresponding i - j edge in G ′. Finding the maximal number of region-disjoint
st-paths in G is equivalent with finding the largest empty sub-graph in G ′ which is
known to be N P -hard

Next, we show that the problem remains N P -hard if only assume the planarity
of the graph and dual-connectedness of the regions. NP-hardness was also proved by
Bienstock [20] but here we give a another proof. Let us assume we have a graph G ′
with m edges numbered from 0 to m −1. It is possible to construct a graph G where
finding 3 region-disjoint paths in G is equivalent with finding a 3 coloring in G ′ which
is known to be N P -hard. G has m + 1 nodes numbered from 0 to m, and 3 edges
between each pair i and i +1. For each node in G ′ there is a corresponding region if
the i -th edge in G ′ connects ai and bi then the left one of the 3 edges is the ai -th and
the right one is in the bi -th region. The regions are connected in the dual graph, and
the problem of finding 3 region-disjoint paths is equivalent with coloring the regions to
3 colors. Two regions x and y must have different colors if there is an i when both of
x and y contains an edge between vertices i and i +1 which holds if and only if there
is an edge between x and y in G ′.
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(a) The graph G . Each color represents a
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Figure 4.1: Finding the maximal number of region-disjoint st-paths on the left graph
is equivalent with finding the largest empty sub-graph on the right graph.
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(a) The given graph G ′
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(b) G ′.

Figure 4.2: Finding 3 possibly crossing s − t paths in G ′ is equivalent with finding a 3
coloring in G
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Chapter 5

Finding k non-crossing
region-disjoint paths

5.1 Finding k non-crossing region-disjoint paths
The existence of k region-disjoint non-crossing st-paths can be reduced to checking
the conservativity of weightings in two steps. First, we show that some dual walks in
G∗ with some special properties are witnesses for the non-existence of k required paths
(see next subsection, 4).

Second, with a proper weighting on D∗
R

(to be introduced in subsection 5.1.2),
these special dual walks in G∗ can be reformulated as negative cycles in D∗

R
.

5.1.1 Witness for the non-existence of region-disjoint, non-crossing
st-paths

In order to give a witness we need to define some notions on the dual graph (also used
in [19]).

First, we introduce the winding number. Let P be an st-path and C∗ a closed ori-
ented walk in G∗. Let wl r (C∗) and wr l (C∗) denote the number of times C∗ intersects
P from left to right and from right to left, respectively. Then the winding number
of the walk is w(C∗) = |wl r (C∗)−wr l (C∗)|. Note that w(C∗) does not depend on the
choice of P .

In some proofs we need a similar notion for dual paths as follows. Let P be an
st-path and Q∗ an orientation of a path in G∗. Let wP (Q∗) denote the number of times
path Q∗ intersects path P from left to right minus the number of times it intersects right
to left.

Let C∗ be a closed walk in G∗. Partition C∗
1 ,C∗

2 , . . . ,C∗
l is a region-cover of C∗

with l regions if each C∗
i is a subpath of C∗ and each C∗

i is a subset of an R∗
i for a

region Ri ∈R. The region-length of C∗, denoted by l (C∗) is the minimum l such that
there is a region-cover of C∗ with l regions. In [19] it was shown that ⌊l (C∗)/w(C∗)⌋ is
an upper bound for the maximum number of node- and region-disjoint paths problem
(if the optimum value is at least 2). Here we show that the same argument carries over
to non-crossing paths.
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Lemma 4. Let a maximum number of region-disjoint non-crossing paths problem in-
stance be given with optimal value k ≥ 2, and let C∗ be a closed walk in the dual graph
with w(C∗) > 0. Then

⌊
l (C∗)
w(C∗)

⌋
≥ k.

Proof. (See Figure 3.2 with C∗ of red-blue-brown-green-yellow regions: l (C∗)
w(C∗) = 5

3 ≥
MFnc .) Let P1, . . . ,Pk be non-crossing, region-disjoint st-paths, and let C∗

1 , . . . ,C∗
l be

a region-cover of C∗ with l = l (C∗). We may assume that wl r (C∗) > wr l (C∗). Since
each st-path is intersected by C∗ at least w(C∗) times, every path Pi also intersects C∗
at least w(C∗) times.

Claim 5. If k ≥ 2, then |wP j (C∗
i )| ≤ 1 for 1≤i ≤l and 1≤ j ≤k.

Proof. Assume indirectly that wP j (C∗
i ) ≥ 2. Then for any planar embedding of G

edges C∗
i ∪P j would contain a curve in the plane separating s and t , contradicting the

existence of another non-crossing path region-disjoint from P j .

From the claim we get that if k ≥ 2, each path Pi intersects at least w(C∗) distinct
subpaths C∗

j , which gives kw(C∗) ≤ l (C∗), that is ⌊l (C∗)/w(C∗)⌋ ≥ k indeed.

One can show that this bound is sharp.

5.1.2 Reduction to conservative weightings
In this subsection we show that with properly chosen arc weights ck the existence of k
region-disjoint non-crossing st-paths is equivalent to the conservativity of ck on D∗

R
.

In order to define weights on the arcs of D∗
R

, let P be an arbitrary fixed st-path in
G . For every arc u∗v∗ ∈ A∗

R
we consider a representing path Pu∗v∗ in the dual region

G∗[R∗] with the orientation from u∗ to v∗. Let wP (u∗v∗) := wP (Pu∗v∗ ). From the
following claim we get that this value is well-defined.

Claim 6. Let u∗v∗ be an arc in the regional dual graph, belonging to region R, and
Q∗

1 and Q∗
2 two paths in R∗ from u∗ to v∗. If R does not separate s and t , then

wP (Q∗
1 ) = wP (Q∗

2 ) for any st-path P .

Proof. Assume indirectly that wP (Q∗
1 ) ̸= wP (Q∗

2 ). Then the concatenation of Q∗
1 and

the reverse of Q∗
2 would give a closed dual walk C∗ with non-zero wP (C∗). Such

walks contain an st-cut so region R would be separating s and t , contradicting the
assumption.

For a positive integer k, cost function ck is the following: ck (u∗v∗) = 1−wP (u∗v∗)·
k.

The key of our algorithm is the following theorem.

Theorem 7. Cost function ck is conservative on D∗
R

if and only if there are k region-
disjoint, non-crossing st-paths in G .

Proof. We will prove the theorem via two lemmas corresponding to the ‘if’ and ‘only
is’ parts of the equivalence in the theorem. First we show that a negative cycle with
respect to ck is a witness for the non-existence of the required paths.

Lemma 8. If ck is not conservative, then there are no k region-disjoint, non-crossing
st-paths in G .
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Proof. We will find a closed walk C∗ in the dual of G with l (C∗)
w(C∗) < k, which proves

the lemma by 4. If ck is not conservative, then there is a negative cost cycle C ′ =
f1, f2, . . . , fl , f1 in D∗

R
. Each arc fi fi+1 has a representing path Qi from fi to fi+1 in

G∗ (where fl+1 = f1). Then Q1,Q2, . . . ,Ql give a closed dual walk C∗. Since subpaths
Qi form a regional cover of C∗, we get that l ≥ l (C∗). We have 0 > ck (C ′) = l − k ·∑l

i=1 wP (Qi ) = l −k ·wP (C∗) ≥ l (C∗)−k ·w(C∗), which gives a closed dual walk with
l (C∗)
w(C∗) < k indeed.

Next we turn to the second part and show that if ck is conservative, then the required
paths exist.

Lemma 9. If ck is conservative on D∗
R

, then there are k region-disjoint non-crossing
st-paths in G .

Proof. Let π : V ∗ →R be a feasible potential for ck , that is, π(v∗)−π(u∗) ≤ ck (u∗v∗)
for every arc in D∗

R
(such a potential exists from the classic characterization of conser-

vative weightings). The idea of the proof, in a nutshell, is to consider those edges of G
where π changes by 1 (or by k ±1 on P). These edges turn out to have a nice structure
and give the required paths (Figure 3.4). For each node x ̸= {s, t } we define an oriented
subset Fx of edges incident to x.

First, we define Fx for nodes not on P . We assumed every edge is part of at least
one region, so π values on faces around x are ‘smooth’ in the sense that neighboring
faces differ by at most 1. If for neighboring faces u and v we have π(v)−π(u) = 1,
then we consider their common edge x y and add to Fx its anti-clockwise orientation
with respect to uv .

Second let x ̸= {s, t } be a node on P . In order to get a ‘smooth’ potential around
x, we translate π by k on some faces neighboring x the following way. Let e and
f be the edges on P preceding and following x, respectively, and let le , l f and re ,r f

denote the faces on the left and right of e and f according to the orientation on path
P from s to t . We denote by L the set of faces clockwise to le until l f around x, and
decrease π by k on every face in L. The resulting potential around x is denoted by πx .
Since π is a feasible potential and ck (le re ) = −k +1 and ck (re le ) = k +1, we get that
π(le )−k −1 ≤π(re ) ≤π(le )−k +1 (and similarly for f ). So after the translation the πx

values of neighbouring faces differ by at most 1 around x, and we can create Fx using
πx the same way as we did for nodes not on P .

Let F := ∪x∈V \{s,t }Fx . Note that this definition of F is consistent in the sense that
arc uv ∈ Fv if and only if uv ∈ Fu (u, v ̸= s, t). We call an arc x y ∈ F an (i , i +1)-type
arc if π(u) ≡ i mod k, where u is the face on the left of x y in G . (Thus π(v) ≡ i +1
mod k for face v on the right of x y in G .)

Claim 10. Graph spanned by arcs F is Eulerian on V \ {s, t } in the directed sense.
Moreover, at every node v ∈ V \ {s, t } the incoming and outgoing arcs in Fv can be
partitioned into pairs such that: 1) pairs have the same type, and 2) pairs are non-
crossing.

Proof. Let us consider the ordered set N of neighbouring faces of v in Gk in a clock-
wise order: N = u1,u2, . . . ,ul ,ul+1, where ul+1 = u1. Since π (or πv if v ∈ P )
on neighbouring faces can differ by at most 1, the number of indices i such that
π(ui ) + 1 = π(ui+1) equals the number of indices i for which π(ui ) − 1 = π(ui+1)
(1 ≤ i ≤ l ), which shows that graph spanned by F is Eulerian.
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Now we define the arc pairs for a node v . Assume v ∉ P (for a node v on P the
same argument holds with πv ). If π is constant on neighboring faces, then there are
no arcs in F incident to v . Otherwise, let Π denote the maximum value of π on faces
incident to v , and let ui , . . . ,ui+ j be a maximal subset of consecutive faces of this
value: Π = π(ui ) = . . . = π(ui+ j ) and Π− 1 = π(ui−1) = π(ui+ j+1), where ux = uy if
x ≡ y mod l . Then π(ui−1) = π(ui )−1 and π(ui+ j+1) = π(ui+ j )−1, so they have an
incoming and an outgoing corresponding arc in F with the same type. We pair them at
v , and by contracting faces ui−1,ui , . . . ,ui+ j ,ui+ j+1 in N we can continue this process
until all pairs are formed.

Claim 11. There are k non-crossing st-paths P1, . . . ,Pk in F formed by the pairing and
each path has a unique type.

Proof. Pairs created in 10 partition F into non-crossing directed cycles and non-
crossing st-paths such that arcs within a cycle or path have the same type. Let ρF (v)
and δF (v) denote the in- and out-degree of a node v in F . Nodes s and t both have one
incident edge on P , where π changes by k or k ±1, so δF (s)−ρF (s) = k, and similarly
ρF (t )−δF (t ) = k. Hence there are k non-crossing st-paths P1, . . . ,Pk created, and each
path has a unique type.

Claim 12. Let R ∈R be a region. Then arcs in F ∩R have the same type modulo k.

Proof. First consider the case when R ∩P = ;. Since there is an arc of weight 1 in
D∗

R
connecting any two nodes in V (R∗), it is easy to see that π values on R can differ

by at most one and so there can be at most one type of arc in F . Second assume
R ∩P ̸= ;. Then R ∩P can be partitioned into node-disjoint sub-paths of P : R1, . . . ,Rl .
Each sub-path Ri forms a cut in G∗[R∗], and these cuts are non-crossing, so these
cuts partition faces in V (R∗) into ordered sets U1, . . . ,Ul+1 such that face-sets Ui and
Ui+1 have common border Ri (for i = 1..l ), see ??. We reduce this case to the first by
translating π on each Ui by a constant to get a ‘smooth’ potential. Let ∆i := wP (Q∗

i ),
where Q∗

i is a path in R∗ from a face in U1 to a face in Ui . We add ∆i k to π on each
set Ui . Then the resulting potential π′ differs by at most one on V (R∗). Moreover, for
every node x ∈ V (R) \ {s, t } potential πx is a translation of π′ by a constant on faces
in V (R∗) neighbouring x. Thus the edges in R with different π′-valued neighbouring
faces are exactly R ∩F . Since π′ differs by at most one on V (R∗), we can apply the
same argument as in the first case.

In 11 we showed that each type class modulo k belongs to a path Pi , we may
assume that path Pi has type (i , i +1). From 12 we get that a region can intersect at
most one type of arcs in F , so it can intersect at most one path Pi , which proves this
lemma.

From Lemmas 8, and 9, we get the proof of 7.
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Chapter 6

Running time analysis of the
algorithm

6.1 Running time analysis of the algorithm
In this section we give a detailed running time analysis of algorithm 1. First observe
that the running time of building up k paths from a feasible potential on D∗

R
is negli-

gible: if for a certain k weighting ck is conservative on D∗
R

and a feasible potential π
is given, arc set F can be created in O(|V |) time. Then both the pairings of arcs in F
around all nodes in V \ {s, t } and the creation of k required paths can be done in O(|V |)
time also. Thus, the bottleneck of the algorithm is the decision of the conservativity
of ck on D∗

R
for a given k. In the following subsection we show how the regional

dual graph D∗
R

can be substituted by another directed graph to get a better running
time. Then in subsection 6.1.2 we analyze some subroutine options for the decision of
conservativity of ck on D∗

R
.

6.1.1 A smaller representation of D∗
R

We have seen in 7 that directed graph D∗
R

and weighting ck capture enough informa-
tion to decide the existence of k regional-SRLG-disjoint st-paths in G . The number of
arcs |A∗

R
| = O(

∑
R∈R |R|2). In this subsection we show that the set of arcs can be sub-

stituted by a collection of subgraphs with a total number of O(
∑

R∈R |R|) arcs, giving a
better running time (see algorithm 2).

We build a new auxiliary graph D0 and define arc weights c0
k such that ck is conser-

vative on D∗
R

if and only if c0
k is conservative on D0. We start from the empty graph on

V ∗, and for each region R ∈R instead of the complete directed graph on V (R∗) we add
the following subgraph to D0: we consider again the partition U1, . . . ,Ul of V (R∗) as in
12 and for each Ui we add a node uR

i to V ∗ and arcs uR
i uR

i+1 and uR
i+1uR

i (1 ≤ i ≤ l ).
If set Ui is on the left (or right) of separating subpath Ri , we set c0

k (uR
i uR

i+1) := −k

and c0
k (uR

i+1uR
i ) := k (or c0

k (uR
i uR

i+1) := k and c0
k (uR

i+1uR
i ) :=−k). For every set Ui and

every node v ∈Ui we add arcs vuR
i and ui v with weights 1 and 0, respectively.

Claim 13. Weighting c0
k is conservative on D0 if and only if ck is conservative on D∗

R
.

The number of arcs and nodes in D0 are both O(∥R∥).
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Algorithm 2: Algorithm for checking the existence of k ≥ 2 region-disjoint,
non-crossing st-paths

Input: Planar graph G = (V ,E), rotation system, nodes s, t ∈V , regions R ⊂ 2E , k ≥ 2 :
# of paths

Output: Region-disjoint, non-crossing st-paths P1,P2 . . . ,Pk or dual walk C∗ witness
of non-existence.

1 fix st-path P

2 create D0; create c0
k

3 check c0
k conservative: =⇒C 0 negative cycle or π0 feasible potential

4 if c0
k conservative then

5 π0 =⇒π=⇒ F =⇒ P1, . . . ,Pk
6 return P1, . . . ,Pk // k region disjoint non-crossing paths

else
7 C 0 =⇒C∗ in G
8 return C∗// Witness of non-existence

Proof. It is easy to check that for every region R and for each arc u∗v∗ ∈ A∗
R

belonging
to R there is a corresponding path in the subgraph created for R with the same weight.
Moreover, given a feasible potential π0 on D0, its projection onto V ∗ gives a feasible
potential on D∗

R
and similarly a negative cycle C 0 in D0 corresponds to a negative

cycle C ′ in D∗
R

. For a region R O(|R|) nodes and arcs are created.

6.1.2 Algorithm options for finding a feasible potential
In this subsection, we investigate some algorithms that are suitable for computing the
feasible potential π, or proving that no such potential exists. Particularly, we will take
advantage of the following fact.

Proposition 14. Weighting ck on D∗
R
= (V ∗, A∗

R
) is conservative if and only if for any

fixed node v∗ of D∗
R
= (V ∗, A∗

R
) by setting π(w∗) := dck (v∗, w∗) for each w∗ ∈V ∗, we

get a feasible potential π.

In line with this proposition, in all the following cases, we check the conservativity
of the weighting of D∗

R
= (V ∗, A∗

R
), but instead of D∗

R
we will use auxiliary directed

graph D0 described in subsection 6.1.1. We compute a feasible potential by using
the distances of the nodes of D0 from any fixed node, the only difference will be the
exact algorithm that is plugged in to provide these information. All the subroutines
we propose below either calculate the distances from a given node if the weighting is
conservative or return a negative cycle if it is not.

Bellman-Ford and SPFA

Perhaps the most well-known algorithm for computing the shortest path lengths from
a single source vertex to all of the other vertices in a weighted digraph is the Bellman-
Ford (BF) algorithm that has a complexity of O(nm) on a graph with n nodes and
m arcs [23]. In our case, for D0, this means a complexity of O(∥R∥2) by 13. For
the simulations, we have implemented a heuristic speedup, the so-called Shortest Path
Faster Algorithm (SPFA) [24], that has a same worst-case time complexity as the BF,
but there is anecdotic evidence suggesting an average runtime somewhere around being
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linear in the number of network links (for D0, this would mean a typical runtime in
the order of ∥R∥). Our simulation results (section 9.1) are in line with this expected
performance. While the SPFA, in the worst case, is not faster than the classic BF, the
next algorithm reduces this complexity.

A worst-case faster algorithm

Having a graph with n nodes and m arcs, and integer weights on the arcs of absolute
value at most W , [25] claims the following.

Theorem 15 (Theorem 2.2. of [25]). The single-source shortest path problem on a
directed graph with arbitrary integral arc lengths can be solved in O(

p
n ·m log(nW ))

time and O(m) space.

Applied to our problem with D0, this means:

Corollary 16. Given a maximum number of region-disjoint non-crossing st-paths
problem instance and integer k ≥ 2, the existence of k required st-paths can be de-
cided in time O(∥R∥ 3

2 log(∥R∥)).

Proof. The proof is immediate from Thm. 15, Proposition 14, 13 and that the maximal
absolute value of a weight on the links is O(|V |2).

A near-linear time randomized algorithm

The following result grants a near-linear runtime for our framework.

Theorem 17 (Theorem 1.1. of [26]). There exists a randomized (Las Vegas) algorithm
that takes O(m log8(n) log(W )) time with high probability (and in expectation) for an
m-edge input graph Gi n and source si n . It either returns a shortest path tree from si n

or returns a negative-weight cycle.

By the same observations as in 16, we get the following.

Corollary 18. Given a maximum number of region-disjoint non-crossing st-paths
problem instance and integer k ≥ 2, the existence of k required st-paths can be de-
cided in time O(∥R∥ log9(∥R∥)) with high probability (and in expectation).

The running time complexities in 2 follow from 16, 18 and the observation that
the optimum k∗ is found via binary search, giving a multiplication of log(k∗) to the
above runtimes.

Comparison with previous running time: The most efficient polynomial-time algo-
rithm was given for the node- and region-disjoint special case of the problem [19]. The
running time of their solution is O(|V |2µ(log(k)+ρ log(d)), where d denotes the max-
imum diameter of a region in G∗, whereas µ and ρ are (typically small) parameters
denoting the maximum number of regions an edge can be part of and the maximum
size of a region, respectively. Note that ∥R∥ =O(|V |µ), so our deterministic algorithm
has a running time of O(|V | 3

2 µ
3
2 log(|V |µ)), which is indeed faster than the one in [19].

21



Chapter 7

A min-max theorem for
non-crossing paths and an
additive approximation to the
general case

7.1 A min-max theorem for non-crossing paths and an
additive approximation for the general case

In this section, we mention some theoretical consequences of the correctness of the
algorithm. First, we derive a min-max theorem for Problem 2.

Theorem 19. Let k∗ denote the optimum value of a maximum number of region-
disjoint non-crossing st-paths problem. If k∗ ≥ 2, then it equals the minimum of
⌊l (C∗)/w(C∗)⌋, where C∗ is a closed walk in G∗ with w(C∗) > 0. For k∗ = 1 we can
find a closed walk C∗ with ⌊l (C∗)/w(C∗)⌋ < 2.

The optimum k∗ equals the maximum k such that ck is conservative on D∗
R

. If
k∗ ≥ 2, from 2 we get that there are k region-disjoint non-crossing st-paths and since
ck+1 is not conservative, there is a negative cycle in D∗

R
with respect to ck+1, which

gives a closed dual walk C∗ in G∗ with ⌊l (C∗)/w(C∗)⌋ < k +1. If k∗ = 1, then c2 is not
conservative, and there is a dual walk C∗ with ⌊ l (C∗)

w(C∗) ⌋ < 2.
We will apply the min-max theorem above to prove 3.

7.1.1 Additive approximation for Problem 1
[Proof of 3] The upper bound MF ≤ MC is trivial. For the lower bound let MFnc

denote the optimal value of the corresponding path packing problem with the non-
crossing constraint and let C∗ be a closed walk as described in 19.

Claim 20. There exists a regional cut X ⊆R such that |X | ≤ ⌊l (C∗)/w(C∗)⌋+2. ■

The proof is analogous to that of a similar result for node- and region-disjoint st-
paths in [19, Thm. 7]. Clearly, MFnc ≤ MF and from 20 MC ≤ ⌊l (C∗)/w(C∗)⌋+ 2 ≤
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MFnc + 2. By merging the inequalities, we get the lower bound on MF : MC − 2 ≤
MFnc ≤ MF ≤ MC .
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Chapter 8

Previous work

8.1 Previous work
The maximum number of region-disjoint paths problem and some of its special cases
have been studied by numerous papers. The results range from NP -hardness, heuris-
tics, and general (M)ILP formulations to polynomial time solutions to some special
cases. The related papers can be divided into two branches. One branch concerns the
theoretical preludes of region-disjoint routing problems. The other branch is focused
mainly on computing SRLG-disjoint paths in communication networks. In the follow-
ing, we summarize the main results of these papers.

8.1.1 Theoretical preludes
Maximum number of (crossing) region-disjoint paths

Seminal work [20] investigates scenarios when a planar graph is given with a fixed
embedding, and each edge set in R is the intersection of the graph with a subset of
the plane that is homeomorphic to an open disc (called as ‘holes’ in [20]). It gives a
high-degree polynomial-time algorithm for the minimum regional st-cut, even for the
directed and weighted problem version. As for the corresponding maximum number
of R-disjoint st-paths problem, it shows to be NP -hard. Finally, [20] also proves that
the minimum number of separating regions is at most twice the maximum number of
R-disjoint st-paths plus two.

d-separate paths

[27] considers generalizations of disjoint paths problems, where paths are required to
be ‘far’ from each other. Here distance is measured by the number of edges in a shortest
path connecting the paths (apart from their endpoints). If this length is at least d+1, the
paths are called d-separate. Note that by choosing for each node or for each edge the set
of edges at a distance at most d (neighboring edges are at a distance 0), we can define
undirected d-separated paths as a special case of region-disjointness, since such edge
sets form a connected subgraph in the dual graph. [27] gives a min-max formula for
the existence of k d-separated st-directed paths in planar graphs. Their dual problem
is not purely combinatorial because it minimizes a value on a set of certain appropriate
curves in the plane.
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8.1.2 Survivable routing in communication networks
Papers [2, 28] consider a network protection problem when geographic failures mod-
eled as circular disks may occur. In their model, a region is a set of edges that can be
the intersection of the planar graph with a circular disk of a given radius (apart from a
protective zone around s and t). They give a polynomial-time algorithm for the mini-
mum regional st-cut version of the problem and conjecture that the maximum number
of region-disjoint paths and the size of the minimum cut differ by at most one in this
case.

Later, [21, 29] proved this conjecture. These papers adapted the method of [27,
30] for circular disk failures, and gave a polynomial-time algorithm for the problem,
as well as a min-max formula. They also used a proper curve in the plane for the
characterization of the maximum number of region-disjoint st-paths.

The problem was generalized from circular disk failures to regions in [19, 31], so
only assume that each edge set in R is connected in the dual of the graph and all node
failures are part of an SRLG. They do not use the embedding of the graph in the plane,
only the clockwise order of incident edges for every node (a rotation system) is part of
the input. They give a polynomial-time algorithm for this problem by generalizing the
method of [30] and [21] for planar rotation systems. Also, they prove that the size of
a minimum cut and the maximum number of region-disjoint st-paths differ by at most
two in this general model, and this inequality is sharp. Their min-max formula uses
closed walks in the dual graph instead of curves in the plane.

Further works in the field of region-disjoint routing

The first paper to prove the NP -completeness of finding two SRLG-disjoint (region-
disjoint) paths was [32]. The result was achieved by showing the NP -hardness of
the so-called fiber-span-disjoint paths problem, which is a special case of the SRLG-
disjoint paths problem. As it turns out, SRLG-disjoint routing is NP -complete even if
the links of each SRLG S are incident to a single node vS [33–35]. Some polynomially
solvable subcases of this problem are also presented in [33, 34]. An ILP solution for
the SRLG-disjoint routing problem is given in [36]. To solve, or at least approximate
the weighted version of the SRLG-disjoint paths problem some papers use ILP (integer
linear program) or MILP (mixed ILP) formulations [37–39]. Based on a probabilistic
SRLG model, [40] aims to find diverse routes with minimum joint failure probability
via an integer non-linear program (INLP). Heuristics were also investigated [41, 42],
unfortunately, with issues like possibly non-polynomial runtime or possibly arising
forwarding loops when the disaster strikes.
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Chapter 9

Numerical evaluation

9.1 Numerical evaluation
In this section, numerical results are presented to demonstrate the effectiveness of our
algorithm on different real physical networks. The algorithm was developed using
C++, and to facilitate reproducibility, we have uploaded our implementation of the al-
gorithm and the input data to a publicly accessible repository (see section 9.2). To
measure the runtime performance, we conducted the experiments on a standard laptop
equipped with a 2.8 GHz CPU and 8 GB of RAM. We employed the SPFA algorithm
to calculate the potential, as it is the simplest approach and still demonstrated a satis-
factory level of performance. We investigate two aspects: first, whether the runtime of
the algorithm is in line with the theoretical bounds; second, we compare the algorithm
with the previous state-of-the-art method in terms of runtime and path length.

9.1.1 Runtime analysis
To measure the algorithm’s runtime increase concerning the input size, we have gen-
erated numerous grid graphs, as shown in 9.1a. Such a series of grid graphs contain
various numbers of rows and columns and feature uniform-sized regions composed of
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(a) A 6× 10 grid graph
with regions drawn in
red, each consisting of
a size of 2.
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(b) Grid graphs with 100
columns and varying num-
bers of rows of the Pro-
posed algorithm. Region
sizes: 2, 4, or 8.
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(c) Grid graphs with 100
rows and varying numbers
of columns of the Pro-
posed algorithm. Region
sizes: 2, 4, or 8.
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(d) Grid graphs with 100
columns and varying num-
bers of rows for Dervish
[19] algorithm. Region
sizes: 2, 4, or 8.

Figure 9.1: The runtime of the algorithm solving grid graphs of different sizes.
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2, 4, or 8 adjacent vertical edges. In 9.1b, we show the results for the series of graphs
with a gradually increasing number of rows in a 100×10 grid graph until it reached a
100×100 grid graph, resulting in a total of 273 problem instances. Thus the total size
of regions ∥R∥ is a linear function of the number of nodes, and we expect a nearly
linear running time. In this experiment, the number of paths remains the same, but
their length increases as the graph has more rows. The number of region disjoint paths
depends on the size of the regions: 50 paths for size 2, 25 for size 4, and 12 for size 8.
The average runtime exhibits linear growth with the size of the graph, as expected. For
the largest graph with 10002 nodes and 20000 edges, the runtime was 0.4 seconds. We
repeated the aforementioned process, but this time, we generated a sequence of graphs
with gradually increasing the number of columns of a 10×100 grid graph, see 9.1c.
As a consequence, the number of region-disjoint paths increased with the network size.
This resulted in slightly steeper curves; nevertheless, the algorithm still demonstrated
convincing performance in this scalability test. In the overall slope of the runtime in-
crement in function of the number of nodes, we can observe a stepwise increase, which
is attributed to the nature of the binary search for path numbers, and for the fact that
more columns result in more region-disjoint paths.

9.2 Conclusion
In this thesis, we propose an efficient algorithm for finding the maximum region-
disjoint st-paths. While the general maximum path problem is known to be NP -
hard, there are theoretical results for polynomial algorithms for special cases when the
network topology is planar. We suggest an efficient and relatively easy-to-implement
algorithm for this problem. Our approach works on all planar graphs, where each set of
failed links to protect corresponds to a connected geographical region, and the resulting
paths must be non-crossing. Our algorithm encompasses and improves upon previous
models in the field.

The key innovation of our approach is the use of an auxiliary graph called the re-
gional dual graph. This reduces the problem of finding a single-source shortest path
in a weighted directed graph, where the links can have negative weights. We im-
plemented the algorithm in C++, and we managed to solve problem instances with
10000 nodes within seconds. This is the first highly scalable solution for the prob-
lem, demonstrated by both theoretical runtime analysis and our measurements. The
authors have provided public access to their code and data at https://github.
com/jtapolcai/regionSRLGdisjointPaths.
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