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Chapter 1

Introduction

The human brain is undoubtedly the most complex organ known to humanity, and its function
and structure have captivated researchers for centuries. In this work, we analyze the structure
of the human brain using braingraphs. These are mathematical graphs: their vertices represent
different brain regions, while the edges represent their connections. First, we prove that many
importance criteria correlate both in the case of vertices and edges. We will compare these results
with observing the location of average communication of the vertices. Our primary results involve
finding differences between brains of female and male subjects and noting significant differences
connected to brain areas having specific responsibilities, such as short-term memory and attention
orientation. We also make a significant conclusion about the scientifically important role of
caudate in dementia, as we notice higher connectedness of the caudate in demented people.
This is crucial, as the thoughts about the role of caudate are not consistent in the literature, as
different authors conclude multiple possibilities in this topic.

1.1 Background of working with braingraphs

MRI datasets need to fulfill several quality-related characteristics for braingraph construction.
The first one is the high and consistent quality of the images. That is not surprising: if we want to
work with graphs calculated from MR images, there are two steps where inaccuracies can happen.
Both in the MRI-making phase and in the graph-calculating phase, roundings occur, which imply
inevitable inaccuracies. In the past decade, humanity has been able to use technologies to make
the construction of the braingraph possible. The second problem is that most MRI sets contain
few MR images. That is a big problem, as from a set of 10-20 MR images, it is hard to have a
significant conclusion. Furthermore, two different MRI sets can hardly be compared because of
the possibilities of various methods the data acquisition modalities use during the MRI scans.
Another area for improvement is that MR images are not precise in the sense that significant
differences can occur because patients can lie in positions that are not precisely the same.
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1.2 Some earlier results

Because of the above-written reasons, the method of using braingraphs is new to science. One
of the first MRI datasets that is large enough and of good quality was provided by the Human
Connectome Project [1]. The primary dataset of young adults contains 1064 people’s MRI, for
each person one MRI. The subjects are only healthy young adults, so the dataset can be better
used for biological research rather than medical investigations. From this dataset, braingraphs
were calculated and described in [2]. From these graphs, the Budapest Reference Connectome
Server [3] [4] was produced, which is an online, parametrizable graph-visualization software. The
data was used internationally: for example, graph convolutional networks were investigated in
[5]. The data can be used for finding differences between sexes, as in [6]. Some results in this
thesis are partially covered by our published article [7] and our preprint [8].

1.3 Construction of braingraphs

Through the thesis, we will work with two datasets: one is from the Human Connectome Project
[1], and the other is from the OASIS Brains Project [9]. The set of graphs from the Human
Connectome Project will be called the HCP graphs, and the set of the ones from the OASIS
Project will be called the OASIS graphs. It is worth mentioning again that the subjects in the
HCP dataset are all healthy and only include young adults, while the OASIS dataset also has
demented people.

The HCP dataset includes diffusional MR images of 1064 individuals, while the Oasis dataset
includes diffusional MR and PET images of 1098 individuals. Diffusional MRI is a type of mag-
netic resonance imaging that examines water molecules, using the fact that they move differently
near axons. PET stands for positron emission tomography, which uses radioactive substances
to visualize metabolic changes [10]. Both datasets include females and males. Using the Lau-
sanne2008 atlas [11] for the HCP dataset and the Lausanne2018 atlas [12] for the OASIS dataset,
the surface of the brain was divided into brain regions, each approximately 1 cm2 in size. In
the case of the HCP dataset, we worked with 1015 brain areas, while in the case of the OASIS
dataset, we worked with 124 and 1058 areas. The vertices of the braingraphs are the aforemen-
tioned brain regions, with consistent labels from 1 to n across individuals (where n denotes the
number of used areas). Weighted edges are drawn between vertices i and j based on the number
of axons (i.e., the thickness of the nerve bundle) connecting brain regions represented by i and j.
Additionally, we will use the length of nerve fibers, but the weight of the edge is the thickness.
It is important to note that the length of an edge is not the geometric distance between the two
vertices, as the geometric locations represent only three coordinates. Moreover, axonal fibers
are geometrically not close to line segments, so the coordinates and the lengths are also saved
in the graphs. The coordinate system determining the coordinates of brain regions has three
axes: the x-axis for left-right, the y-axis for front-back, and the z-axis for up-down direction.
The larger the coordinate value, the farther the vertex is forward, upward, and to the left. The
fractional anisotropy of the fibers is also saved in the graphs, but we will not address this in my
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thesis. Fractional anisotropy can be used to characterize the diffusion profile of water, which
is not necessary for our purposes here. I did not create the graphs themselves: Bálint Varga
calculated the graphs before I started my work based on the MRI data. We can project these
braingraphs onto a cross-section of the brain: one tool is the Budapest Reference Connectome
Server [3] [4] [13].

Figure 1. and Figure 2. The first figure shows a braingraph projected onto a human
brain. White dots indicate the position of the different brain regions. We connect two
brain regions with an edge if we detect axonal fibers between them. The colour of the
edge carries information about its thickness. On the red-blue scale, the more red an

edge is, the thicker it is. In the second figure, the physical location of the axonal
fibers can also be observed, with different colours indicating different directions. It

can be seen that the axonal fibers are not close to being straight.

As already said, braingraphs were calculated from the datasets by Bálint Varga in five differ-
ent resolutions. During our research, we only used the highest resolutions for both datasets, and
we also used the lowest resolution in the case of the OASIS dataset. The usage of the different
resolutions has different advantages and disadvantages. The benefit of higher resolution is that
we can investigate smaller parts of the brain, making it easier to be more specific in our conclu-
sions. The disadvantage is that the new vertices are often obtained by division from vertices in
lower resolutions, and inaccuracies are much more significant in higher resolutions. Additionally,
in lower resolutions, the larger brain areas usually correspond to only one or two vertices and
can be trusted more. All the graphs used are undirected. Loops (self-edges) only exist in the
case of the OASIS dataset.

The entire graph analysis was written by myself, in Python. The codes were written in
the IDE Pycharm. The main libraries that were used are Pandas [14] for dataframes, Scipy
[15] for mathematical formulas and statistical investigation, Networkx [16] for graph properties,
Matplotlib [17] for diagrams and Paramiko for the easier usage of the datamine server.

The Oasis Project also published data on the subjects’ different basic properties. These
include their gender, handedness, age, educational level, race, height, weight, etc. In addition,
the results of the psychological examination of the subjects were also published. These include
the Clinical Dementia Rating (CDR) [18] and the conclusion about the level of dementia. Some
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subjects were examined multiple times, and all their results were published. For this reason, we
call a subject demented if at least one psychological test concluded dementia. The attributes of
the subjects were collected and merged into two easy-to-use Excel tables.

Unfortunately, in some cases, the published psychological results are incomplete and there-
fore, cannot be used. Also, only some of the graphs are available in the desired form, so we will
only work with the subjects with complete psychological results and a proper graph.



Chapter 2

Methods and preliminaries

2.1 Spearman correlation coefficient

The Spearman correlation coefficient is ideal for comparing index orders [19]. The coefficient
provides information about the correlation between two attributes, using the orderings based on
these properties. Thus, each element will have an index according to the two properties, including
its position in the respective ordering. There is a simple formula for calculating the coefficient,
assuming that the indices are unique, meaning that no two elements are equal according to any
properties. If we calculate the attributes of n elements and denote the difference between the
i-th element’s two indices by di, then we have the following formula:

ϱ = 1−
6 ·

∑n
i=1 d

2
i

n3 − n
. (2.1)

In our case, this will hold, but we do not need a nice formula, as the coefficient is not
calculated by hand. The coefficient satisfies −1 ≤ ϱ ≤ 1, where 1 indicates perfect correlation and
−1 indicates perfect inverse correlation. The latter can easily be demonstrated using the closed
formula n(n+1)(2n+1)

6 for the sum of the first n square numbers. For total inverse correlation,
we need to calculate the sum of the first n

2 odd square numbers, which can be easily obtained
from the sum of the unused even square numbers, as it is four times the desired sum. The closer
the coefficient is to 0, the less we can speak of any correlation. However, as n increases, even
smaller absolute values of ϱ can be significant. Therefore, the p-value is determined not only by
ϱ but also by n and ϱ together. The obtained p-value indicates the chance of such a degree of
correlation under the null hypothesis, assuming that the two variables behave randomly relative
to each other. Therefore, the level of correlation is determined by the p-value, but for the sake
of completeness, we also publish the ϱ coefficients. I performed the precise calculation of the
Spearman coefficient and the p-value using the spearmanr function of the SciPy package [15].

2.2 Averaged braingraphs

Analysing individual braingraphs from n people to draw general conclusions about the human
brain can be challenging. Therefore, instead of analysing individual graphs, we can average them
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to create a consensus graph. We averaged the graphs in the following way. The position of each
vertex is calculated by simple averaging, placing different brain regions in an average-sized brain.
(The positions are still given with three coordinates: the origin is in the lower-right corner of
the back of the brain.) Averaging the attributes of the edges is more complicated. The first step
is to sum all the values obtained from the people. The first non-trivial question is whether the
length and thickness of the edges should be averaged differently. It makes no sense to divide the
sum of lengths by n because most edges only appear in some of the subjects, so we would lose
information in this case since we would obtain a disproportionately small number for the length.
Therefore, in the case of length, we must divide by the number of individuals in which the given
edge appears. On the other hand, in the case of thickness, it is informative whether 0 thickness
occurs in some people. Therefore, in the case of thickness, we should divide by n. So, using this
averaged graph, we do not need to perform calculations on n graphs in every case, it is sufficient
to work only with the averaged graph. Through the thesis, some results will use the averaged
graph, and some will not, so for every result, we make it clear whether we analyse the individuals
or the averaged graph. It is essential to consider that every edge in the averaged graph, appears
in at least one person, as we divide in both cases by a positive number. Thus, if #(i, j) denotes
the number of occurrences of edge (i, j), and wi,j,k and ℓi,j,k are the weight and length of edge
(i, j) in the k-th person respectively, then the equations for the edges of the averaged graph are
as follows.

wi,j =

∑n
k=1wi,j,k

n
(2.2)

ℓi,j =

∑n
k=1 ℓi,j,k
#(i, j)

(2.3)

An averaged graph can be calculated separately for different subject groups, such as fe-
male/male or demented/healthy. The main differences between the pair of graphs suggest ten-
dencies of differences between the brains of the examined groups.

2.3 Basic properties related to inversion numbers

In this section, we prove some basic properties of inversion numbers.

Definition 2.3.1. Two elements in two given permutations of a finite set are in inversion if
their order is opposite in the two permutations.

Definition 2.3.2. The inversion number of two permutations is the number of pairs of elements
that are in inversion. The inversion of an element is the number of other elements with which
it is in inversion.

Lemma 2.3.1. The expected value of the inversion number between two permutations picked
uniformly fromt the symmetric group Sn is n(n−1)

4 .
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Proof. Consider a fixed unordered pair (i, j). Then, due to symmetry, the expected value of the
inversion between them is 1

2 , since for every permutation, there exists bijectively another one,
where only the (i, j) transposition is different. (We call a function that swaps two elements in a
permutation a transposition.) It is known that

(
n
2

)
= n(n−1)

2 unordered pairs can be chosen from
n elements. By using the linearity of expectation, we obtain that the expected value is indeed
1
2 · n(n−1)

2 = n(n−1)
4 .

Corollary 2.3.1. The expected inversion of any element is n−1
2 .

Proof. We can again use the linearity of expectation based on Lemma 2.3.1. Since there are
n elements, and every inversion is counted for both elements, the expected value for a single
element is n(n−1)

4 · 2
n = n−1

2 .

Alternative proof. Pair each permutation bijectively with its inverse permutation. Then for every
unordered pair of elements (i, j), they are in inversion in exactly one of the permutations in each
permutation pair. Therefore, for any element i, there are n−1 different j elements, and each has
an expected inversion of 1

2 , yielding an expected inversion of n−1
2 by linearity for each element.

□

2.4 Graphs with maximal edges

We want to examine the structure of the brain not only as a whole but also by looking at
the structure of only the thickest edges. This way, we can only investigate the most crucial
connections. It should be mentioned that the motivation is not to filter out the distorting thin
edges, as for that goal, looking at only the thickest p% would be more efficient, with some
well-chosen p. Actually, p could depend on the data, as we do not know anything about the
distribution of the thickness of the edges in advance.

Definition 2.4.1. Consider any weighted simple graph with pairwise distinct edge-weights. Call
the associated maximal graph the graph whose vertices are the vertices of the original graph,
and its edges are exactly those edges that are the maximal weighted edge of at least one of their
endpoints. Call the extended maximal graph the one whose edges consist of exactly the two
largest weighted edges for each vertex.

In the case of the brain with n vertices, we selected n edges considering multiplicities in the
maximal graph, but there may be edges that we chose twice. First, let us state and prove a
general graph-theoretical lemma connected to this.

Lemma 2.4.1. Consider any simple graph with weighted edges and suppose that all the edge
weights are different. We state that the corresponding maximal graph is acyclic, i.e., it does not
contain any cycle of length at least three. This type of graphs are called forest graphs, as all
their components are tree graphs.
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Proof. Let us assume indirectly that the graph has a cycle and let its length be k ≤ n. Enumerate
the vertices of the cycle in order with the numbers 1, 2, . . . , k.

We know that any edge has two endpoints, so any selected edge has the largest weight for
one of its endpoints. Since both endpoints of each edge in the cycle are contained in the cycle,
it must have been selected because of one of the vertices in the cycle. We know that exactly one
edge has been selected for each vertex, so there is a bijection between vertices and edges in the
cycle based on for which vertex we selected which edge.

Since the edge (1, 2) was selected, without the loss of generality, we can assume that it
was selected for vertex 1. However, as the vertex 2 has two edges in the cycle and one of its
edges already has a bijection pair found, the edge (2, 3) must have been selected for vertex
2. This means that the weight of the edge (2, 3) is greater than the weight of the edge (1, 2)

because otherwise the edge (2, 3) would not have been selected for vertex 2. Proceeding along
the cycle with the previous reasoning, we get that the weight of each new edge is greater than
the previous one. But then, denoting the weight of the edge (i, j) by w(i, j), we obtained
that w(1, 2) < w(2, 3) < . . . < w(k − 1, k) < w(k, 1) < w(1, 2). This is a contradiction as
w(1, 2) < w(1, 2) cannot hold.

Remark 2.4.1. The previous proof can also be said by starting from the largest weighted edge
in the cycle. We can assume without the loss of generality that this is the edge (1, 2), and it
is selected for vertex 1. However, due to the selection at vertex 2, the edge (2, 3) must have a
higher weight, which is a contradiction. Another alternative proof is that no edge could be the
minimal weighted edge in the cycle. That is because, for both endpoints of this edge, the other
edge from the endpoint has greater weight, meaning that the least-weighted edge could not have
been paired for either of its endpoints in the bijection.

Remark 2.4.2. It is worth noting that during the proof, we only used the fact that no two edges
sharing an endpoint have the same weight. So, the condition that every weight is different can
be replaced by the more general one, only needing the different weights for the vertices locally.

For each component of the maximal graph, we can select the most important vertex. The
importance criterion for the vertices is the sum of weights of their edges (equality does not hold
in this ordering either).

Definition 2.4.2. The center of a graph (V,E) is the set of v vertices, for which maxu∈V d(u, v)

is minimal, where the function d denotes the graph-theoretical distance for unweighted graphs.
(The definition makes sense as the distance is unique for any pair of vertices.)

Lemma 2.4.2. For tree graphs, the center consists of at most two vertices.

Proof. Let us assume indirectly, that the graph has three vertices in the center. Then, as the
graph is acyclic, there must be two of them that are not neighbours, let them be u and v. Then,
there must be a vertex s ̸= u, v on the unique path uv. As u and v are both in the centers,
the vertex having the largest distance to v is in the direction of u from v and vice versa. This
implies that s also must be in the center, as otherwise, moving u towards v and v towards u



Background for Alzheimer’s disease 13

would decrease the maximal distance of u and v, so they would not be in the center. However,
this means that in the path uv, which is not empty, the maximal distance of s is smaller than the
maximal distance for u and for v. This is because the vertex with maximal distance for u and
for v, must be in the direction of s. This is a contradiction, as s would have a smaller maximal
distance than the vertices in the center.

The question arises: what biological role do connectivity properties play in the brain? Let us
consider why it is essential for the brain to have strong edges connected cohesively. Connectivity
means that any pair of vertices can communicate with each other through the specified thicker,
faster fibers. Naturally, the brain is the most effective when communication can occur from any
vertex to any other vertex through the fastest, highest-weighted edges. The mentioned property
is fulfilled when the most important edges form a connected component encompassing the entire
brain, allowing any two vertices to communicate.

Biconnectivity (nonseparability) of a graph means that even in the case of removing any
vertex, the remaining graph stays connected. This is a crucial brain property, because the ability
to bypass functions of certain brain areas is important due to diseases or aging. Some vertices
can take over the role of others to some extent, this phenomenon is called neuroplasticity.

Furthermore, it is biologically advantageous when the most important vertices are central in
each component. That is because this way, most of the vertices are close to the most important
vertex in the components.

2.5 Background for Alzheimer’s disease

Alzheimer’s disease is a progressive neurodegenerative disorder that primarily affects the brain,
leading to a decline in memory, cognitive function, and the ability to perform daily activities.
It is the most common cause of dementia among older adults. The hallmark characteristics of
Alzheimer’s include the formation of abnormal protein deposits called plaques and tangles in the
brain, which disrupt communication between nerve cells and ultimately result in death.

As the disease progresses, individuals may experience memory loss, confusion, difficulties in
problem-solving, language impairment, and changes in behavior. Alzheimer’s disease significantly
impacts not only the affected individuals but also places a substantial burden on their families
and caregivers.

While there is currently no cure for Alzheimer’s disease, various treatments and interventions
aim to manage symptoms and improve the quality of life for individuals living with the condition.
Ongoing research seeks to understand the underlying causes of Alzheimer’s more and develop
potential therapies to slow down or halt its progression. Early detection and timely intervention
are crucial in managing the disease and supporting the affected individuals and their families.
In 2020, the approximated number of people worldwide affected by Alzheimer’s was around 50

million [20] [21]. Throughout the thesis, dementia and Alzheimer’s will be used for the same
disease. This is because science can hardly differentiate patients with only the psychological
tests used for diagnostics in the OASIS Project. This implies that we can only talk about the
diseases of dementia and Alzheimer’s together.



Chapter 3

Importance attributes of brain regions

The importance of different vertices can be measured from various perspectives. We can ex-
amine the degree of the vertices, or we can look at the weight (thickness) and length of their
edges. Moreover, in the case of weight and length, we have three options: maximal, average, and
sum. Each of these metrics is meaningful, for example, the average weight indicates the aver-
age thickness of nerve fibers, while the sum of weights shows how many neurons communicate
with other brain regions. (Of course, these two measures are not the same because the sum of
many small weights may be the same as a few thicker edges, yet their averages are not equal.)
When examining the length of edges, we can gain information about how uniform the length of
communication of the vertex is.

3.1 Objectives and tools

It is important to emphasize that our goal is not to determine the important vertices according
to various criteria. Instead, the aim is to rank the vertices according to different criteria and
compare the orderings. In other words, we want to determine if the vertices that are expansive,
i.e., communicate over longer distances, are whether also those with thicker nerve fibers.

Let us take the seven importance criteria and rank the vertices according to each criterion
in descending order. More precisely, their associated labels/indexes are ordered, as each brain
region has been assigned an index. Of course, we consider vertices that appear earlier in the
orderings as more important. For each importance criterion, we thus obtained an index order,
each is a permutation of positive integers not exceeding 1015 as elements. It is important to
note, that since there is no equality between any two vertices for any criterion, the orderings are
well-defined.

In the tables, we fix one of the examined sequences, this is in the first row, while the other
sequence for the correlation test is in the second row. The Spearman coefficient is in the third
row, and the p-value is in the bottom row. A p-value of 0.0 indicates a value less than 10−323.
Furthermore, rounding errors may occur in other values as well, but they are negligible at this
order of magnitude.
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3.2 The correlation between the different attributes

Correlation if one ordering is by degree
Degree

Weight-sum Weight-max Weight-average Length-sum Length-max Length-average

ϱ 0.88 0.84 0.79 0.98 0.51 0.76

p 0.0 10−278 10−220 0.0 10−68 10−194

Table 1. The Spearman correlation coefficient ϱ, unlike the Pearson correlation
coefficient r, is significant even at 0.5 for sufficiently large datasets, which we can see

here at n = 1015. Therefore, we can see that vertices with high degrees strongly
correlate with the ones having thick or long edges, regardless of the type of criterion.
This is not surprising when considering the maximal or sum of properties, but it is for

the average. This indicates that the vertices with thick edges have not just
sporadically thick edges but rather uniformly. The Spearman coefficients are in the

third row, and the p-values are in the bottom row.

Correlation if one ordering is by sum of weight, then by maximum of weight
Weight-sum Weight-max

Length-sum Length-max Length-average Length-sum Length-max Length-average

ϱ 0.86 0.42 0.63 0.83 0.41 0.62

p 10−302 10−45 10−112 10−262 10−43 10−110

Correlation if one ordering is by average of weight
Weight-average

Length-sum Length-max Length-average

ϱ 0.77 0.37 0.54

p 10−199 10−33 10−79

Table 2. and Table 3. We can observe that ordering by length and thickness
correlates in every way. This is not intuitive because there is no trivial reason why

the expander vertices would be the ones with thick edges. The Spearman coefficients
are in the third row, and the p-values are in the bottom row.

Correlation between weight attributes, then between length attributes
Attributes with weight Attributes with length

Sum-Max Sum-Average Max-Average Sum-Max Sum-Average Max-Average

ϱ 0.97 0.98 0.96 0.58 0.86 0.70

p 0.0 0.0 0.0 10−91 10−296 10−148

Table 4. We can see that the different weight-based orderings and the different
length-based orderings correlate with each other. Of course, this follows from the
previous tables, as the relation of such a strong correlation is "transitive". The

Spearman coefficients are in the third row, and the p-values are in the bottom row.

From the tables, we can read that for 1015 vertices, we obtained extremely high coefficients
and negligibly low p-values. This implies that there is a remarkably strong correlation between
the different rankings of brain regions according to the various criteria. Hence, we have deter-
mined that the seven criteria of importance correlate. In other words, the same brain regions
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are important in terms of expanding as those with thick nerve fibers, indicating strong/fast con-
nections. However, this does not necessarily imply the same for edges: it is not necessarily true
that thicker edges are longer. We will address edge analysis later.

3.2.1 A simple control

For the sake of completeness and certainty, it is worth mentioning that with the previous exami-
nation, we truly observed random behavior. For instance, we can compare the basic labels of the
vertices with the indices by the average weight of their edges. The comparison gives ϱ = 0.01 and
p = 0.65. This magnitude of p-value is only due to the fact that indexing is not entirely random.
The vertices of the two hemispheres are numbered consecutively: the first approximately 500

vertices are located in one hemisphere, and the second approximately 500 vertices in the other
hemisphere, in the same order. So the fact that the most important vertices in one hemisphere
received late numbers also implies that the corresponding important vertices in the other hemi-
sphere receive large numbers as well. Of course, this does not imply any correlation, but it only
confirms the correctness of our method for comparison.

3.3 Comparing permutations with inversion numbers

So, we have established that the correlation between the criteria of importance is extremely
strong, but we have not obtained any tangible or convincing result that would help us understand
why this is the case. Therefore, it is worth examining on a vertex-by-vertex basis how different the
orderings are. More precisely, unlike the Spearman method, here we will not examine how much
the positions differ between the two permutations, but we will examine the inversion numbers.
Of course, both methods yield the same result, but this rather tells how different the positions
of the vertices are relative to each other according to different properties. In the following, when
we talk about permutations, we always refer to those of length n, whose elements are exactly
the integers from 1 to n.

Below, we can see diagrams showing how many vertices have a higher inversion than the
expected value for the two given importance criteria. The expected inversion is the previously
calculated n−1

2 . Now, we examine how many vertices have inversions greater than this. The
black line indicates the expected value of the number of vertices with large inversions for the two
specified criteria. The other colors represent different pairs of properties. On the x-axis, at each
of the n points (for n ≤ 1015), we indicate the case when only the first n most important vertices
were investigated. On the y-axis, we show how many of these vertices have inversions greater
than the expected value (for permutations of length n). This allows us to easily see that there
is no substantial difference between the inversions of important and less important vertices.
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Figure 3. The number of vertices with high inversions according to the different pairs
of properties. On the x-axis at each of the n points, we indicate the case when only

the first n most important vertices were investigated, according to the first
importance criterion. On the y-axis, we show how many of these vertices have

inversions greater than the expected value (for permutations of length n). In each
diagram, the black line indicates the expected value. It can be seen from the

diagrams that for all examined 15 pairs of properties, there are only a few vertices
with large differences in their positions in the rankings.

Thus, we have indeed understood that different criteria of importance are strongly correlated.
There will be a similar group of vertices with high degrees as those with thick edges or long
connections. Among these, the relationship between degree and sum of lengths is not unexpected,
as with more edges, we would expect their sum of lengths to be greater. The really surprising
result is that the average weight also correlates with the degree. The fact that we examined this
is unique, as in medical science, the emphasis is usually placed in the opposite direction. Their
goal is to determine which vertex is responsible for what. In this thesis, this is not the focus of our
interest. Of course, during the analyses, we can easily retrieve the corresponding brain regions
from the labels of the vertices. Thus, we can name the most important brain regions according
to the above criteria, and for completeness, we do so. The few most important brain regions
based on their degrees and average of edge weights (in both the right and left hemispheres) are
Caudate, Putamen, Thalamus-Proper, Hippocampus and Pallidum, i.e., the subcortical nuclei.

It is important to note that the above does not imply functional characterization. Moreover,
based solely on braingraphs, this is impossible, as only the location of brain regions and the
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connections between them are saved in the graph. To obtain results about the function of
specific vertices, functional MRI (fMRI) scans should be compared. During this type of scanning,
the subject performs some simple tasks (e.g., counting or reading). When different tasks are
performed, different brain regions will be more active, hence revealing which areas have a greater
role in performing the task [22].



Chapter 4

Correlation of edge attributes

In the case of edges, we can only examine two properties in the averaged braingraph: weight
and length. This is because the purpose of the braingraph is to characterize the system of brain
connections, and in this case, we want to compare the connections themselves. Therefore, only
the two properties that are fundamentally saved in the graph are available. So, we can arrange
the edges based on their length and weight.

4.1 Correlation between edge thickness and length

Let us examine the Spearman correlation between the index orders obtained from the weight
and length of all edges. We perform this on the 99171 edges present in the averaged braingraph
(with non-zero weight). The two sequences are ordered by thickness and length. We found that
the Spearman coefficient is −0.51, and the corresponding p-value is 0.0. (It is important to note
here as well that our current dataset is so large that even for this relatively small absolute value
of coefficient, there is a negligible p-value.) This seemingly contradicts the previous descriptions
stating that edge length and thickness would positively correlate, as we now find that shorter
edges are thicker. To understand this, we created a diagram whose points represent the edges.
The x-coordinate of each point indicates its ranking by thickness, and the y-coordinate indicates
its ranking by length. In the diagrams, we will only show the edges that occur in at least five
subjects. That is because too many edges have occurrence at most four, and equalities cause
artifacts in the orderings and thus produce distorted diagrams. For this reason, we show only the
67281 edges, which have occurrence number at least five. It should be noted, that the statistical
calculation is not distorted as the ϱ-coefficient and the p-value deal with the equalities.
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Figure 4. Comparison of edge thickness and length indices. Each point on the
diagram represents an edge, where the x-coordinate is the ranking by thickness, and

the y-coordinate is the ranking by length. The strong correlation is because the
majority of edges lie close to the minor diagonal (top-left to bottom-right corner).

Only the 67281 edges with occurrence number at least five are shown. The Spearman
coefficient for all the 99171 edges is −0.51, and the corresponding p-value is 0.0.

The strong correlation arises because there are no really thick edges among the longest ones.
Also, it is rare for an edge to be both short and thin at the same time. Therefore, the opposite
correlation arises: the thicker an edge, the more likely it is to be short, and similarly, the longer
an edge, the more likely it is to be thinner. However, this seems to create an even stronger
apparent contradiction: there was a correlation among vertex importance. How can thicker
edges be shorter? The explanation lies in the fact that in the case of edges, there is a correlation
globally but not locally. For example, examining the first 1000 edges reveals no real correlation
locally. Thus, the paradox arises from the anomaly that there can be a correlation between two
properties even when there is no local correlation between them.

4.2 Correlation with occurrence numbers

Edges have a property that we cannot read from the original averaged braingraph: how many
individuals they appear in. When creating the averaged graph, we can also save that how
many individuals each edge occurred in. Naturally, it seems reasonable that occurrence numbers
should correlate with the weight of edges. This would imply that edge length and occurrence
count would correlate inversely. Indeed, the correlation between occurrence and thickness is 0.97,
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with a p-value of 0.0, while comparing with length, the coefficient is −0.47, with a p-value of 0.0.
This indicates an incredibly strong correlation in both cases, especially in the earlier (due to the
exceptionally high coefficient). To illustrate this, let us look at two diagrams that are similar to
the previous one.

Figure 5. and Figure 6. Comparison of occurrence number with edge weight and edge
length respectively. Each point on the diagram represents an edge, where the
x-coordinate is the ranking by weight and length, while the y-coordinate is the

ranking by occurrence. Only the 67281 edges with occurrence number at least five are
shown. The Spearman coefficients for all the 99171 edges are 0.97 and −0.47, and the

corresponding p-values are 0.0 and 0.0 respectively.



Chapter 5

Location of brain regions

We can notice that up to this point in the thesis, we have not addressed the fact that brain
regions also carry geometric information. However, in the case of an organ like the brain, we
should remember that brain regions have spatial relationships with each other. While we have
examined how long fiber bundles are, we have only done so for pairs of vertices, not in relation
to the entire brain.

5.1 Centroids and weighted centroids of vertices

For a vertex labeled i, let Hi be the set of vertices that are adjacent to the vertex i.

Definition 5.1.1. The simple centroid of the vertex i is the arithmetic mean of the positions of
the vertices in Hi.

Definition 5.1.2. The weighted centroid or modified centroid of vertex i is the weighted average
of the positions of the vertices in Hi, where the weight of an endpoint is the thickness of the
edge connecting it to i.

Figure 7. We can see that the simple centroid of the edges departing from point A is
point D. However, by doubling the weight of edge AB and computing the weighted
centroid, we get D′ ̸= D. Similarly, from point P , the simple centroid of edges PQ,
PR, and PS is T , but by doubling the weight of PQ and tripling the weight of PR,
we obtain T ′ ̸= T . In the case of braingraphs, much larger differences in edge weights

are common, so both types of centroids should be examined.
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Of course, the simple centroid of each vertex provides information about where the vertex
communicates on average. In the case of the weighted centroid, we consider the strength of com-
munication as well. The latter is better for characterizing where the communicated information
from the vertex on average reaches or where information arrives from.

The question may arise that how far the vertices are from their centroids. Since we have
observed that shorter edges are thicker, we expect the weighted centroids to be closer to the
vertices than the unweighted centroids. And indeed, this is the case: we calculated both centroids
in terms of coordinates one by one and by Euclidean distance. From the table, we can read the
average distances both in the cases of simple and modified centroids according to the x, y, z

coordinates and Euclidean distance in millimeters.

Distances from centroids
Simplex Simpley Simplez SimpleEukl Modx Mody Modz ModEukl

5.38 7.92 6.12 12.80 4.04 4.77 4.08 8.46

Table 5. We can read in millimeters the average distances of the vertices from the
simple and weighted centroids by coordinates and by Euclidean distance.

It is not surprising that the largest distance is along the y-coordinate. Given the physical
properties of the brain, which is longer in the forward-backward direction, the component of
the edges by the y-coordinate is the largest. However, the difference between coordinates is
significantly smaller for modified centroids: instead of a 2.4 mm difference, there is only a 0.7

mm difference. This suggests that the edges with lower weights mostly expand parallel to the
y-axis.

It is worth considering that we have only used the regular distance so far, but instead, we
could use signed distance. At first glance, one might think that the sum of the signed distances
is the null vector, but that is not the case. The degree of the two endpoints of a given edge may
differ, resulting in calculations with different weights in the two directions. We will not deal with
signed distance in this thesis.

5.2 Placement of vertex centroids

The examined brain regions are in the gray matter of the cerebral cortex, while the nerve fibers
run in the white matter. It is a legitimate question to ask how symmetrically the edges run from
the vertices.

Definition 5.2.1. The unweighted average of all vertex coordinates is referred to as the center
of the brain.

This is an appropriate definition, because the brain regions are "evenly" distributed, so it
will carry the information about where the vertices are on average.

Definition 5.2.2. Associate to each vertex the line on which the vertex and the center of the
brain lie.
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Note that this line is well-defined, as the center of the brain will not coincide with any vertex,
since most vertices are located on the cerebral cortex (surface of the brain).

The question is how far the centroid is from the previously defined line. Averaging over 1015
vertices, the unweighted centroid is on average 7.24 mm away, while the weighted one is only
4.98 mm away. The difference is noticeable: the modified centroid is closer to the line than the
unweighted one by more than 30%.

The previous observation has an interesting consequence due to the shorter edges being
thicker. First, we need to consider that due to the two brain hemispheres (and slight elongation),
the brain is not rotationally symmetric. There are relatively few edges connecting the two brain
hemispheres, so the components of the centroids of the vertices mostly come from their own brain
hemisphere. Then the longer edges, which result in larger deviations, are computed with smaller
weights for the modified centroid, so it indeed gets closer to the line. It is worth noting that we
use the fact that for most vertices, the longer edges are further from the center of the brain. The
following figure shows the edges of a vertex projected onto the brain, where this phenomenon
can be observed clearly.

Figure 8. A brain region and its associated edges. It can be observed that due to the
relatively small number of edges connecting the two brain hemispheres (in the Corpus
Callosum, i.e., the commissural fibers), the longest edges of the vertices do not run

towards the center of the brain.

The possibility arises that there is a correlation between the distance from the line and the
importance of the vertices. What would this mean? The important vertices are not important
because they communicate strongly in a given direction but because their communication is
somewhat symmetric.
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5.2.1 Correlation between the distance from centroids and im-

portance of vertices

Let us look at each vertex individually to see how far its centroid is from the line and compare
this with how important the vertex is. As the different importance criteria strongly correlate
with each other, any of them could be chosen. In this case, we use the ordering of vertices based
on the sum of the weights of their edges.

For the unweighted centroid, the Spearman coefficient is −0.20 and the associated p-value is
3.66 · 10−10 respectively. For the modified centroid, the Spearman coefficient is −0.06, and the
associated p-value is 0.075. Thus, we can see that for the unweighted centroid, the correlation is
strong, while for the modified centroid, it is weaker, only around 92.5% reliability. This means
that the more important vertices are those whose edges are symmetrically located with respect
to the line, regardless of the thickness of the edges. Thus, the importance of the vertices is
less influenced by counting, as well as the thicknesses of the edges. This implies that the more
important vertices are indeed those whose edges are relatively symmetrically located in the brain.
It is important to note that the vertices are more or less taken from the cortical matter of the
brain. So, the fact that the distance from the line is small indeed means that the centroid is
located towards the center of the brain and not in the opposite direction.



Chapter 6

Analysing the maximal graphs

6.1 Analysis of connectivity for the graphs from Hu-

man Connectome Project

First, we describe the results using the above tools for the graphs that were calculated from
MRIs of the Human Connectome Project. These graphs have 1015 vertices, and fortunately, in
our averaged braingraph, every edge has a different weight, so Lemma 2.4.1 can be applied to it.
From this, we know that in the brain, this graph is a forest graph (containing only tree graphs
as components).

6.1.1 Fundamental research results about the connectivity of the

maximal graph

In the case of the averaged braingraph, its maximal graph has 27 components. The components
are not of the same size: there are three components with a vertex count above 200. Interestingly,
one covers most of the right hemisphere, the other covers most of the left hemisphere, and the
third is symmetrically present in both.

In the view of Lemma 2.4.2, we found that from of the 27 components, 19 has the most
important vertex in the center. This implies a really strong correlation, because for a graph with
n vertices, the probability for this is at most 2

n . It is worth noting that out of the remaining 8

components, the most important vertex has a central neighbour in 6, so they are also close to
the center of the components.

6.1.2 Comparing the global connectivity of the brains of female

and male subjects

The neuroscience of sex differences delves into the intricate study of characteristics that distin-
guish the female and male brains, exploring the interplay of genes, hormones, and social learning
in shaping brain development over the lifespan. The debate surrounding male and female brain
anatomy persists, with controversies arising from brain size, structure, neurotransmitters, and
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function differences. While some argue for significant sex differences, others challenge these
claims, citing potential biases and methodological flaws. For example, recent research has scru-
tinized structural disparities, with a 2021 meta-synthesis revealing that sex accounts for ap-
proximately 1% of the brain’s structure or laterality, mainly manifesting in total brain volume
differences [23]. However, conflicting findings persist, as subsequent studies emphasize regional
sex differences even after adjusting for global brain size [24].

Historically, by 1854, German anatomist Emil Huschke observed a size discrepancy in the
frontal lobes, laying the groundwork for intensified research into sexual dimorphisms [25]. As
scientific methodologies evolved, studies applying molecular and neuroimaging approaches un-
covered a wealth of information about both structural and functional disparities between male
and female brains.

Evolutionary explanations propose that sex differences in cognition, such as enhanced infor-
mation recall in females and higher spatial intelligence quotient in males, may have arisen from
adaptive pressures during human evolution. For instance, oxytocin, a hormone associated with
uterine contraction and lactation, has been linked to improved spatial memory, potentially aiding
mothers in locating distant food sources for nurturing offspring [26].

Structurally, male brains tend to be larger and heavier than female brains, with variations
in cortical thickness, surface area, and grey matter. Lateralization, the specialization of brain
functions in one hemisphere over the other, is also a topic of discussion, with men often attributed
to having a more lateralized brain. Discrepancies in the amygdala, hippocampus, and grey matter
distribution contribute to behavioral differences between males and females [27].

Brain networks with modern technology open a new dimension to the discussion. In the
next subsection, we highlight some differences using the connectivity methods described at the
beginning of the thesis.

6.1.3 Proving differences between the brains of females and males

As mentioned above, it is biologically advantageous to have a smaller number of components in
the maximal graph and to have the extended maximal graph closer to being biconnected. Earlier
(not done by me), from the Human Connectome Project MRI-s with different methods, it was
found that the brains of females are better structured than the brains of males [28]. Here, we
substantiate these results by looking at the subjects’ brains one by one. The average number of
components in the case of females is 62.1, while in the case of males, it is 66.2. This is a small but
significant difference. On the other hand, a bigger difference occurs in the case of biconnectivity
of the extended maximal graphs. Here, the number of vertices without the extended maximal
graph becomes disconnected is 54.6 for females and 74.9 for males. This data is a bit deformed,
because in some subjects, the extended maximal graph is not even connected (this is more likely
to happen in males). If we only look at connected extended maximal graphs, we get an average
number of cutting vertices of 5.4 in females and 7.0 in males. This matches the fact that males
have a higher mortality rate than females with strokes [29].
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6.2 Analysis of connectivity for the graphs from OASIS

Brains Project

The above calculations investigating sex-differences were also done for the second set of graphs.
The exact numbers of the two sets of graphs cannot be compared, as a slightly different parcel-
lation of the brain was used, and the technology was not exactly the same either. However, the
tendency was the same: women had a slight advantage when looking at the number of compo-
nents in the maximal graph. In comparison, there was a massive difference in the level of how
close the extended maximal graph is to be biconnected.

6.2.1 Comparing the global connectivity of demented and healthy

subjects

One could expect that demented people should have less connected brains. On the other hand, the
difference between the demented and healthy people is really small. Both in the case of maximal
graphs and extended maximal graphs, the difference is less than 1%. A trivial idea could be to
check whether the sum of all weights differs. The answer is no: the exact numbers for demented
and healthy people are 676881.5 and 695905.7 respectively, so the difference between demented
and healthy people’s sum is less than 3%.

It is really important to consider the fact, that until now, we have only looked at the average
of the people’s properties, and the averaged graph has not been examined. It is absolutely not
automatic that we should get similar results in any of the above questions for the averaged
graph. So, the averaged graphs are tested too: we make an averaged graph for females, males,
demented people and healthy people. In fact, we get that the averaged graph of females has better
connectivity than the averaged graph of males. Furthermore, there is no significant difference in
the case of demented and healthy people. On the other hand, maybe surprisingly, the averaged
graphs have better connectivity than the individuals one by one. In fact, in every attribute of
connectivity mentioned above, the averaged graph of all subjects is significantly better, even
than the subject with the best connectivity.

6.2.2 Conclusions from connectivity attributes

To summarize the results above, we can state that these connectivity attributes have biological
meanings matching earlier theories. These include the fact that the brains of females are better
connected than the males’. On the other hand, in the case of dementia, no general differences
can be concluded between healthy and demented people with this method.
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Difference between demented and
healthy people in the level of
communication of specific vertices

In the previous section, we saw that it is likely that the difference in demented people’s brains
is much more local than global. This leads to the idea of investigating the vertices one by one.

7.1 The role of hippocampus in dementia

The main idea comes from the fact that people with Alzheimer’s usually lose short-term memory
first [30]. This means that memories from the early past are usually forgotten easier for people
with dementia. The brain area hippocampus is scientifically accepted to impact short-term
memory greatly. Because of this, if people with dementia had a worse-connected hippocampus,
that could be a reason. (Actually, it is difficult to tell which is the reason and which is the
result. It is not known whether the dementia comes from the not well-connected hippocampus
or backwards.) It is really important to state that in the earlier sections, we saw that there is
no significant difference when looking at the sum of all weights. This does not imply that there
is no significant difference for some vertices. In fact, because of the Law of large numbers [31],
the existence of vertices having more weight-sum in healthy people is likely, but the number of
these vertices is expected to be the same as the number of vertices having more weight-sum in
demented people. (This was not a precise formulation of the Law of large numbers, but here,
the intuition is enough to show that we need to have significant differences.)

After the calculations, the average fiber counts of the hippocampus for sick and healthy people
are respectively 5097.22 and 5630.74, which is a significant difference of more than 10%. This
means that the area hippocampus is connected worse and degenerated in the case of demented
people compared to healthy people. One should notice that we did not partition the subjects
into males and females, which could distort the data. And it is actually true: we do not know
anything for sure about whether females and males get affected by dementia differently or not.
But in every case similar to this, a partition-check is made: every time a statement is stated
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with a ratio of at least 10%, then the result is also approved after the sex-partition. Under
sex-partition, we mean the process of partitioning the subjects into two groups by their sex, then
checking the results for the two groups separately, verifying the validity of the results.)

So, what we got here is that the hippocampal region in demented subjects is degenerated
compared to the healthy subjects. One thing can surely be stated: the short-term memory
loss symptom really is a straight implication of hippocampal deficits. On the other hand, at
this phase, it cannot be decided whether the hippocampal damages implied the dementia or
backwards.

7.2 Finding vertices which can have a role in dementia

The one-by-one sum of weights for all the 124 vertices were calculated for the demented subjects
and for the healthy subjects too. A threshold ratio of 10% was chosen, which we will use as a
threshold for significance. If a vertex has difference of at least 10% between healthy and demented
weight-sum, then we say this vertex does have a role in dementia.

Now we give the list of brain areas that have significantly less weight-sum in demented
people than in healthy people: caudal middle frontal, entorhinal, posterior-medial pulvinar and
hippocampus.

Now we give the list of brain areas that have significantly less weight-sum in healthy people
than in demented people: caudate and medulla oblongata.

The average weight-sum of the brain areas for demented and healthy subjects
Brain areas Hippocampus Middle frontal Entorhinal Medial pulvinar Caudate Medulla oblongata

Demented 5097.22 8492.34 1662.19 1857.75 10620.16 872.6

Healthy 5630.74 9434.9 1856.96 2118.83 9509.07 755.28

Table 6. We can see the six brain regions with a difference of at least 10% between
the weight-sum in demented and healthy people. The first row lists the brain areas,
the second row lists the weight-sum in demented people, and the third row lists the

weight-sum in healthy people.

Now we go through all the listed brain areas and give reasons, using results from literature
and symptoms of dementia, why they really have a role in dementia. We already mentioned the
hippocampus and its role in short-term memory.

The (caudal) middle frontal is thought to have a role in attention control and attention
orientation [32] [33].

The entorhinal cortex is proven to have a serious role in memory formation and memory
navigation [34]. This makes the statement stronger that memory loss is caused by the lack or
dying of neurons around brain areas responsible for memory.

The medial pulvinar nucleus is famous for its role in eye movement [35] and attention regu-
lation [36]. It is also proven that it has a role in attention deficit disorders [37].

The caudate nucleus is most famous for its role in motor processes and in Parkinson’s disease
[38]. On the other hand, it has an impact on procedural learning and associative learning [39]. As
Parkinson’s also includes dementia in many cases, it is not surprising that caudate is also in the
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list. On the other hand, the role of the caudate nucleus in dementia is really controversial. Some
in the literature conclude that the volumetric reduction correlates with dementia [40], and some
conclude the opposite [41]. As we saw above, our thesis concludes that the overconnectedness
of the caudate nucleus correlates with dementia. So, this thesis is important in this controversy,
as we only looked at the axonal fibers connected to caudate, not its volume. Hence, the results
listed in this paper show that the level of communication of the caudate is higher in demented
people.

The medulla oblongata is located in the lower part of the brainstem. Its main responsibil-
ities are involuntary functions. On the other hand, it is already thought to have an impact on
dementia and aging [42] [43]. The higher sum of edge-weight in demented people can be because
of the severe axonopathy and tauopathy in this brain area, and these could distort the MRIs
and braingraph-calculating codes. One could notice that plaques similar to this also exist in the
hippocampus, and reduction was still explored in the weight-sum of the hippocampus. A reason
for this anomaly could be the original lack of axons from the hippocampus causing dementia,
while tauopathy is just a symptom of dementia. Also, the structures of plaques in the hippocam-
pus and in the medulla are not exactly the same. In the case of caudate, the plaques are not a
possible reason, as no plaques were found in the region of caudate.

7.3 Connection between Alzheimer’s Disease and At-

tention Deficit Hyperactivity Disorder

New researches found connection between ADHD and Alzheimer’s using psychiatric methods
[44] [45]. Our work also proves the connection, as the areas (caudal) middle frontal and medial
pulvinar have a serious role in attention orientation. Actually, our work only proves that de-
mented people tend to have attention deficits too, the backwards does not imply automatically.
It is a possibility that people with ADHD do not tend to also have Alzheimer’s. This cannot be
investigated in this situation, as the examined subjects are only diagnosed with the existence of
dementia and nothing else.



Chapter 8

Summary

During our research, we worked with braingraphs of individuals and averaged braingraphs. First,
we have recognized that the various importance criteria of different brain regions correlate, both
intuitive and less intuitive ones. We observed that vertices with large degree are the same as
those with long or thick edges in multiple senses. We also compared the ordering of edges based
on thickness, length, and occurrence.

We examined where the centroids of neighboring vertices are located. We compared the
results obtained here with the importance criteria and found a connection between them.

We investigated how the most important edges per vertex in the graph are situated in the
brain. After proving a general lemma, we saw the results in this topic are linked to the biologically
crucial neuroplasticity. Furthermore, we demonstrated that in the subgraph formed by the most
important edges per vertex, the most important vertices are almost always positioned graph-
theoretically centrally within the components.

We concluded some general results about the differences between females and males, strongly
connected to strokes. After that, we investigated general properties of the brain, trying to find
differences between demented and healthy people. We concluded that there are no significant
differences in the investigated general connectivity properties. After that, we tried to find signif-
icant differences for specific brain areas, which was successful. We compared our results with the
literature and concluded that these anatomical results confirm the psychological results. We also
conclude a significant result in a controversy around the role of caudate in dementia, as higher
weighted edges were found in demented people than in healthy people. Another important result
is the conclusion that Alzheimer’s and ADHD do have a strong connection.
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