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Chapter 1

Introduction

The aim of this thesis to explain how to use elementary submodels to prove new
theorems or to simplify old proofs in various areas of set theory, for example in
infinite combinatorics.

This thesis consists of two main parts. In the first section (Chapter 3) we
introduce the classical methods for proving two famous theorems of Erdos-Rado and
in the second section (Chapters 4-6) we present the technique of using elementary
submodels with the necessary preliminaries to understand them fully. The two parts
do not depend on each other and can be read independently.

In Chapter 2 we lay out some preliminaries which is necessary for the thesis.
In Chapter 3 we introduce the main concepts we will use in the first part and in-
vestigate some of their properties: cofinalities, club sets and stationary sets. Then,
we showcase the main theorem for the two Erdos-Rado proofs, the Fodor’s pressing
down lemma. It says that a regressive function is necessarily constant on a sig-
nificantly large subset of the domain. The first Erdos-Rado theorem we prove is
about the existence of a ∆-system and the second is a Ramsey style question, which
tells us about a large monochromatic set that we can always select when coloring a
sufficiently large graph.

Onto the second part, in Chapter 4 we introduce the sets Hθ for every cardinal
θ. They will be useful in Chapter 5, where we define elementary substructures
and apply the theory to get elementary submodels from the sets Hθ. We first
introduce important notions from logic, we define structures, terms and first-order
formulas and precisely show what we mean by the value of a term and the truth of
a formula. Then, we prove theorems about the existence of elementary submodels
and investigate some of its interesting properties we can use later. In Chapter 6
we show some interesting applications of elementary submodels in topology, infinite
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CHAPTER 1. INTRODUCTION 5

combinatorics and in the last chapter we revisit the well-known ∆-system lemma
and we prove it using elementary submodels.



Chapter 2

Preliminaries

We assume that the reader is familiar with basic notions and definitions from set
theory and topology.

In some introductory set theory classes they define an ordinal as the equivalence
class of well-ordered sets. We now use the Von Neumann definition of ordinals which
means that we define every ordinal as a particular set that (canonically) represents
the class. Thus, an ordinal number will be a well-ordered set; and it can be shown by
transfinite induction that every well-ordered set will be order-isomorphic to exactly
one ordinal number. This definition will imply that each ordinal is the set of all
smaller ordinals. Formally, a set A is an ordinal if and only if A is well-ordered with
respect to ∈ and every element of A is also a subset of A. For example, the first few
Von Neumann ordinals are:

0 = {} = ∅

1 = {0} = {∅}

2 = {0, 1} = {∅, {∅}}

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

If we consider an ordering < on A, we view the set < as a subset of A × A.
A pair (x, y) ∈< if and only if x < y. The expression x ≤ y is a shorthand for
(x, y) ∈< or x = y.

Definition 2.0.1. We say that the ordered sets (A,<) and (B,<) are isomorphic
if there exists a function f : A → B which is an order-preserving bijection.

Definition 2.0.2. Let (A,<) be a well-ordered set. The order type tp((A,<)) of the
set (A,<) is the unique Von Neumann ordinal α such that (α,∈) is isomorphic to
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CHAPTER 2. PRELIMINARIES 7

(A,<). If the ordering is obvious from the context we usually write tp(A).

Notation 2.0.3. We will denote the cardinality of the real line (continuum) with c.

Notation 2.0.4. For a cardinal κ we will denote the successor cardinal of κ with
κ+.

Definition 2.0.5. For a set x, let ⋃
x := {z | ∃y (z ∈ y ∧ y ∈ x)}.

Notation 2.0.6. A set x is called transitive if for all y ∈ x we have that y ⊆ x.

In other words if for all z ∈ y ∈ x we have that z ∈ x, hence the name transitive.
We will use the following notation as well:

Notation 2.0.7. For cardinals κ, λ the set [κ]λ := {A ⊆ κ
∣∣∣|A| = λ}.

If not indicated otherwise the symbols λ, κ, µ, (κξ) will denote cardinal num-
bers.



Chapter 3

Infinite combinatorics

3.1 Cofinalities

Definition 3.1.1. Let (A,<) be an ordered set. A subset B ⊆ A is called unbounded
or cofinal if for every x ∈ A there exists y ∈ B such that y ≥ x.

Theorem 3.1.2. (Hausdorff) Let (A,<) be an ordered set. There exists B ⊆ A

such that B is unbounded, <↾B×B is a well-ordering of B and tp(B) ≤|A|.

Proof. Let us consider a ≺ well-ordering of A with tp(A) = |A|. We will construct
a subset B ⊆ A such that B is unbounded and <↾B×B=≺↾B×B. Let the definition
of the set B be as follows: B := {x | x < y ⇒ x ≺ y} Suppose for a contradiction
that B is not unbounded: ∃a ∈ A ∀b ∈ B b < a. Then the set

S := {a ∈ A | ∀b ∈ B b < a}

is not empty, so there exists a ≺-minimal element a ∈ S. We claim that a ∈ B.
Suppose for a contradiction that a /∈ B, hence there exists y ∈ A such that a < y,
but a ≻ y. This means that y ∈ S as well and a is not ≺-minimal. This concludes
that a ∈ B so a < a, which is a contradiction.

Definition 3.1.3. Let (A,<) be an ordered set. Then

cf((A,<)) := min
{
|B|

∣∣∣B ⊆ A, B is unbounded and <↾ B ×B is a well-ordering of B
}
.

For brevity, we denote cf((A,<)) by cf(A) if the ordering is obvious from the context.

This definition is correct, because Theorem 3.1.2 guarantees the existence of at
least one set B according to the given conditions. Note that for an ordered set A,
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Cofinalities 9

cf(A) is always a cardinal.

Definition 3.1.4. Let α be a limit ordinal. We call α regular if and only if cf(α) =
α, and singular otherwise.

Note that for a singular ordinal α, the cardinal cf(α) < α. It is easy to see the
following fact.

Fact 3.1.5. If α is a regular ordinal, then α is a cardinal.

Proposition 3.1.6. Let α be an ordinal. Then cf(cf(α)) = cf(α).

Proof. We know, that cf(cf(α)) ≤ cf(α). Now we show the inequality in the other
direction. Let {αi | i ∈ cf(α)} be an increasing unbounded subset of α of type cf(α).
Suppose that I ⊆ cf(α) is an unbounded subset of cf(α). Then, {αi | i ∈ I} is an
unbounded subset of α, hence cf(cf(α)) ≥ cf(α).

Remark 3.1.7. The proposition above is true not just for cardinals, but for all
ordered sets (A,<) as well.

The proposition above shows that for an ordinal α, the cardinal cf(α) is regular.

Proposition 3.1.8. Let κ be an infinite cardinal. Then the cardinal κ+ is regular.

Proof. Suppose for a contradiction, that cf(κ+) < κ+. This means, that cf(κ+) ≤ κ,
so there exists a (βi)i<κ unbounded subset of κ+, where of course βi < κ+, so|βi| ≤ κ.
Now, the union ⋃

i<κ
βi is equal to κ+, so we have written κ+ as a union of κ many

sets, each of which size ≤ κ, which gives a contradiction.

Proposition 3.1.9. Let κ be an infinite cardinal. Then

cf(κ) = min{λ |
∑
ξ<λ

κξ = κ, κξ < κ}.

Proof. Let τ := min{λ | ∑
ξ<λ

κξ = κ, κξ < κ}. First, it is easy to see that cf(κ) ≥ τ .

Let’s consider an unbounded subset C ⊆ κ such that |C| = cf(κ). I claim that the
sum of the elements of C is κ. It can not be smaller than κ since for every α < κ the
sum ∑

α∈C
|α| contains an ordinal bigger then α. It is also not bigger then κ because∑

α∈C
|α| ≤ cf(κ) · κ ≤ κ2 = κ.
Now, suppose for a contradiction that cf(κ) > τ . Let A := {κξ | ∑

ξ<τ
κξ = κ}.

Of course |A| = τ < cf(κ) so A is bounded in κ. This means that there exists
β < κ ∀ξ : κξ ≤ β. Hence, κ = ∑

ξ<τ
κξ ≤ τ · |β| = max(τ,|β|) < κ which finishes

the proof.
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3.2 Stationary sets

From now on let κ ≥ ω1 be a regular cardinal. In this chapter we define the
stationary and club sets and introduce some properties of them.

Definition 3.2.1. A set Z ⊆ κ is a closed set if and only if for every regular λ < κ

and for every strictly increasing sequence of type λ, the limit of the sequence is in
Z.

Definition 3.2.2. A set E ⊆ κ is a club set if and only if it is closed and unbounded.

Definition 3.2.3. A set S ⊆ κ is a stationary set if and only if for ∀E ⊆ κ club
set E ∩ S ̸= ∅.

Proposition 3.2.4. Let S ⊆ κ be a stationary set. Then, |S| = κ.

Proof. Suppose for a contradiction that |S| < κ. This means that S can’t be un-
bounded in κ by the regularity of κ. Let α := supS < κ. The set [α+ 1, κ) ⊆ κ is a
club set, because it is closed and unbounded, but [α + 1, κ) ∩ S = ∅, contradicting
that S is stationary.

Proposition 3.2.5. Fix a cardinal λ < κ. Let ⟨Eα ⊆ κ, α ∈ λ⟩ be club sets. Then⋂
αEα is a club set. In other words, the intersection of fewer than κ many club sets

is also a club set.

Proof. First, the intersection of closed sets is closed. To show that the intersection
is unbounded, fix β < κ. We will find an element in the intersection, which is bigger
than β. Consider an enumeration {γα | α ∈ λ} of λ with type λ such that every
ordinal γ ∈ λ occurs exactly λ times. We can do this because λ · λ = λ. We view
these ordinals as the indices of the sets Eα. We construct a sequence of type λ with
transfinite recursion. Let the first element β0 in the sequence be an element from the
first set Eγ0 according to the enumeration such that it is at least β. We can do this,
because the sets are unbounded. Let’s choose the second element from the second
set Eγ1 such that it is bigger then the ordinal β1. We can continue this procedure, in
each iteration selecting a bigger element than the previous one from the appropriate
set, because κ is regular and λ < κ = cf(κ), so the chosen ordinals can not form
an unbounded subset at any point in the transfinite recursion. During the process
from every set Eα we select an element λ many times so the limit of this sequence
{βα | α ∈ λ} will be in each Eα since they are closed. Thus, the limit is in ⋂

αEα

and it is of course bigger then β. We have shown that ⋂
αEα is unbounded.
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Proposition 3.2.6. Let S ⊆ κ be a stationary set and let C be a club set. Then,
the set S ∩ C is stationary.

Proof. Suppose for a contradiction that the set S ′ := S ∩E is not stationary. Then
there exists an F club set, for which S ′ ∩ F = ∅, hence S ∩ (E ∩ F ) = ∅, but E ∩ F

is a club set because of Proposition 3.2.5, so this contradicts the fact that S ′′ is
stationary.

Proposition 3.2.7. Let S ⊆ κ be a stationary set. If we cut S into the disjoint
union of λ < κ many sets {Si | i ∈ λ}, then at least one of them will be stationary.

Proof. Suppose for a contradiction that none of the sets {Si | i ∈ λ} are stationary.
Then there exists {Ei | i ∈ λ} club sets, such that Ei ∩ Si = ∅ for all i ∈ λ. The set
E := ⋂

i∈λ
Ei is a club set because of Proposition 3.2.5 and E ∩ S = ∅, contradicting

the fact that S is stationary.

Remark 3.2.8. One might think of the club sets as having full measure and sta-
tionary sets like sets of positive measure in some sense.

Remark 3.2.9. Solovay’s Theorem says that if κ is regular uncountable, then any
stationary set in κ can be partitioned into κ-many pairwise disjoint stationary sets.

Definition 3.2.10. Let ⟨Aα ⊆ κ | α < κ⟩ be a sequence of subsets of κ. Then their
diagonal intersection is defined as

∆
α<κ

Aα := {δ | α < δ =⇒ δ ∈ Aα}.

Proposition 3.2.11. Let ⟨Aα ⊆ κ | α < κ⟩ be club sets. Then their diagonal
intersection is a club set.

Proof. We first show that the diagonal intersection is closed. Fix an increasing
sequence in the diagonal intersection: {δγ}γ<µ where µ is a regular cardinal less
than κ. Let δ be the limit of the sequence. Let’s fix a γ < δ. There exists β < µ

such that γ < δβ. We know that δβ ∈ ∆
α<κ

Aα, hence δβ ∈ Aγ. Again, δβ+1 ∈ ∆
α<κ

Aα,
so δβ+1 ∈ Aγ. The set Aγ is closed, so the limit of the sequence δβ, δβ+1 . . . which is
δ is in Aγ concluding that δ ∈ ∆

α<κ
Aα.

We now show that the diagonal intersection is unbounded. Fix β < κ, we need
to find δ′ such that β < δ′ ∈ ∆

α<κ
Aα. Let δ0 > β be an arbitrary ordinal. By

Proposition 3.2.5 the set ⋂
δ<δ0

Aδ is unbounded, so there exists δ1 > δ0, such that
δ1 ∈ ⋂

δ<δ0
Aδ. Again, by Proposition 3.2.5 we know that ⋂

δ<δ1
Aδ is unbounded, so for
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δ1 there exists δ2 > δ1 such that δ2 ∈ ⋂
δ<δ1

Aδ. This means that δ2 ∈ ⋂
δ<δ0

Aδ also,
because this is a smaller intersection. We can continue this process by induction.
Now, we have concluded that there is a sequence such that:

δ1, δ2, δ3, · · · ∈
⋂
δ<δ0

Aδ.

δ2, δ3, · · · ∈
⋂
δ<δ1

Aδ.

δ3, · · · ∈
⋂
δ<δ2

Aδ.

Let δ′ be the limit (supremum) of this sequence. Because these intersections are
closed, we conclude that δ′ ∈ ⋂

δ<δn

Aδ for all n ∈ ω. It is clear that δ′ > β. Now

we show, that δ′ ∈ ∆
α<κ

Aα. By definition we need that for all γ < δ′ =⇒ δ′ ∈ Aγ.
Fix a γ < δ′ and an n such that γ < δn. We know that δ′ ∈ ⋂

δ<δn

Aδ thus δ′ ∈ Aγ

concluding that the diagonal intersection is unbounded.

3.3 Classical proofs of two Erdos-Rado theorems

We now have the tools necessary to introduce the key lemma of this section, the so
called Fodor’s pressing down lemma.

Definition 3.3.1. Let S ⊆ κ be a set. We call a function f : S → κ regressive if
f(α) < α for all α ∈ S \ {0}.

Lemma 3.3.2. (Fodor’s pressing down lemma) Let S ⊆ κ be a stationary set and
f : S → κ be a regressive function. Then, there exists S ′ ⊆ S stationary, such that
f ↾S′ is constant.

Proof. Suppose for a contradiction that ∀γ ∈ κ the set Aγ := f−1(γ) is not sta-
tionary. Then for all γ ∈ κ there exists a club set Eγ such that Aγ ∩ Eγ = ∅.
Let

E :=
(

∆
α<κ

Eα
)
\{0},

which is also a club set by Proposition 3.2.11, hence the intersection S ∩E ̸= is not
empty. Choose δ ∈ S ∩ E and let β := f(δ), so δ ∈ Aβ. This shows, that δ /∈ Eβ.
On the other hand, δ ∈ E and β < δ because f is regressive, so by the definition of
the diagonal intersection, δ ∈ Eβ, a contradiction.



Classical proofs of two Erdos-Rado theorems 13

The following Lemma and Proposition will also be useful in the next proof
(Theorem 3.3.6).

Lemma 3.3.3. Let κ > ω be a regular cardinal and let g : κ → κ be a function.
Then, the set E := {γ | (α < γ ⇒ g(α) < γ) ∧ (γ < κ)} is a club set in κ.

Proof. We first show that E is closed. Consider a regular ordinal λ < κ and a
strictly increasing sequence of type λ:

{xα | α < λ} ⊆ E.

Let x := supxα. We have to show that δ < x ⇒ g(δ) < γ. Fix an ordinal δ < x.
Now there exists an α such that δ < xα, hence g(δ) < xα < x. This concludes that
x ∈ E.

To show that E is unbounded, fix δ < κ: we will show that E has an
element above δ. Let’s construct a sequence of type ω in the following way:
α0 := max(δ, sup{g(β) | β ≤ δ} and αi+1 := max(αi, sup{g(β) | β ≤ αi} for all
i ∈ ω. Now δ ≤ α0 < α1 < · · · → α. We will show that α ∈ E, concluding that E
is unbounded. To do this, let’s fix an ordinal β < α. There exists n ∈ ω such that
β < αn, hence g(β) < αn+1 < α by the definition of αn+1.

Proposition 3.3.4. The set Sc+
ω1

:= {α < c+ | cf(α) = ω1} is stationary in c+.

Proof. Let’s consider a club set C ⊆ κ. Of course c ≥ ω1, so c+ > ω1. This means
that there exists a sequence of type ω1 as a subset of C. The limit point s of this
sequence is in C, because it is closed, but also s ∈ S, because it has cofinality ω1.
This means that S ∩ C ̸= ∅ for all club sets C so S is indeed stationary.

Definition 3.3.5. We call a family of sets H a ∆-system, if ∃S such that ∀F ̸=
F ′ ∈ H we have that F ∩ F ′ = S. The set S is called the root of the ∆-system.

Theorem 3.3.6. (Erdos-Rado) Let |H| = c+ such that |F | ≤ ω for every F ∈ H.
There exists H′ ⊆ H such that |H|′ = c+ and H′ is a ∆-system.

Proof. We know that |⋃ H| = c+, because c+ · ω = c+. Let’s consider the set
S := Sc

+
ω1 = {α < c+ | cf(α) = ω1} as in Proposition 3.3.4. We know that S is

stationary in c+ and by Proposition 3.1.8 the cardinal c+ is regular, so by Proposition
3.2.4 we get that |S| = c+. Using this, we can view H as H = {Fα | α ∈ S}. Let
us consider the following sets: let Bα := [0, α) ∩ Fα and let Cα := [α, c+) ∩ Fα; of
course, Fα = Bα ⊔ Cα.
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Consider the function f(α) := supBα which we claim that it is regressive. It
was given that Fα is countable, so |Bα| ≤ ω as well meaning that the supremum
can not reach α, since α has cofinality ω1. This means that f(α) = supBα < α.
Fodor’s lemma (3.3.2) guarantees that there exists an ordinal γ and a stationary
subset S ′ ⊆ S such that ∀α ∈ S ′ : f(α) = γ. Note that S was constructed in
a way that all of its elements α are less than c+. The function f is regressive so
f(α) < c+ as well. The ordinal γ is equal to f(α) for an α ∈ S, so we can conclude
that |γ| ≤ c. Let’s examine that how many ways can the sets Bα look like for α ∈ S ′.
We know that for α ∈ S ′ the sets Bα ⊆ γ and the sets Bα are countable, so let’s
count the number of countable subsets of γ! We claim that

∣∣{A | A ⊆ γ,|A| ≤ ℵ0}
∣∣ ≤ c.

We have c options for choosing every element of A ⊆ γ, so in total there are at
most cℵ0 = c different sets.

Thus, if α ∈ S ′ the set Bα can look at most c many ways. Using this we can
divide S ′ into at most c many parts based on how does the respective sets Bα look
like below γ. Using Proposition 3.2.7, we get that there exists a stationary S ′′ ⊆ S ′

such that ∀α, β ∈ S ′′ : Bα = Bβ. This will be the root of the ∆-system. Again,
from Proposition 3.2.4 we know, that |S ′′| = c+. We are not done yet, there could
be problems with the intersections of Cα and Cβ even if α, β ∈ S ′′. We will thin out
S ′′ into S ′′′ ⊆ S ′′ in a way that Cα and Cβ will be disjoint if α ̸= β ∈ S ′′′.

Let us consider the function g(α) := supCα if α ∈ S, and let g(α) := 0
otherwise. Now, Lemma 3.3.3 guarantees, that E := {γ | α < γ ⇒ g(α) < γ} is a
club set. From Proposition 3.2.6 we know that the set S ′′′ := S ′′ ∩ E is stationary.
This means that |S ′′′| = c+ as well (Proposition 3.2.4 again).

We still need to see, that the sets Cα and Cβ are disjoint if α ̸= β ∈ S ′′′.
Suppose that α < β. Because β ∈ E it follows from the definition of E that
supCα = g(α) < β ≤ inf Cβ, hence they are really disjoint. The sets {Fα | α ∈ S ′′′}
form a ∆-set with root Fα ∩ [0, α] which is the same for all α ∈ S ′′′.

For the next theorem, let us introduce the so-called arrow notation κ → [λ]ϱµ.
In general, the left-hand side of the arrow denotes the base set of the coloring. On
the right-hand side, the upper index is the dimension (are we coloring singletons,
pairs, triples?), the lower index the number of colors and inside the bracket you see
the size or order-type of the monochromatic sets we can always select. If the arrow
is crossed over κ ↛ [λ]ϱµ that means there is a coloring witnessing that there are
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no monochromatic sets of that particular size. When coloring pairs from a set we
usually view it as coloring the edges of the complete graph with the elements of the
set as the vertices. For example the finite Ramsey theorem says that for every k ∈ ω

there exists R(k, k) ∈ ω such that R(k, k) → [k]22. We know that R(3, 3) = 6 hence
using this notation 6 → [3]22.

Remark 3.3.7. We will give another proof of Theorem 3.3.6 in Theorem 6.3.3 using
elementary submodels.

Theorem 3.3.8. (Erdos-Rado)

c+ → [ω1]2ω

This means that if we color the edges of the complete graph of size c+ with ω

colors, we can select a monochromatic set of size ω1.

Proof. Let’s fix a coloring F : [c+]2 → ω. Let’s view the c+ many vertices as the
elements of S := {α < c+ | cf(α) = ω1}. We can do this because Proposition 3.3.4
tells us that S is stationary so |S| = c+ by Proposition 3.2.4. Now, with the use
of transfinite recursion, we will define monochromatic sets for all α ∈ S and for all
colors i ∈ ω. For this, fix α ∈ S and i ∈ ω.

Choose a vertex xα,i0 such that the edge between xα,i0 and α is of color i and
xα,i0 < α. If this can be done, choose xα,i1 such that xα,i0 < xα,i1 < α and all the
edges between these vertices are of color i. After this, choose xα,i2 such that xα,i0 <

xα,i1 < xα,i2 < α and these four vertices form a monochromatic set of color i. Let’s
continue this with transfinite recursion. We require that F ({xα,iη , xα,iξ }) = i and
F ({xα,iη , α}) = i and xα,iη < xα,iξ < α for every ∀η < ξ. If we can continue this
process for ω1 many steps then we have found a monochromatic set of size ω1 so we
are done. Suppose for a contradiction that this process terminates for all α ∈ S and
for all i ∈ ω before ω1 many steps. This means that there exists ξ(α, i) such that
xα,iξ(α,i) is not definable and ξ(α, i) < ω1.

Now for all α ∈ S let us define the following set:

Bα =
〈
⟨xα,iη | η < ξ(α, i)⟩ | i ∈ ω

〉
.

Consider the function f(α) := sup{xα,iη | η < ξ(α, i), i ∈ ω}. We claim that it is
regressive. Since ξ(α, i) is a countable ordinal we have that

∣∣ξ(α, i)∣∣ ≤ ℵ0 concluding
that

∣∣∣{xα,iη | η < ξ(α, i), i ∈ ω}
∣∣∣ ≤ ℵ2

0 = ℵ0. We also know that cf(α) = ω1 so this
means that sup{xα,iη | η < ξ(α, i), i ∈ ω} < α concluding that f is regressive. Now,
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Theorem 3.3.2 guarantees, that there exists an ordinal γ and a stationary subset
S ′ ⊆ S such that f(α) = γ holds for every α ∈ S ′. Again, by Proposition 3.2.4 we
get that |S ′| = c+.

Let’s examine that how many different Bα could exist if α ∈ S ′ (that is supBα =
γ). First, fix a color i. The possible values for the ordinal ξ(α, i) are the ordinals
δ ∈ ω1. For each δ ∈ ω1 we will find that how many different strictly increasing
sequences of type δ exist given that the supremum is at most γ. If we add these up
for all δ ∈ ω1 we will surely get an upper bound for the number of different strictly
increasing sequences (aη)η<ξ(α,i). First, let’s convince ourselves that |γ| ≤ c. Note
that S was constructed in a way that all of its elements α are less than c+. The
function f is regressive so f(α) < c+ as well. The ordinal γ is equal to f(α) for an
α ∈ S, so we can conclude that |γ| ≤ c. Instead of counting the number of strictly
increasing sequences of type δ with supremum at most γ, we will count the number
of sequences of type δ with all elements being at most γ. Since there are at most c
elements below γ, we have γ choices for all elements of the sequence so we have c|δ|

many different sequences. We know that the ordinal δ is countable because it is less
than ω1 so c|δ| = c. This also means that there are at most c many strictly increasing
sequences of type δ with supremum at most γ. If we add this up for all δ ∈ ω1, we
get that there are at most ω1 · c ≤ c2 = c many strictly increasing sequences of type
ξ(α, i). There are ℵ0 many colors altogether so for every α ∈ S ′ the set Bα can look
at most cℵ0 = c many ways. This divides the set S ′ into at most c pieces; in every
piece the respective Bα sets are the same.

Using Proposition 3.2.7 if we cut S ′ into these at most c many pieces, there will
be an S ′′ ⊆ S ′ which is stationary. Again, by Proposition 3.2.4 we get that |S ′′| = c+.
Choose two elements α < β ∈ S ′′ and let i := F (α, β). Now, since Bα = Bβ we get
that ξ(β, i) = ξ(α, i) and xβ,iη = xα,iη for every η < ξ(α, i) hence α is connected with
color i to the vertices {xβ,iη | η < ξ(β, i)} and to β as well. Thus, we can extend the
monochromatic set defined by β and i with α. This is a contradiction.

Remark 3.3.9. Theorem 3.3.8 is a special case of the following theorem with κ = ω:

(2κ)+ → [κ+]2κ



Chapter 4

The sets Hθ

Later it will be useful for us to generate sufficiently large subsets of the universe,
which we do here by constructing the sets Hθ for every infinite cardinal θ. Let’s
start with defining ⋃n x for every n ∈ ω.

Definition 4.0.1. Let ⋃0 x := x and for n ≥ 1 ⋃n x := ⋃ ⋃n−1 x.

Definition 4.0.2. The transitive closure of a set x is tc(x) = ⋃
n∈ω

⋃n x.

Proposition 4.0.3. For a set x the transitive closure tc(x) is transitive and for all
transitive sets t for which x ⊆ t the set tc(x) is the smallest transitive set: tc(x) ⊆ t.

Proof. Let z ∈ y ∈ tc(x). Then for some n ∈ ω, y ∈ ⋃n tc(x), meaning z ∈ ⋃ ⋃n x =⋃n+1 x ⊆ tc(x), hence z ∈ tc(x), concluding that tc(x) is a transitive set.
Now, let t be a transitive set, containing x. We will prove by induction on n

that ⋃n x ⊆ t. The base case holds, since x = ⋃0 x ⊆ t. Now assume ⋃n x ⊆ t.
Then, ⋃n+1 x = ⋃ ⋃n x ⊆ ⋃

t. But, since t is transitive ⋃
t ⊆ t, hence ⋃n+1 x ⊆ t.

This completes the proof.

Proposition 4.0.4. The transitive closure for a set a is tc(a) = a ∪ ⋃
b∈a

tc(b)

Proof. First we see that tc(a) ⊇ a∪ ⋃
b∈a

tc(b), because if b ∈ a then of course b ⊆ ⋃
a

so ⋃n b ⊆ ⋃n+1 a as well, meaning that tc(b) ⊆ tc(a).
For the other containment we will use Proposition 4.0.3. For this we need the

set a to be a subset of the right hand side and we need the right hand side to
be transitive. Of course a is a subset of the right hand side, and for proving the
transitivity, let us choose an element b from the right hand side. If b is an element
of a then the corresponding tc(b) set contains every element of b. If b is an element
of ⋃

b∈a
tc(b) then of course there exists b′ ∈ a such that b ∈ tc(b′) and because the set

tc(b′) is transitive (Proposition 4.0.3) all elements of b are in tc(b′) as well.

17
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Definition 4.0.5. The hereditary cardinality of a set x is
∣∣tc(x)

∣∣.
Definition 4.0.6. For a cardinal θ we define Hθ := {x |

∣∣tc(x)
∣∣ < θ}.

In other words, Hθ is the collection of sets of hereditary cardinality < θ. It is
not at all trivial that Hθ is a set, we will prove it in Proposition 4.0.14. We defined
the sets Hθ for finite cardinals too, but from now on we will only use the sets Hθ

for infinite cardinals θ. So, for example, for Hℵ0 : every a ∈ Hℵ0 is finite, moreover
every element b ∈ a is finite, and so on.

More generally, we know that for Hθ, every a ∈ Hθ has less than θ elements,
moreover every element b ∈ a has less than θ elements, because otherwise ⋃

a would
have at least θ elements thus contradicting the fact that tc(a) ⊇ ⋃

a has less then θ
elements. For regular cardinals the following proposition holds:

Proposition 4.0.7. Let θ > ℵ0 be a regular cardinal. Then, Hθ = {x | ∀n ∈ ω :
|⋃n x| < θ}.

Proof. Clearly, Hθ ⊆ {x | |⋃n x| < θ} for all n ∈ ω. For the other containment,
choose x such that |⋃n x| < θ for all n ∈ ω. By Proposition 3.1.9, the sum of

fewer than θ many, smaller than θ cardinals is less then θ, so
∣∣tc(x)

∣∣ =
∣∣∣∣∣ ⋃
n∈ω

⋃n x

∣∣∣∣∣ ≤∑
n∈ω|⋃n x| < θ, so x is indeed in Hθ.

Remark 4.0.8. The proposition above is not true for singular cardinals (really, the
problem is only with singular cardinals of cofinality ω, for example ℵω). Let x be
a set such that |⋃n x| = ℵn. For example, let x = ω ∪ {ω1} ∪ {{ω2}} ∪ . . . . Then∣∣tc(x)

∣∣ = ℵ0 + ℵ1 + · · · = ℵω so x /∈ Hℵω but |⋃n x| < ℵω for all n ∈ ω.

Proposition 4.0.9. For every cardinal θ the set Hθ is transitive.

Proof. Choose a ∈ Hθ. This means that
∣∣tc(a)

∣∣ < θ. Since Proposition 4.0.4 tells
us that tc(a) = a ∪ ⋃

b∈a
tc(b) we get that

∣∣tc(b)∣∣ ≤
∣∣tc(a)

∣∣ < θ for every b ∈ a, hence
b ∈ Hθ.

To prove that Hθ is a set for every θ ∈ CARD, first we will define the sets Vα
for every α ∈ ON .

Definition 4.0.10. Let V0 := ∅. For every α ∈ ON let’s define Vα+1 := P(Vα). For
limit ordinals α let Vα := ⋃

β<α Vβ.

It is clear that Vα is a set for every α ∈ ON .
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Definition 4.0.11. For every set x let us define the rank of a set x as rk(x) :=
min{α | x ∈ Vα+1}.

Proposition 4.0.12. For every set x, the ordinal rk(x) = sup{rk(y) + 1 | y ∈ x}.

Proof. Let δ := sup{rk(y) + 1 | y ∈ x}. First we will prove that rk(x) ≤ δ. By
definition rk(y) < δ for all y ∈ x. This means that y ∈ Vδ for all y ∈ x, meaning
x ⊆ Vδ. Thus, x ∈ Vδ+1, hence rk(x) ≤ δ. Clearly, x ∈ Vrk(x)+1 = P(Vrk(x)), thus
x ⊆ Vrk(x), hence for every y ∈ x, y ∈ Vrk(x). This means that rk(y) < rk(x) for
every y ∈ x so sup{rk(y) + 1 | y ∈ x} ≤ rk(x) which is what we needed for the
other direction.

Proposition 4.0.13. Let y be a transitive set. Then the set H := {rk(z) | z ∈ y}
is an ordinal.

Proof. Let α := sup{rk(z) | z ∈ y}. We need to prove that β ∈ H for all β ∈ α.
Suppose for a contradiction that ∃β ∈ α \ H. We will construct an infinite strictly
decreasing sequence of ordinals, which is not possible. Since β < α = sup{rk(z) |
z ∈ y}, there exists z0 ∈ y and δ0 > β such that rk(z0) = δ0.

Using Proposition 4.0.12, rk(z0) = sup{rk(a) + 1 | a ∈ z0}, if rk(z0) > β is a
limit ordinal, we can choose z1 ∈ z such that rk(z1) > β. If rk(z0) is a successor
ordinal, then either β + 1 = rk(z0) or β + 1 < rk(z0). If it was the first case
scenario, then by Proposition 4.0.12 there exists a ∈ z0 such that rk(a) = β. Since
y is transitive, a ∈ y as well, but this is a contradiction, since a witnesses that
β ∈ H. This means, that β + 1 < rk(z0), so again by Proposition 4.0.12 we can
choose z1 ∈ z0 such that rk(z1) = δ1 > β and δ0 > δ1.

We can repeat this procedure by choosing z2 ∈ z1 with rk(z2) = δ2 > β and
δ2 < δ1. With this, the sequence (δi)i∈ω is an infinite decreasing sequence of ordinals
which is a contradiction.

Proposition 4.0.14. For every cardinal θ the class Hθ ⊆ Vθ, hence Hθ is a set.

Proof. Choose a set x ∈ Hθ. By definition, we know that
∣∣tc(x)

∣∣ < θ. Using
Proposition 4.0.13, the set {rk(z) | z ∈ tc(x)} is an ordinal, since tc(x) is transitive.
This set has at most

∣∣tc(x)
∣∣ elements, so tp({rk(z) | z ∈ tc(x)} = sup{rk(z) | z ∈

tc(x)} < θ. Since θ is a limit ordinal, sup{rk(z) + 1 | z ∈ tc(x)} < θ holds as well,
but from this sup{rk(z)+1 | z ∈ x} < θ follows, since x ⊆ tc(x). Proposition 4.0.12
tells us, that rk(x) < θ, meaning x ∈ Vθ. This is what we wanted to show.

Remark 4.0.15. A crucial property of the sets Hθ is Theorem 5.2.5.



Chapter 5

Formal introduction to elementary
submodels

5.1 Logic

Our goal is to introduce the technique of using elementary submodels. This chapter
provides the necessary knowledge from logic for this. This chapter is mainly based
on [4]. First we define the first order languages which are collections of first order
formulas. The alphabet of the first order languages consists of two disjoint subsets:
the logic symbols and the non-logic symbols. The logic symbols are common to all
languages, these are the following:

() , brackets, comma
¬ negation
∨ or
∃ existential symbol
x0, x1, . . . infinitely many different symbols, these are the variable symbols
= equation symbol

The non-logic symbols can also be divided into two disjoint parts, namely into
function symbols and relation symbols.

Definition 5.1.1. We call a triple t = ⟨F,R, τ⟩ a similarity type if F and R are
disjoint from each other and from the logic symbols and τ is a function which assigns
a non-negative integer to all elements of F ∪ R and for every r ∈ R the number
τ(r) > 0.

If t = ⟨F,R, τ⟩ is a similarity type then the elements of F are the function
symbols and the elements of R are the relation symbols and τ tells us that a function

20



Logic 21

symbol and a relation symbol is of how many variable. If for a function symbol f
the arity τ(f) = 0 we call f a constant symbol. By the cardinality of t we mean
the cardinal |F | + |R| and we denote it by |t|. The set F ∪ R along with the logic
symbols gives the alphabet for the first order language of type t, we denote this by
Σt. We denote the set of all finite sequences with elements from Σt with Σ∗

t .
To define the first order formulas first we need to define the terms.

Definition 5.1.2. Let t = ⟨F,R, τ⟩ be a similarity type. The set of terms (or
expressions) E(t) of type t is the smallest subset of Σ∗

t for which the following holds:

(i) for all variable symbols we have that x ∈ E(t)

(ii) for all function symbols f ∈ F if τ(f) = 0 then f ∈ E(t)

(iii) for all function symbols f ∈ F if τ(f) = n > 0 and k0, k1, . . . kn−1 ∈ E(t)
terms then f(k0, k1, . . . kn−1) ∈ E(t).

The definition is correct, because the conditions (i) − (iii) hold for Σ∗
t and if

two subsets of it satisfy the conditions then their intersection does too. After this,
we can define the formulas.

Definition 5.1.3. Let t = ⟨F,R, τ⟩ be a similarity type. The set of first order
formulas F (t) of type t is the smallest subset of Σ∗

t for which the following holds:

(i) for all relation symbols r if its arity is τ(r) = n and k0, k1, . . . kn−1 ∈ E(t) are
terms then r(k0, k1, . . . kn) ∈ F (t)

(ii) for all terms k0, k1 ∈ E(t) the sequence of symbols k0 = k1 ∈ F (t).

(iii) for all formulas φ, ψ ∈ F (t) the sequence of symbols (φ) ∨ (ψ) ∈ F (t),¬(φ) ∈
F (t) and for all variable symbols x the sequence of symbols ∃x (ϕ) ∈ F (t).

We can argue that the definition is correct similar to the argument given for
the terms. We call a formula atomic if it is of the form r(k0, k1, . . . kn−1) or k0 = k1.
Let the set of the atomic formulae be F0 and let

Fi+1 := Fi ∪ {(φ) ∨ (ψ), ¬(φ), ∃x (φ) : φ, ψ ∈ Fi}.

We claim that F := ⋃{Fi | i ∈ ω} = F (t). First, the set F satisfies (i)-(iii) from the
definition. On the other hand, with induction on i we can easily see that if (i)-(iii)
hold for some subset A ⊆ Σ∗

t then Fi ⊆ A so F ⊆ A as well. This means that F is
indeed the smallest subset of Σ∗

t for which (i)-(iii) holds.
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Sometimes we want to prove a statement for all formulae. We can do this with
the following proposition.

Theorem 5.1.4. (Formula induction) Suppose that a statement Ψ is true for the
atomic formulae and if Ψ is true for φ and for ψ then it is true for (φ) ∨ (ψ), for
¬(φ) and for ∃x (φ). Then Ψ is true for every formula.

Proof. Let the set of the atomic formulae be F0, and for i ∈ ω we define the sets
Fi+1 as above:

Fi+1 := Fi ∪ {(φ) ∨ (ψ), ¬(φ), ∃x (φ) : φ, ψ ∈ Fi}.

With induction on i we can conclude that Ψ is true for every formula in Fi thus it
is true for every formula in ⋃{Fi | i ∈ ω} which is exactly the set F (t).

This means that we can prove a statement for all formulae by first proving it
for atomic formulae, then for (φ) ∨ (ψ) for ¬(φ) and finally for ∃x (φ).

We introduce more logic symbols which can be used to build formulas. For all
terms k0, k1, all formulas φ, ψ and all variable symbols x we consider the following
sequence of symbols as formulas:

(i) k0 ̸= k1

(ii) (φ) → (ψ)

(iii) (φ) ∧ (ψ)

(iv) (φ) ↔ (ψ)

(v) ∀x(φ)

These are really just shorthands for the existing logic symbols, for example (φ) ↔
(ψ) is a shorthand for ((φ) → (ψ) ∧ ((ψ) → (φ)) and (φ) → (ψ) is a shorthand for
(¬(φ)) ∨ (ψ).

We call a non-empty set with functions and relations on it a structure. For
example all the groups are structures. The elements of the group form the base
set and there are three functions: one with arity zero which represents the identity
element, one with arity one which gives the inverse and one with arity two which
gives the product for two elements.

A similarity type t automatically gives us function and relation symbols so we
can call a structure of type t if for all function and relation symbols of t there exists
a function and a relation of the same arity in the structure.
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Definition 5.1.5. Let t = ⟨F,R, τ⟩ be a similarity type. A pair A = ⟨A, I⟩ is a
structure of type t if A is a non-empty set and I is a function defined on (F ∪ R)
such that for a function symbol f ∈ F the interpretation I(f) is a function of τ(f)
variables on A and for a relation symbol r ∈ R the interpretation I(r) is a relation
of τ(r) variables on A.

We call the set A the base set (or underlying set) of the structure A and the
function I is the interpretations of the function and relation symbols. Usually if
we denote a structure by a gothic letter, its underlying set is denoted by the corre-
sponding latin capital letter. We denote the interpretations of the function symbol
f and the relation symbol r in the structure A by fA and rA.

The above defined formulae of type t are statements about structures of type t.
If a formula holds we say that it is true and if does not hold we say that it is false.
We can decide whether a formula is true or false with recursion: r(k0, k1, . . . kn−1) is
true if and only if the terms k0, k1, . . . kn−1 are in relation rA; k0 = k1 is true if and
only if the value of the two terms are the same; ¬φ is true if and only if φ is false;
φ ∨ ψ is true if and only if at least one of φ and ψ is true; finally ∃x (ϕ) is true if
and only if there is an element of the structure a ∈ A that if we replace x by a the
resulting formula is true. But we can not even calculate the values of expressions
until we say which variable symbols correspond to which elements of the structure.
Let us write this down formally.

Definition 5.1.6. Let A be a structure of any type. Then the evaluation of the
variable symbols is a function e which assigns an element of the base set of the
structure A for every variable symbol x.

Definition 5.1.7. Consider an evaluation e over A and let a ∈ A. The evaluation
e (x/a) denotes the evaluation e′ over A for which e′ (x) = a and for all other variable
symbols y ̸= x the evaluation e′ (y) = e (y).

First we define what we mean by the value of a term.

Definition 5.1.8. Let k ∈ E(t) be a term, let A be a structure of type t, and let e
be an evaluation of the variable symbols under A. We denote the value of the term
k with the evaluation e with kA (e) and we define it by the hierarchy how the term
was made by other terms:

(i) if the term k is the variable symbol x then its value will be given by the evalu-
ation e, that is kA (e) = e(x);
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(ii) if the term k is a function symbol f ∈ F such that τ(f) = 0 then the interpre-
tation fA of the function symbol f is an element of A, that is kA (e) = fA;

(iii) otherwise, the term k is of the form f(k0, k1, . . . ) where the function symbol
f ∈ F is of n = τ(f) > 0 variables. We already know the values of the terms,
let (ki)A (e) = ai ∈ A for i ∈ n. Then we define kA (e) = fA(a0, a1, . . . , an−1).

Now we can define what we mean by a formula being true for an evaluation e.
Consider a formula φ ∈ F (t), a structure A = ⟨A, I⟩ of type t and an evaluation e.
By A |= φ (e) we mean that φ is true in the structure A with the evaluation e. If
this is not the case we write A ̸|= φ (e) meaning that φ is false with the evaluation
e.

For a formula φ we define A |= φ (e) with formula induction (Proposition 5.1.4).

Definition 5.1.9. (i) For all relation symbols r which have arity n and for
all terms k0, k1, . . . kn−1 ∈ E(t) we write A |= r(k0, k1, . . . kn−1) (e) if and
only if the values of the terms k0, k1, . . . kn−1 are in relation r, that is
⟨(k0)A (e), (k1)A (e), . . . (kn−1)A (e)⟩ ∈ rA;

(ii) for all terms k0, k1 ∈ E(t) we write A |= k0 = k1 (e) if and only if the values
of k0 and k1 are the same: (k0)A (e) = (k1)A (e);

(iii) we write A |= ¬φ (e) if and only if A ̸|= φ (e);

(iv) we write A |= (φ ∨ ψ) (e) if and only if A |= φ (e) or A |= ψ (e);

(v) we write A |= ∃xφ (e) if and only if there exists an element a ∈ A that if we
replace x by a the resulting formula is true, that is A |= φ (e(x/a)) for some
a ∈ A.

If for all evaluations e we get that A |= φ (e) we say that φ is true in A or that
A models φ and we denote this by A |= φ. For example, every group G models that
1 · x = x · 1 but not all groups models the formula x · y = y · x.

Let a0, a1, . . . an−1 ∈ A. We use the shorthand A |= φ (a0, a1, . . . , an−1) if A |=
φ (e) for all evaluations e where e(x0) = a0, . . . e(xn−1) = an−1.

5.2 Elementary Submodels

The idea behind elementary submodels is fairly simple: given a large structure A,
we would like to consider substructures B which are smaller than A but reflects
basic properties of the original structure.
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Let’s consider an example. Suppose A is some Euclidean space where its base
set is A = Rn along with all the lines, planes, hyperplanes, etc. Now, we look for a
smaller structure B of the same type where we want that (i) B ⊆ A meaning that
in B there are fewer points, lines, planes, etc. and (ii) the elements of B satisfy the
same relations as A.

That is, if two lines of B meet in A then we require that their unique intersection
must be in B as well. Similarly, for any three points in B, there is a (hyper)plane in
B that contains them (since there was one in A). If this hyperplane is not unique,
then there could be ones which are in A but not in B. How to achieve such a B? If
there is only a small number of new objects definable from a given set of elements
already in B then we can throw in all those without dramatically increasing the
size of our structure. Repeat this process and if we keep track of all objects and
operations appropriately, we will end up with the desired substructure.

The general framework of elementary submodels will provide a tool which saves
us from repeating the very same closure argument over and over and gives us the
nicest substructures we can imagine, all in a single step. Let us write this down
formally.

Definition 5.2.1. Let A and B be both structures of type t. We say that B is a
substructure of A if the following holds:

(i) B ⊆ A

(ii) for all n-variable function symbols fB = fA ↾ Bn

(iii) for all n-variable relation symbols rB = rA ↾ Bn.

According to this definition, a substructure always contains the interpretations
of constant symbols of the larger structure and it is closed for functions. If B is a
substructure of A we write B ⊆ A.

Definition 5.2.2. Let A and B be both structures of type t. We say that B is an
elementary substructure of A if it is a substructure and for any valuation e over B

and for all formulae φ ∈ F (t) the following holds: B |= φ (e) ⇔ A |= φ (e). If B is
an elementary substructure of A we write B ≼ A.

The well-known downward Löwenheim-Skolem theorem guarantees the exis-
tence of many small elementary submodels of a given structure.
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Theorem 5.2.3. (Löwenheim-Skolem) Let κ ≥ |t| · ω and let A be a structure of
type t and X ⊆ A with |X| = κ. Then there exists B ≼ A such that X ⊆ B with
|B| = κ.

Before we prove this we give a well manageable condition to determine when a
submodel is an elementary submodel:

Lemma 5.2.4. (Tarski-Vaught criteria) Let A and B be structures of type t and
let B ⊆ A. The structure B is an elementary submodel of A if and only if for all
formulae φ ∈ F (t) and for all evaluation e over B if A |= (∃xφ) (e) holds then there
exists b ∈ B for which A |= φ (e(x/b)).

Formulating the statement differently: for all elements b0, b1, . . . bn−1 ∈ B and
all formulae φ(y0, y1, . . . yn−1, z) ∈ F (t) if there exists an element a ∈ A for which
A |= φ(b0, b1, . . . bn−1, a) then there exists b ∈ B for which A |= φ(b0, b1, . . . bn−1, b)

Proof. First, suppose that B ≼ A and A |= (∃xφ) (e). By the definition of an
elementary substructure B |= (∃xφ) (e). Thus, there exists an element b ∈ B such
that B |= φ (e(x/b)). The evaluation e(x/b) is also over B so by using the definition
of an elementary substructure again we get A |= φ (e(x/b)) which is what we wanted.

For the other direction we will show that for every formula φ ∈ F (t) and for
every evaluation e over B the statements A |= φ (e) and B |= φ (e) are equivalent.
We will do this by formula induction (Proposition 5.1.4). For atomic formulas
this automatically holds because of the condition B ⊆ A. If we suppose that
A |= φ (e) ⇔ B |= φ (e) then it is true that A |= ¬φ (e) ⇔ B |= ¬φ (e), because

A |= ¬φ (e) ⇔ A ̸|= φ (e) ⇔ B ̸|= φ (e) ⇔ B |= ¬φ (e).

We can see similarly that if A |= φ (e) ⇔ B |= φ (e) and A |= ψ (e) ⇔ B |= ψ (e)
then A |= (φ ∨ ψ) (e) ⇔ B |= (φ ∨ ψ) (e)

Now we only have to show how to pass from φ to ∃xφ. If A |= (∃xφ) (e) then
because of the conditions given we know that A |= φ (e(x/b)) for some b ∈ B. By
induction we know that B |= φ(e(x/b)) hence B |= (∃xφ)(e).

For the other implication, if B |= (∃xφ) (e) then exists b ∈ B such that B |=
φ (e(x/b)). Using the condition of the induction again there exists an element b ∈ B

such that A |= φ (e(x/b)) concluding that A |= (∃xφ) (e).

Now we can prove Theorem 5.2.3.
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Proof. Suppose that for a formula ψ(y0, y1, . . . yn−1, z) ∈ F (t) its free variables
are those n + 1 many indicated above. We will call a function f : An → A

the Skolem-function corresponding to the formula ∃z (ψ) in the structure A if
A |= ∃z ψ(a0, a1, . . . , an−1, z) then A |= ψ(a0, a1, . . . , an−1, f(a0, a1, . . . , an)) for all
a0, a1, . . . an−1 ∈ A.

A construction for the Skolem-function for ψ is to choose a well-ordering < of
the set A and let

f(a0, a1, . . . an−1) =


min
<

{a ∈ A : A |= ψ(a0, a1, . . . an−1, a)}, if it is non-empty,

min
<

A otherwise.

Now, for every formula φ of the form ∃z (ψ) let us fix a Skolem-function fφ. Let
us define a sequence of increasing substructures ⟨Bi | i ∈ ω⟩ of A in the following
way. Let X0 = X and B0 the structure generated by X0. If we have already defined
Bi, let

Xi+1 = Bi ∪ {fφ(b0, b1, . . . bn−1) | b0, . . . bn−1 ∈ Bi and

fφ is one of the fixed Skolem-functions}

and let Bi+1 be the substructure generated by Xi+1. Finally, let B = ⋃
i∈ω

Bi which
is the structure with base set ⋃

i∈ω
Bi It is easy to see that |Bi| = κ hence |B| = κ.

We still need to show that B ≼ A. It is clear by the construction that B ⊆ A.
Let us check the Tarski-Vaught criteria (5.2.4). Let ψ(y0, y1, . . . yn−1, z) ∈ F (t) and
let b0, b1, . . . bn−1 ∈ B and a ∈ A such that A |= ψ(b0, b1, . . . bn−1, a). We need to
find b ∈ B such that A |= ψ(b0, b1, . . . bn−1, b).

Of course, A |= ∃z ψ(b0, b1, . . . bn−1, z). There must exist i ∈ ω such that
b0, b1, . . . bn−1 ∈ Bi because B = ⋃

i∈ω
Bi. Thus by the definition of Xi+1

b = f∃z ψ(b0, b1, . . . bn−1) ∈ Xi+1 ⊆ B

hence A |= ψ(b0, b1, . . . bn−1, b) as we wanted.

Note that Theorem 5.2.3 can only give us submodels from a set and the (set-
theoretic) universe is a proper class, but sometimes we want to somehow model
the whole universe. As a workaround, we will use sufficiently large subsets of the
universe. Every proof uses only finitely many formulae so it is enough for us if we
choose a sufficiently large subset of the universe which reflects the finitely many
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formulae we use in the proof. This will be the Reflection Principle.

Theorem 5.2.5. (Reflection Principle) Given a finite set of formulae Σ and a
cardinal ρ, there is a θ > ρ so that for any ϕ ∈ Σ and a0, . . . , an ∈ Hθ:

Hθ |= ϕ(a0, a1, . . . , an) if and only if ϕ(a0, a1, . . . an) is true in the universe.

The proof is very similar to Theorem 5.2.3 and it can be found in [5, Theorem
II. 5. 3].

The following observation is quite useful. Suppose ϕ(x0, . . . , xn−1) ∈ Σ and θ

are as in the Reflection Principle and we have M ≼ Hθ. Then for all a0, . . . , an ∈ M :

M |= ϕ(a0, a1, . . . , an) if and only if ϕ(a0, a1, . . . an) is true in the universe. (∗)

Thus, with respect to a given set of finitely many formulae, M looks like an
elementary submodel of the universe. If a formula ϕ satisfies (∗) it is said to be
absolute over M.

From now on we will take elementary submodels from the sets Hθ. We can
view every Hθ as a structure of type t where t has no function symbols and has one
relation symbol of arity two. The interpretation of this relation symbol in Hθ is the
relation ∈.

We now introduce some interesting properties of every elementary submodel of
the sets Hθ.

Lemma 5.2.6. Let x, y, a0, . . . an−1 ∈ M ≼ Hθ with θ ≥ ℵ1 and let f ∈ M be a
function with x ∈ dom(f) then the following holds:

1. ⟨x, y⟩ ∈ M ,

2. x ∩ y ∈ M ,

3. x ∪ y ∈ M ,

4. f(x) ∈ M ,

5. ω ⊆ M ,

6. ω ∈ M ,

7. {a0, a1, . . . an−1} ∈ M .
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Proof. (1.) Note that the set theoretic definition of ⟨x, y⟩ is {x, {x, y}}. We will
calculate the set tc({x, {x, y}} according to Proposition 4.0.4:

tc({x, {x, y}}) = {x, {x, y}}∪tc(x)∪tc({x, y}) = {x, {x, y}}∪tc(x)∪{x, y}∪tc(y) =

= {{x, y}, x, y} ∪ tc(x) ∪ tc(y)

This means that
∣∣tc({x, {x, y}})

∣∣ ≤ 3 +
∣∣tc(x)

∣∣ +
∣∣tc(y)

∣∣. We know that
∣∣tc(x)

∣∣ < θ

and
∣∣tc(y)

∣∣ < θ because they are in Hθ and since θ is an infinite cardinal we can
conclude that

∣∣tc({x, {x, y}})
∣∣ < θ as well, meaning {x, {x, y}} ∈ Hθ. Let’s consider

the following formula φ(b, c):

∃z
(
a ∈ z ⇔ (a = b ∨ a = {b, c})

)
Now, Hθ |= ϕ(x, y), by the elementary property of M we can conclude that M |=
ϕ(x, y), which means that {x, {x, y}} ∈ M .

We can use a similar approach for x ∩ y, x ∪ y as well.
(2.)Using Proposition 4.0.3 we get that tc(x∩y) ⊆ tc(x) since tc(x) is a transitive

set which contains x ∩ y. This means that
∣∣tc(x ∩ y)

∣∣ < θ, hence x ∩ y ∈ Hθ as well.
We can define x ∩ y in M using the formula below:

∃z
(
a ∈ z ⇔ (a ∈ x ∧ a ∈ y)

)
.

(3.) For the union, let’s use Proposition 4.0.3 again: tc(x ∪ y) ⊆ tc(x) ∪ tc(y)
because tc(x)∪tc(y) is transitive and it contains x∪y. This means that

∣∣tc(x ∪ y)
∣∣ ≤∣∣tc(x)

∣∣ +
∣∣tc(y)

∣∣, so again,
∣∣tc(x ∪ y)

∣∣ < θ meaning that x ∪ y ∈ Hθ. The formula we
use for defining x ∪ y in M is the following:

∃z
(
a ∈ z ⇔ (a ∈ x ∨ a ∈ y)

)
.

(4.) Let’s recall that the set theoretic definition of a function is that it is a set
of ordered pairs ⟨x, y⟩ such that if ⟨x, y⟩, ⟨x, y′⟩ ∈ f ⇒ y = y′ which we decode as
f(x) = y. According to the conditions we have x ∈ M , let us define y := f(x) which
is the second element in the (unique!) ordered pair which contains x as first element.
Ee want to define the y in M (as an element). Based on the above ideas this is fairly
straightforward: if x, f ∈ M we know that f ∈ Hθ and since tc(y) ⊆ tc(f), we
conclude that y ∈ Hθ as well. We can now define y in M as well with the following
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formula:
∃z

(
⟨x, z⟩ ∈ f

)
.

(5.) First we show that ∅ ∈ M . Of course ∅ ∈ Hθ, so we only need to find a
formula which defines the ∅ in M . For example: ∃z ∀a(a /∈ z). This is true in Hθ

so it is also true in M , so we conclude that ∅ ∈ M . With this, we can define any
natural number using induction. First let us convince ourselves that ω ⊆ Hθ. This
is true because for all n ∈ ω, the cardinal

∣∣tc(n)
∣∣ is finite and θ is infinite. Now, for

example to show that 1 ∈ M , consider the following formula:

∃z
(
a ∈ z ⇔ a = 0

)
.

This is true in Hθ so it is true in M , concluding that 1 ∈ M . For proving 2 ∈ M we
can use the following formula:

∃z
(
a ∈ z ⇔ (a = 0 ∨ a = 1)

)
meaning 2 ∈ M . We can repeat this for any n ∈ ω concluding that ω ⊆ M .

(6.) Since every ordinal is a transitive set, tc(ω) = ω so ω ∈ Hθ indeed (because
θ is uncountable by the conditions). We need to find a formula which defines ω in M
as well. For example, the following works: ’there exists x such that x is the smallest
limit ordinal’.

(7.) It is easy to see that A = {a0, a1, . . . an−1} ∈ Hθ, and the formula which
defines the set A in M is

∃x
(
a ∈ x ⇔ (a = a0 ∨ a = a1 ∨ · · · ∨ an−1)

)
.

Lemma 5.2.7. Suppose that M ≼ Hθ is an elementary submodel for some θ ≥ ℵ2

and X ∈ M .

1. If X is countable then X ⊆ M ;

2. if X \M ̸= ∅ then X is uncountable;

3. if M is countable then M ∩ ω1 is an initial segment of ω1;

4. if M is countable and X ⊆ ω1 is uncountable then X ∩ M is an unbounded
subset of ω1 ∩M .
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Proof. Note that (1) and (2) are equivalent so we will only prove (1). If X is
countable then the formula

ϕ(X) ≡ (∃f : ω → X)f [ω] = X

must hold in Hθ. Note, that in the above formula we use that ω ∈ M , because we
can only choose evaluations e above M . So, ϕ(X) must hold in M as well, thus we
can pick f : ω → X in M such that f [ω] = X. Now, for any n ∈ ω both n, f ∈ M

so f(n) ∈ M as well. This means that X = f [ω] = {f(n) | n ∈ ω} ⊆ M .
(3.) Consider β ∈ M ∩ ω1. We know that β ∈ ω1 hence β is countable. By (1)

we get that β ⊆ M hence for any α ∈ β the ordinal α ∈ M concluding that M ∩ ω1

is an initial segment.
(4.) Suppose for a contradiction that there exists α ∈ ω1 ∩M such that x < α

for any x ∈ X ∩M . In turn,

M |= ∀x(x ∈ X ⇒ x < α)

so the set Hθ must satisfy this as well. Hence, x < α for any x ∈ X which contradicts
the fact that X is uncountable.

The following observation is quite useful as well and points to the fact that for
elementary submodels M , the ordinal M ∩ ω1 plays a critical role.

Proposition 5.2.8. Let θ ≥ ℵ2 and suppose that M ≼ Hθ is countable and α =
M ∩ ω1. If X ∈ M is a subset of ω1 and α ∈ X then X is stationary.

Conversely for any stationary set S ⊆ ω1 and X ∈ Hθ there is a countable
M ≼ Hθ which contains X and M ∩ ω1 ∈ S.

Proof. Take a club set C ⊆ ω1 such that C ∈ M . The set C must be uncountable
because any countable set in ω1 is bounded, since the supremum of countably many
countable ordinals is countable. So by (4) from Lemma 5.2.7 the set C ∩ M is
unbounded in α = ω1 ∩ M hence α ∈ C because the set C is closed. Thus, α ∈ X

and α ∈ C meaning that the intersection X ∩ C is not empty hence the formula
′X ∩ C ̸= ∅ for any club set C ⊆ ω′

1 is true in M . By the elementary property
of M this is true in Hθ as well. Also, every club set C ⊆ ω1 is in Hθ because∣∣tc(C)

∣∣ ≤
∣∣tc(ω1)

∣∣ = |ω1| = ℵ1. Thus, this formula is absolute between the universe
and Hθ, meaning that X is stationary as it has non-empty intersection with every
club set.
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For the other direction we claim that there is a continuous increasing sequence
of countable models Mα ≼ Hθ all containing X so that ω1 ⊆ ⋃{Mα | α ∈ ω1}. We
call a sequence of models continuous if for limit ordinals α the model Mα = ⋃

β<α
Mβ.

Let us use the Theorem 3.3.2 repeatedly. Let M0 be the submodel given by Theorem
3.3.2 such that {X, ∅} ⊆ Mα. When defining Mα+1 we want Xα+1 = Mα∪{X,α+1}
to be a subset of Mα+1. Note that |Xα+1| = ℵ0 so by Theorem 3.3.2 we get that
|Mα+1| = ℵ0. For limit ordinals α ∈ ω1 let Mα be ⋃

β<α
Mβ. This is a countable union

so Mα is countable as well. It is easy to check that Mα is indeed an elementary
submodel using Theorem 5.2.4. Note that at first sight it seems we would not
necessarily have α ∈ Mα which seems to cause a problem since we want ω1 ⊆⋃{Mα | α ∈ ω1} to hold. But, Mα+1 contains α+ 1 and Mα+1 ∩ ω1 is an ordinal by
(3) from Lemma 5.2.7, so α ∈ Mα+1 holds as well.

Now, the set {Mα ∩ ω1 | α ∈ ω1} must be a club set. It is closed because
the sequence Mα is continuous and it is unbounded, because Mα+1 contains α + 1
for every α ∈ ω1. This means that the set {Mα ∩ ω1 | α ∈ ω1} has a non-empty
intersection with S, thus there is an α ∈ ω1 so that ω1 ∩Mα ∈ S.

We now give a new proof to Fodor’s pressing down lemma (Theorem 3.3.2) for
κ = ω1 using elementary submodels.

Theorem 5.2.9. (Fodor’s pressing down lemma) Let S ⊆ ω1 be stationary and
f : S → ω1 be regressive. Then there exists a stationary S ′ ⊆ S such that f ↾S′ is
constant.

Proof. Pick some countable submodel M ≼ Hℵ2 such that f ∈ M and α := M∩ω1 ∈
S by the converse of Proposition 5.2.8. Note that ε := f(α) < α so ε ∈ M because
of (3) from Lemma 5.2.7. In turn if we let S ′ = f−1(ε) ⊆ S then of course α ∈ S ′.To
use Proposition 5.2.8 to show that S ′ is stationary we need to see that S ′ ∈ M .
Since f ∈ Hℵ2 of course f−1(ε) ∈ Hℵ2 too. We can define S ′ in M as well by the
formula

∃z (a ∈ z ⇔ f(a) = ε)

This means that S ′ is indeed stationary and by definition f is constant on S ′.

Elementary submodels are often used to cut a large structure X into smaller
pieces. The next Theorem is from [3].

Theorem 5.2.10. Suppose that X ∈ Hθ is of size κ and cf κ = µ. Then there is a
sequence (Mα)α<µ such that
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1. X ∈ Mα ≼ Hθ and |Mα| < κ,

2. (continuity) for any limit β < µ the model Mβ = ∪{Mα | α < β},

3. X ⊆ ⋃{Mα | α < µ}.

Moreover we can assume that (Mα)α<β ∈ Mβ.

We use the models Mα to write X as the increasing union of the sets X ∩Mα.
We often apply some inductive assumption to X ∩ Mα or X ∩ Mα+1 \ Mα. Note
that the sets X ∩ Mα+1 \ Mα partition the set X because the sequence (Mα)α<µ is
continuous.

The next Lemma is from [1]:

Lemma 5.2.11. Let θ, κ and λ be infinite cardinals such that κλ = κ and λ < θ.
Then for every A ⊆ Hθ with |A| ≤ κ there is M ≼ Hθ such that A ⊆ M with |M | ≤ κ

and for every x ⊆ M with |x| ≤ λ we have that x ∈ M .

We omit the proofs which are again variants of the Löwenheim-Skolem closure
argument.



Chapter 6

Applications of elementary
submodels

6.1 Topology

In this section we will showcase some proofs with the help of elementary submodels.
This proofs are from [1].

First, let us recall a few basic notions from topology. A topological space is
a pair ⟨X, τX⟩, where τX is the topology of X meaning that the collection of open
subsets of X. We often use τ instead of τX if it is obvious from the context and
we sometimes omit τ fully if it is clear what the topology is on X. A topological
space X is called Hausdorff if for any two distinct points x, y ∈ X there are disjoint
open sets U, V ⊆ X such that x ∈ U and y ∈ V . The topology of a space X can
be described by giving a base for the topology. A subset B ⊆ τ is a base for the
topology τ of X if for all x ∈ X and U ∈ τ for which x ∈ U there is a V ∈ B such
that x ∈ V ⊆ U . If we do not require B to be a subset of τ , we get the notion of a
network:

Definition 6.1.1. A subset N ⊆ P (X) is a network of X if for all x ∈ X and
U ∈ τ for which x ∈ U there is a set V ∈ N such that x ∈ V ⊆ U .

A cardinal invariant of topological spaces is a mapping i assigning a cardi-
nal i(X) to each space X such that i(X) = i(Y ) if X and Y are homeomorphic.
An easy example is the cardinality of a space. Clearly, any two spaces which are
homeomorphic have the same cardinality. We now define two less trivial cardinal
invariants.

Definition 6.1.2. Let X be a topological space. Then w(X) is the least cardinal κ

34
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such that X has a base of size κ. We call w(X) the weight of X.

Definition 6.1.3. Let X be a topological space. Then nw(X) is the least cardinal κ
such that X has a network of size κ. We call nw(X) the network-weight of X.

Remark 6.1.4. Since every base of X is also a network of X, w(X) ≥ nw(X).

In this section we prove a theorem of Arhangel’skii:

Theorem 6.1.5. (Arhangel’skii) Let X and Y be compact Hausdorff topological
spaces and let f : X → Y be continuous and onto. Then w(Y ) ≤ w(X).

The following lemma shows us that if we replace weights with network-weights
it gets much easier:

Lemma 6.1.6. Let X and Y be topological spaces and let f : X → Y be continuous
and onto. Then nw(Y ) ≤ nw(X).

Proof. Let N be a network for X. We will show that N ′ = {f [V ] : V ∈ N} is a
network for Y . Let U ∈ Y be open and non-empty and choose y ∈ U . Choose
x ∈ X such that f(x) = y. Since f is continuous, f−1[U ] is open and clearly
x ∈ f−1[U ]. Thus, there exists V ∈ N such that x ∈ V ⊆ f−1[U ]. Now, f [V ] ∈ N ′

and y ∈ f [V ] ⊆ U .

Theorem 6.1.5 follows from the next lemma, which shows that for compact
Hausdorff spaces the weight and network-weight are the same. We give a proof of
this fact using elementary submodels.

Lemma 6.1.7. Let X be a compact Hausdorff topological space. Then w(X) =
nw(X).

Proof. Let N be a network of X with κ := |N | =
∣∣nw(X)

∣∣ and let τ be the topology
of X. Let θ be large enough for Hθ to contain X and τ as elements and such that
all those finitely many formulae are absolute over Hθ that we want to be absolute
in this following proof. We could write down these formulae, but it is not necessary,
since the Reflection Principle (5.2.5) says that suitable θ exists for any finite set of
formulae.

Now, using Theorem 5.2.3 pick M ≼ Hθ such that N ∪ {N,X, τ} ⊆ M and
|M | = κ. We claim that τ ∩M is a base for X which would be enough, because then
the base would have cardinality at most κ, meaning w(X) ≤ nw(X).

Pick a non-empty U ∈ τ and let x ∈ U . If we prove that there exists W ∈ τ∩M
such that x ∈ W ⊆ U that would show that τ ∩M indeed contains a base. For any
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y ∈ X \U there are disjoint open sets Uy, Vy such that x ∈ Uy, and y ∈ Vy. Since N
is a network, there are sets Ay, By ∈ N such that x ∈ Ay ⊆ Uy and y ∈ By ⊆ Vy.

Let us consider the following formula:

φ (u, v, t, a, b) = (∃u, v ∈ t) ∩ (u ∩ v ̸= ∅) ∧ (a ⊆ u) ∧ (b ⊆ v)

The sets u = Uy and v = Vy witness that φ (u, v, τ, Ay, By) is true in
the universe. This means that we can choose large enough θ such that Hθ |=
φ (u, v, τ, Ay, By). Since τ, Ay, By ∈ M and M is an elementary submodel we get
that M |= φ(u, v, τ, Ay, By) as well.

Let U ′
y, V

′
y ∈ M be according to the formula: U ′

y, V
′
y ∈ τ , the intersection U ′

y∩V ′
y

is empty, Ay ⊆ U ′
y and By ⊆ V ′

y . Clearly X \U ⊆ ⋃
y∈X\U

V ′
y . The space X is compact

and X \ U is a closed subset so X \ U is compact as well. This means that there
exists a finite set F ⊆ X \U such that X \U ⊆ ⋃

y∈F
V ′
y . We will prove that ⋂

y∈F
U ′
y is

an element of M . This would finish the proof since x ∈ ⋂
y∈F

U ′
y ⊆ U , meaning τ ∈ M

contains a base.
Suppose |F | = n and let {U ′

y | y ∈ F} = {U1, U2, . . . , Un}. Let ϕ(z, x1, x2, . . . xn)
be the formula saying that the elements of z are precisely those, which are elements
of x1, x2, . . . xn that is x ∈ z ⇔ (x ∈ x1) ∧ (x ∈ x2) ∧ · · · ∧ (x ∈ xn). Now,
ϕ(W,U1, U2, . . . , Un) is true in Hθ if W = ⋂

1≤i≤n Ui. Again, we can choose large
enough θ such that Hθ |= ϕ(W,U1, U2, . . . , Un), meaning M |= ϕ(W,U1, U2, . . . , Un),
hence we can conclude that the set ⋂

y∈F
U ′
y = ⋂

1≤i≤n
Ui is an element of M , thus

finishing the proof.

Remark 6.1.8. The finitely many formulae we wanted Hθ to reflect from the uni-
verse are the φ and the ϕ formulas defined above.

Corollary 6.1.9. It is an interesting consequence of Theorem 6.1.5 that the con-
tinuous Hausdorff image of compact metrizable space is metrizable, which can be
proven easily in the following way:

(i) X is compact metrizable so it has a countable base,

(ii) Y has a countable base also by Theorem 6.1.5,

(iii) As Y is also normal (from compact Hausdorff again) so the Urysohn metriza-
tion theorem says that Y is metrizable.
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6.2 Graphs with uncountable chromatic number

In this section I follow [3]. The next group of applications is about the following
question: given a graph with large chromatic number, what can we say about its
subgraphs? Is it true that certain cycles, paths or say highly connected graphs must
embed into every graph with large enough chromatic number? P. Erdos showed that
for any finite k, l there exists a graph with chromatic number k which contains no
cycles of length ≤ l. So, the chromatic number can be arbitrary large, while the
l-neighbourhood of any vertex must form a tree. Now, trees have chromatic number
two, so we see that there are graphs with arbitrary large chromatic number which
locally have the smallest possible chromatic number.

Quite interestingly the above result does not extend to graphs with uncountable
chromatic number. In fact the following theorem holds where Hω,ω+1 denotes the so
called infinite half graph: the vertices are {uk : k ∈ ω} ∪ {vk : k ∈ ω + 1} and the
edges are ukvl where k ≤ l ≤ ω.

Theorem 6.2.1. (A. Hajnal and P. Komjath, 1984) Any graph G of uncountable
chromatic number must contain the graph Hω,ω+1.

In particular, all even cycles and actually all finite bipartite graphs must ap-
pear in any graph of uncountable chromatic number. We mention that the lack of
finite half-graphs of a given size also has various consequences on the structure and
regularity properties of a graph [6].

Proof. Suppose that G is a counterexample of minimal size κ. Let us denote the
set of the vertices of G with V and the set of the neighbours of a vertex v with
N(v). Take a sequence of elementary submodels (Mα)α<cf(κ) each of size less than
κ and containing G using Proposition 5.2.10. Let V0 := V ∩ M1 and for α ≥ 1 let
Vα := V ∩Mα+1 \Mα. Note that if one of the graphs Vα has uncountable chromatic
number, then by the minimality of G it must contain the graph Hω,ω+1, but then G
must contain it as well, hence we can conclude that the graphs Vα have countable
chromatic numbers.
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We claim that for every α and v ∈ Vα the set N(v) ∩Mα is finite. Suppose for
a contradiction that {un | n ∈ ω} is an infinite subset of N(v) ∩Mα. The set N(uk)
is in Mα because we can define it with a formula Mα. By (2) from Lemma 5.2.6 we
get that the set ⋂

k<n
N(uk) is in Mα as well for any n ∈ ω. Using (2) from Lemma

5.2.7 we get that the set ⋂
k<n

N(uk) must be uncountable for every n ∈ ω because
v is an element of the intersection and v /∈ Mα. So, we can select pairwise distinct
vn ∈ ⋂

k<n
N(uk). Now, {uk | k ∈ ω} ∪ ({vk | k ∈ ω} ∪ {v}) is a copy of Hω,ω+1 in G

which is a contradiction.
We showed that for every α and v ∈ Vα the set N(v) ∩ Mα is finite, hence

we can glue the colorings of the graphs Vα together as they all have countable
chromatic number. First, let us fix a coloring gα : Vα → ω for each graph Vα. We
will give a coloring g : V → ω × ω, where g(v) := ⟨gα(v), h(v)⟩ and v ∈ Vα. We
will define the function hα(v) now. First, let h(v) = 0 for v ∈ V ∩ M1, so the
coloring is g(v) := ⟨g0(v), 0⟩ for v ∈ V ∩ M1. Next, suppose that g ↾ V ∩ Mα

is already defined. For a vertex v ∈ Vα the set N(v) ∩ Mα is finite, let us define
h(v) := min{ω \ h[N(v) ∩ Mα]}. This definition ensures that there is no conflict
between the colours on V ∩ Mα and Vα. This finishes the construction of a good
colouring g and the proof of the theorem is done.

We saw that all even cycles must embed into any graph with uncountable
chromatic number. However, finitely many odd cycles can be avoided: the simplest
examples are the shift graphs [8]. Choose a cardinal κ and a natural number n. We
will define a graph SHn(κ), the vertices of the shift graph are [κ]n. The vertices a and
b will be connected if and only if a0 < a1 = b0 < a2 = b1 < . . . an−1 = bn−2 < bn−1.
For the n = 2 case it is not too hard to see that SH2(κ) cannot contain a triangle. In
fact, SHn(κ) contains no odd cycles of length at most 2n−1. Moreover by choosing
κ large enough the chromatic number of SHn(κ) can be made arbitrary large.

On the other hand, it was also shown that in any graph of uncountable chro-
matic number, all but finitely many odd cycles must appear.

Theorem 6.2.2. (C. Thomassen, 1983, [7]) Any graph G of uncountable chromatic
number must contain odd cycles of all but finitely many lengths.

Proof. We can assume that G is connected, otherwise take a connected component
of uncountable chromatic number. Fix a vertex x then run a Breadth First Search
from that vertex. This will partition the vertices V into (Vm)m∈ω, where v ∈ Vm if
and only if the shortest path from x to v has exactly m edges. Note that this can be
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done because there is no transfinite path (the definition of a connected component is
that all two vertices are connected with a path consisting of finitely many edges).

Now, because we partitioned V into ω many parts, some Vm most have un-
countable chromatic number: if all of them could be colored by countably many
colors then we could tie them together resulting in a countable good coloring of V .
Fix an m for which Vm has uncountable chromatic number. We will find all odd
cycles of length at least 2m+ 1.

For any k ∈ ω we can find a copy H of the complete bipartite graph Kk,k in
Vm. Let uv be an edge in H and take paths P, P ′ of length m from x to u and v

respectively. Note that P ∪ P ′ does not have edges in Vm and contains a path from
u to v of even length l ≤ 2m.

Moreover in H we can connect u and v in paths of length 1, 3, 5, . . . up to 2k−1.
Connecting those two we get odd cycles of length l+ 1, l+ 3, . . . l+ 2k − 1. We can
do this for any k ∈ ω hence the proof is done.

6.3 Revisiting the ∆-system lemma

In this section I follow and [2] and [3]. The ∆-system lemma is one of the most
cited results in set theory, ubiquitous in forcing arguments, topological proofs and
Ramsey results. As a reminder here is the definition of a ∆-system.

Definition 6.3.1. We call a family of sets H a ∆-system, if ∃S such that ∀F ̸=
F ′ ∈ H we have that F ∩ F ′ = S. The set R is called the root of the ∆-system.

Theorem 6.3.2. (∆-system lemma) Every uncountable family of finite sets F con-
tains an uncountable ∆-system.

Proof. We can assume without loss of generality that we work with subsets of ω1

hence take F ⊆ [ω1]<ω. Pick a countable M ≼ Hℵ2 so that F ∈ M . Fix any
b ∈ F \M and let r = b ∩M . Let us consider the set

E = {a ∈ F | r ⊆ a}.

Of course E ∈ Hℵ2 because
∣∣tc(E)

∣∣ ≤
∣∣tc(F)

∣∣ ≤ ℵ1. The set E is also an element of
M , because there is a formula which defines it (note that r ∈ M by (7) from Lemma
5.2.6 since |r| < ω and all elements of r are in M):

∃E (a ∈ E ⇔ (a ∈ F ∧ r ⊆ a)).
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Moreover, b ∈ E \M so E must be uncountable by (2) from Lemma 5.2.7. We will
find our uncountable ∆-system in E with root r. Let us take a maximal subfamily
E0 of E in M which satisfies that {a \ r | a ∈ E0} is pairwise disjoint (that is, E0 is
a ∆-system with root r). By the elementarity property of M we get that this E0 is
also a maximal subfamily in Hℵ2 , since we can define the set E0 with a formula.

We claim that E0 must be uncountable. Suppose for a contradiction that it is
countable. By (1) from Lemma 5.2.7 we get that E0 ⊆ M as well. On the other
hand E0 ⊆ M so b /∈ M , hence the set E0 ∪ {b} is a proper extension of E0 in Hℵ2 .
We will check that E0 ∪{b} is a ∆-system. Of course, r ⊆ b, so we need to check that
the set {a \ r | a ∈ {E0 ∪ b}} is pairwise disjoint. We already know that E0 ⊆ M ,
but applying (1) from Lemma 5.2.7 to the elements of E0 we get that every element
of E0 is a subset of M . Since b ∩ M = r, we know that b can only intersect the
elements of M in r. This contradicts the fact that E0 was maximal in Hℵ2 so indeed
E0 is an uncountable ∆-system.

Now we revisit Theorem 3.3.6 and prove it with elementary submodels.

Theorem 6.3.3. Every family A = {Aα | α < c+} ⊆ [c+]ω contains a ∆-system of
size c+.

Proof. The proof will be really similar to the proof of Theorem 6.3.2, but we need
to choose the submodel M more carefully. We want to pick M ≼ Hθ such that
M ∩ c+ ∈ c+, the cardinality of M is c and [M ]ω ⊆ M . We can construct a
continuous, increasing sequence of models (Mα)α<ω1 each of size c such that when
constructing the models Mα+1 we ensure that the model Mα+1 contains {A} ∪Mα∪
sup{c+ ∩ Mα} ∪ [Mα]ω ∪ {c} which is of cardinality c so we can choose Mα+1 with
cardinality c. By taking M := ⋃

α∈ω1
Mα it can be easily seen that M ∩ c+ ∈ c+ and

[M ]ω ⊆ M .
From now on, we can proceed essentially the same as in Theorem 6.3.2. Pick

a b ∈ A \ M and let r := b ∩ M . We have r ∈ M , since [M ]<ω ⊆ M by (7) from
Lemma 5.2.6 and [M ]ω ⊆ M as we created M . Choose a subfamily B ∈ M such that
B ⊆ A and B is maximal among the ∆-systems with root r. By elementarity, B is
also maximal in the universe. We claim that B has cardinality c+. If it would have
cardinality at most c then we would have B ⊆ M because there exists a surjective
function from c to B in M so we can define the elements B ∈ B (we need that
c ∈ M and that c ⊆ M). This means that B ⊆ M would hold for every B ∈ B
by (1) from Lemma 5.2.7. Thus, the family B ∪ {b} would be a proper extension
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to B because it is a ∆-system with root r by the same reasoning as in the proof of
Theorem 6.3.2.

More generally we have the following theorem which can be easily proved with
appropriately modifying the previous proof. It can be found in [2, Theorem 4.2].

Theorem 6.3.4. If A is a family of finite sets such that κ = |A| is an uncountable
regular cardinal then A contains a ∆-system of size κ.
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