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Chapter 1

Introduction

The main goal of my thesis is to understand the connection between two seemingly
unrelated topics of algebra: quadratic forms and quadratic number fields. Binary
quadratic forms are simply homogeneous polynomials of degree two with integer
coefficients in two variables. Quadratic number fields are the extensions of the field
of rationals (Q) by the square root of one of its elements. The motivation to study
this topic partly comes from the fact that both are taught in undergraduate courses
to some extent and no advanced tools are required to understand their deep-lying
connection. Another source of motivation is the book of Cox titled Primes of the
Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication [1] which
solves the problem of classifying the primes represented by the form x2 + ny2. My
thesis concentrates on only a small part of this book which I recommend for those
interested.

In the shortest chapter, Preliminaries, we list the concepts and theorems the
remainder of the thesis uses but are not neccessarily taught in undergraduate courses.
This includes a characterisation of algebraic integers and a theorem stating that
SL2(R) acts on the complex upper half plane in a certain way.

Chapter 3 has another goal besides laying the foundations for the final chapter.
The reason for this is that general quadratic forms are rarely taught and studied
despite some important results of the binary case generalise nicely to the general
case. One important source is the lecture notes of Maga [5], however we state and
prove some results not listed there. Our results are certainly not new, however they
may not have been in the centre of attention. For the second part of Chapter 3
studying binary quadratic forms, we follow the book of Cox [1] again besides the
author’s notes from the lectures of his supervisor, Zábrádi.

In the final part of the thesis, Chapter 4, we heavily use the results of the



3

previous chapters to prove our main result. This is to be done in several steps as
usual in algebra. Firstly we carefully construct two maps, then we factorise by some
equivalences and in the end, we manage to show that the two maps are inverses
of each other, showing the connection between quadratic forms and number fields.
In this part we assume some knowledge in abstract algebra, especially familiarity
with field extensions. Good books to learn more about these topics are Marcus [6]
and Fröhlich-Taylor [3]. Here we don’t follow a single source throughout the entire
chapter, but our most important sources are once again the notes from the lectures
of Zábrádi and the book of Cox [1].



Chapter 2

Preliminaries

In this chapter, we go through the concepts and theorems we are going to use later
and assume that the reader is familiar with. Most of the topics covered in this
chapter should normally be familiar to someone with a mathematics degree.

2.1 Algebra and number theory in general

We assume that the reader is familiar with algebra and number theory at the level of
undergraduate courses. For those interested, I recommend the books of Cox [1], Kiss
[2], and Ireland and Rosen [4] for reading. However, the most important concepts
will be redefined.

As we will be working on many different algebraic structures, to avoid confusion,
it is important to always be sure about the meaning of certain letters. We try to use
the most common notations everywhere, but for the sake of completeness, we also
define these ourselves.

Definition 2.1.1. Let us define the following usual notations for the notable sets
of numbers:

• N stands for the set of the natural numbers, i.e. N = {0, 1, 2, . . . }.

• Z is the notation for the set of integers.

• Q denotes the rationals: Q =
{

p

q
: p ∈ Z, q ∈ N \ {0}

}
.

• R denotes the set of real numbers.

• C stands for the set of complex numbers.
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• The upper half plane of C is denoted by H = {z ∈ C : Im(z) > 0}.

• K always stands for some field and K is a number field (a subfield of C).

We present the first classical result here about the action of the group SL2(R)
(the two by two real matrices with discriminant 1) on H.

Theorem 2.1.2. Suppose we have γ =
a b

c d

 ∈ SL2(R), z ∈ C, and a group

action defined as
γ(z) = az + b

cz + d

Then for every γ ∈ SL2(R) we have γ(H) ⊆ H.

Equivalently, we can say that SL2(R) acts on H.

2.2 About algebraic integers

Definition 2.2.1. α ∈ C is an algebraic integer if it is a root of a monic polynomial
with integer coefficients.

We now present a theorem characterising algebraic integers. The proof is omitted
as this theorem is classical and is also taught in undergraduate algebra course.

Theorem 2.2.2. For any α ∈ C, the following statements are equivalent:

• α is an algebraic integer.

• The additive group of the ring Z[α] is finitely generated.

• α is an element of a subring of C having a finitely generated additive group.

• All the coefficients of the minimal polynomial of α over Q are integers.

This concludes the review of assumed prior knowledge.



Chapter 3

Quadratic forms

Quadratic forms play a central role in this thesis because they build a bridge between
number theory and algebra in the sense that quadratic forms are purely algebraic
objects, yet studying them gives answers to questions arising in number theory.
Although this phenomenon might not be rare in mathematics, studying quadratic
forms has proven to be very efficient in tackling number theoretical problems, and
their theory dates back to Lagrange.

We first investigate quadratic forms of n variables and prove general statements
about them and then focus on the more relevant binary case. In the general case,
see Maga [5] for reference, and in the binary case, we follow the book of Cox [1] and
the lectures of Zábrádi in Number Theory II from the spring semester of 2023. The
solutions for some of the problems are the work of the author.

3.1 General quadratic forms

Firstly, we define quadratic forms over a finite-dimensional vector field over a field
K. Typically we work with fields Q or R, yet we aim to prove deep and non-trivial
statements about quadratic forms as generally as possible.

Definition 3.1.1. Let n be a positive integer, K be a field, and V be an n-
dimensional vector field over K. q : V → K is called a quadratic form if

q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

ai,jxixj

holds for all (x1, . . . , xn) ∈ V for some fixed ((ai,j))1≤i,j≤n ∈ Kn×n.

It is an immediate consequence of the definition that two quadratic forms are the
same if all their coefficients are pairwise equal. Thus, we have a set of ((ai,j))1≤i,j≤n
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matrices which define the same quadratic form, namely A and B define the same
form if A + AT = B + BT , so it is natural to choose the unique symmetric matrix
from this set to represent it. From now on it is assumed that ai,j = aj,i for all
i, j ∈ {1, . . . , n}, i.e. the matrix ((ai,j))1≤i,j≤n is symmetric. It is also natural to
identify the quadratic form with its matrix, which is now uniquely defined. Let
Sym(n,K) denote the set of symmetric, n × n matrices over K.

If we have two quadratic forms whose matrices are similar in the sense that the
two matrices can be transformed into each other via a base change (by conjugating
with an element of GLn(K)), it is natural to assume that the two quadratic forms
behave similarly. This similarity will be called equivalence and is formalised by
Definition 3.1.2.

Definition 3.1.2. Let A, B ∈ Sym(n,K). The quadratic forms defined by A and B

are said to be equivalent if there exists C ∈ GLn(K) such that B = CT AC.

Proposition 3.1.3. The equivalence of quadratic forms is an equivalence relation.

Proof. Let P, Q, R ∈ Sym(n,K) and p, q, r be their corresponding quadratic forms.
Reflexivity: p ∼= p holds trivially with C = I.
Symmetry: p ∼= q ⇒ q ∼= p holds with the choice of C−1.
Transitivity: p ∼= q, q ∼= r ⇒ Q = CT

1 PC1, R = CT
2 QC2 ⇒ R = CT

2 (CT
1 PC1)C2 =

(CT
2 CT

1 )P (C1C2) = (C1C2)T P (C1C2) which shows p ∼= r with the choice of C1C2.

One may also consider quadratic forms over a ring R. This formally means that
the quadratic form maps a free n-dimensional R-module into R. In this case, the
entries of the quadratic form’s representing matrix are not necessarily elements of R,
but their doubles are. This follows from the convention of the representing matrix
being chosen to be symmetric. The most important case here, in fact the only one we
will consider is the case R = Z. These are called integral quadratic forms. Any base
change in Zn is defined by a matrix in GLn(Z). We recall that Z-invertible matrices
have determinants ±1 and we deduce an immediate consequence of this below:

Proposition 3.1.4. If A and B are equivalent integral quadratic forms, then
det A = det B.

Proof. We know by 3.1.2 that there is a C ∈ GLn(Z) such that B = CT AC. As a
consequence, det B = (det C)2 · det A = (±1)2 · det A = det A.

Our next goal is to prove a general theorem about the finiteness of the number
of equivalence classes and we need some preparation for this. We first define the
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concept of reducedness and then, based on a strong theorem due to Hermite, show
that every positive semidefinite quadratic form is equivalent to a reduced one.

Definition 3.1.5. A positive semidefinite quadratic form A = ((ai,j))1≤i,j≤n is said
to be Minkowski reduced (or reduced in short) if xT Ax ≥ ak,k holds for all vectors
x = (x1, . . . xn) ∈ Zn such that the entries xk, . . . xn are relatively prime and ak,k+1 ≥
0 holds for all k = 1, . . . n − 1.

Theorem 3.1.6 (Hermite). For any positive semidefinite symmetric n × n real
matrix A, the following inequalities hold:

0 < m(A) := min
x∈Zn\{0}

xT Ax ≤
(4

3

)n − 1
2 (det A)

1
n

Proof (from [5]). Since A is positive semidefinite and symmetric, due to the Prin-
cipal Axis Theorem, there exists an orthogonal real matrix K such that KT AK is
diagonal with positive eigenvalues ρ1 ≥ . . . ≥ ρn > 0. Now we have a lower bound
for xT Ax for any x ∈ Rn:

xT Ax = (xT K−T )(KT AK)(K−1x) ≥ ρn∥K−1x∥2= ρn∥x∥2

For every non-zero x ∈ Zn we have ∥x∥≥ 1, which implies xT Ax ≥ ρn and proves
the positiveness of m(A). We also need to show that m(A) is really a minimum.
For any fixed non-zero vector y ∈ Zn, the value d = yT Ay is some finite positive
real number. For any integer vector z with ∥z∥>

√
d

ρn
, zT Az ≥ ρn∥z∥2> d holds,

consequently we only need to consider lattice points with norm less than or equal
to

√
d

ρn
. There are only a finite number of lattice points in the n-dimensional ball

B̄(0,
√

d
ρn

), so the minimum must be attained.
The last inequiality, the upper bound of m(A) is to be proven by induction with

base case n = 1 being obvious. Now let n ≥ 2 and assume that the statement is true
up to n−1 and fix a positive semidefinite symmetric n×n matrix A. Let a1 := m(A)
and x = (x1, . . . , xn)T ∈ Zn \ {0} be one vector where the minimum is reached:
xT Ax = a1. We observe that gcd(x1, . . . , xn) = 1 as if it were c > 1, x/c would still be
a nonzero integer vector that produces a smaller number (x/c)T A(x/c) = a1/c2 < a1

contradicting with the minimality of a1.
Based on the previous observation, we know that there exists an integer matrix

γ ∈ GLn(Z) such that its first column is x itself and consequently, matrix B = γT Aγ

has a1 as its upper-left corner entry.
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Now let us define a real vector b ∈ Rn−1 and a matrix A1 ∈ R(n−1)×(n−1) such
that the following equality holds:

B =
 a1 a1b

T

ba1 ba1b
T + A1


One can notice that vector b is well-defined by the first column of B and matrix

A1 is also uniquely defined by the lower-right (n − 1) × (n − 1) block of B. The
motivation of defining b and A1 in such a way is that now the following identity
holds: 1 0

b idn−1

 a1 0
0 A1

 1 bT

0 idn−1

 =
 a1 a1b

T

ba1 ba1b
T + A1

 = B

Since B is symmetric, A1 also has to be symmetric and A1 is also positive semidefinite

because
a1 0

0 A1

 is equivalent to B.

The next step is to obtain a useful upper bound for m(A) using the previous
decomposition. For any y ∈ Zn, we can decompose it as (y1, y2) ∈ Z×Zn−1 and now
we perform calculations to have a better understanding of what yT By is:

yT By =
(
y1 yT

2

)  a1 a1b
T

ba1 ba1b
T + A1

 y1

y2

 =

=
(
y1a1 + yT

2 ba1 y1a1b
T + yT

2 ba1b
T + yT

2 A1

) y1

y2

 =

= a1(y2
1 + yT

” by1 + y′bT y2 + yT
2 bbT y2) + yT

2 A1y2 = a1(y1 + yT
2 b)2 + yt

2A1y2

We now may choose y2 to be a nonzero vector such that m(A1) = yT
2 A1y2 based

on the definiton of m(A1) and since y1 can be any integer, we are able to set its
value such that |y1 +yT

2 b| is minimal, namely at most 1
2 . Consequently, a1 ≤ yT By ≤

a1

4 + m(A1) holds, from which a1 ≤ 4
3 · m(A1) follows.

From the induction hypothesis, we know that

m(A1) ≤
(4

3

)n − 2
2 (det A1)

1
n − 1

From the equivalence of A and
a1 0

0 A1

 we get a1 det A1 = det A. Combining

the above two statements together, we obtain

a1 ≤
(4

3

)n

2 · (det A)1/(n−1)

a
1/(n−1)
1
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Multiplying with the denominator on the right-hand side and raising to the
n − 1

n
-th power, the proof is complete by

m(A) = a1 ≤
(4

3

)n − 1
2 (det A)

1
n

Turning our attention towards reducedness, our next aim is to prove that there
is an equivalent reduced form for any given one. Since the second property of re-
ducedness is easier to handle, we first show that for a quadratic form fulfilling the
first property, a reduced equivalent quadratic form can be found in the following
statement.

Proposition 3.1.7. For any quadratic form A, there is a quadratic form B =
((bi,j))1≤i,j≤n such that A and B are equivalent and B satisfies the following require-
ments:

• bk,k+1 ≥ 0 for all k = 1, . . . n − 1,

• For any given k, the minimum of expressions xT Ax and xT Bx are equal to
each other where the minimum is taken over all x = (x1, . . . , xn) ∈ Zn vectors
satisfying gcd(xk, . . . , xn) = 1.

Proof (from [5]). Let Ek be the matrix which is diagonal with all its diagonal entries
being 1 except for the k-th diagonal entry, which is −1. Note that conjugating a
matrix with Ek multiplies its k-th row and k-th column by −1 leaving the k-th
diagonal entry unchanged.

We conjugate A by Ek if the (k, k + 1)-th entry is negative for every k one
after another. This way, we obtain a matrix B. B is clearly equivalent to A and
also has its close-to-diagonal entries set to nonnegative values. For every vector
x = (x1, . . . , xn) ∈ Zn define y as the vector where the absolute value of every
entry is equal to those of x and the sign of yk is changed if and only if during the
previous algorithm, Ek was used to conjugate. Clearly, for every k, gcd(xk, . . . , xn) =
gcd(yk, . . . , yn) and hence the simple observation xT Ax = yT By confirms the claim.

Theorem 3.1.8. For every positive semidefinite quadratic form A, there is a reduced
quadratic form B such that A and B are equivalent.
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Proof (from [5]). The proof will heavily rely on both the statement and the proof
of 3.1.6. First set A0 = A and as before, select a matrix γ1 ∈ GLn(Z) such that the
upper-left corner entry of A1 = γT

1 Aγ1 is minimal. We will make n such steps and
in the k-th step, we want the upper-left corner (k − 1) × (k − 1) block of Ak−1 to
remain unchanged. As a consequence, we need to set the first k − 1 columns of γk

to the first k − 1 unit vectors.

In the k-th step, γk =
idk−1 ∗

0 ∗

 is chosen such that the k-th diagonal entry of

Ak = γT
k Ak−1γk is minimal. The existence of such a matrix γk is also a consequence

of the proof presented above for 3.1.6.
After the n-th step, we get a matrix An = B = ((bi,j))1≤i,j≤n which is equivalent

to A since it was conjugated n times. Alternatively, one can view it as if it were
conjugated once with the matrix ∏n

i=1 γi ∈ GLn(Z).
We claim that B fulfills the first property of reducedness, namely that xT Bx ≥

bk,k holds for all x = (x1, . . . , xn) ∈ Zn if entries xk, . . . , xn are relatively prime.
Because x is linearly independent of the first k − 1 basis vectors (which need to
remain unchanged in the k-th step), any such x vector was taken into account when
we took minimum in the k-th step and selected γk. As a consequence, if there were
an x′ vector with x′T Bx < bk,k, the n − k + 1 lowest entries of the k-th column of
γk would have been selected to be x′, contradicting with the minimality of bk,k.

All in all, we managed to construct a matrix B equivalent to A satisfying the first
property of being reduced, so Proposition 3.1.7 finishes the proof of the theorem.

Definition 3.1.9. Given a quadratic form represented by the matrix A, its discrim-
inant is defined to be −4 · det A.

Proposition 3.1.10. Equivalent quadratic forms have equal discriminants.

Proof. Based on the definition above, this statement is straightforward from 3.1.4.

We need a final statement before we can prove our main theorem.

Proposition 3.1.11. If A = ((ai,j))1≤i,j≤n is Minkowski reduced quadratic form,
then we have:

• 0 < a1,1 ≤ . . . ≤ an,n

• 2 · |ak,l|≤ min(ak,k, al,l) for every 1 ≤ k, l ≤ n.
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Proof (from [5]). Let ek be the unit vector with 1 at the k-th entry and 0-s elsewhere,
the k-th element of the standard basis. Firstly, we know that ak,k ≤ eT

k+1Aek+1 =
ak+1,k+1 for any 1 ≤ k ≤ n − 1. Also, 0 < eT

1 e1 = a1,1. Concerning the second claim,
for any 1 ≤ k < l ≤ n we have al,l ≤ (ek ± ql)T A(ek ± el) = ak,k ± 2k,l + al,l.

Theorem 3.1.12. Let D < 0 and n ∈ N be fixed. We claim that there is a finite
collection of integral n-ary quadratic forms with discriminant D such that every
integral n-ary quadratic form with discriminant D is equivalent to at least one of
them.

Proof. Let Rn(D) denote the set of Minkowski reduced integral n-ary quadratic
forms with discriminant D. By Theorem 3.1.8, it is enough to show that Rn(D) is
finite.

To prove that Rn(D) is finite, we will use Hermite’s 3.1.6 Theorem repeatedly. We
will construct all matrices in Rn(D) entry-by-entry and conclude that because every
entry could only be chosen from a finite set of numbers, the entire set Rn(D) is finite.
The matrix we will construct is denoted by A = ((ai,j))1≤i,j≤n. By the link between
the determinant and the discriminant (3.1.9), we know that det A = −D

4 > 0. Since
A = ((ai,j))1≤i,j≤n is an integral quadratic form, ai,i ∈ Z holds for all 1 ≤ i ≤ n and
2 · ai,j ∈ Z also holds for all 1 ≤ i, j ≤ n.

From Theorem 3.1.6 we know that 0 < a1,1 ≤
(4

3

)n − 1
2 (det A)

1
n and as a

consequence, a1,1 can only take a finite number of values. It is a positive integer
upper-bounded by some function of n and det A. In the next step, a2,2 will be
m(A1) where A1 is defined by

B =
 a1 a1b

T

ba1 ba1b
T + A1


Here b is a vector whose entries have to be integer multiples of 1

2 · a1,1
and as

a consequence, the entries of A1 are integer multiples of 1
4 · a1,1

. Reffering again

to the proof of 3.1.6, we also have det A1 = det A

a1,1
. Thus a2,2 is a positive num-

ber, namely at least a1,1, is an integer multiple of 1
4 · a1,1

and is upper-bounded by

(4
3

)n − 2
2 (det A1)

1
n − 1 . So we can conclude that a2,2 can only take finitely many

different values regardless of the choice of a1,1. (The number of values it can take
depend on the choice of a1,1 but is finite in every case.)
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We will repeat the same to prove that ak,k can take a finite number of values. In
step k, a matrix Ak−1 is defined only depending on the choices of a1,1, . . . , ak−1,k−1.
The entries in matrix Ak−1 are integer multiples of 1

2k · a1,1 · . . . · ak−1,k−1
. And again,

we have ak,k ≤
(4

3

)n − k

2 (det Ak−1)
1

n + 1 − k where det Ak−1 = det A

a1,1 · . . . · ak−1,k−1
.

This confirms the claim that the value of ak,k comes from a finite set for every
1 ≤ k ≤ n.

To finish the proof of the theorem, we only need Proposition 3.1.11 which claims
that if we already have the diagonal entry fixed, every other entry’s absolute value is
upper-bounded, consequently, the value of ak,l also comes from a finite set for every
1 ≤ k, l ≤ n.

During the construction of all Minkowski reduced integral quadratic forms with
disciminant D, we had a finite number of choices for each of the n2 entries, hence
the number of reduced forms with discriminant D is finite.

This concludes the discussion of general quadratic forms and now we turn our
attention towards integral binary quadratic forms.

3.2 Binary quadratic forms

In line with the literature, when we say binary quadratic form, we mean integral
binary ones as the results for the case when the coefficients are not necessarily
integers are usually not specific to the binary case and are discussed in Section 3.1.

Definition 3.2.1. We say that q(x, y) ∈ Z[x, y] is a binary quadratic form if
q(x, y) = ax2 + bxy + cy2 holds for some a, b, c ∈ Z. A binary quadratic form is
said to be primitive if (a, b, c) = 1 holds.

Proposition 3.2.2. Any quadratic form is an integer multiple of a primitive one.

Proof. For any quadratic form q(x, y) = ax2 + bxy + cy2, let n = (a, b, c). Now
q = n · q

n
holds, where n is an integer and q

n
is primitive.

From now on, we will mainly focus on primitive binary quadratic forms. Some of
the concepts discussed above in Section 3.1 will be redefined here as in some cases,
the definitions extend the ones in the general case.
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Definition 3.2.3. For a quadratic form q(x, y) = ax2 + bxy + cy2 we define its
matrix, denoted by Aq as the following:

Aq =
a b

2
b
2 c


Note that this matrix Aq is the natural matrix identified with the quadratic form

which is also used in Section 3.1. Also, we have q(x, y) =
(
x y

)
Aq

x

y

. The entries

matrix Aq might not all be integers as the elements in the antidiagonal are equal to
b
2 and as b can be any integer, its half can have fractional part of one half.

Definition 3.2.4. Two quadratic forms, q(x, y) and r(x, y), are said to be equivalent
if there exists S ∈ GL2(Z) such that Ar = ST AqS. The two forms are properly
equivalent if S ∈ SL2(Z) also holds.

From Section 3.1 we know that the equivalence of quadratic forms is an equiva-
lence relation. The proper equivalence is also an equivalence relation and the proof
presented above in 3.1 works for this case as well.

Definition 3.2.5. An integer m is represented by a quadratic form q if there are
integers x0, y0 such that m = q(x0, y0). m is said to be properly represented by q if
x0 and y0 can be chosen to be relatively prime.

Proposition 3.2.6. Equivalent quadratic forms represent the same subset of inte-
gers.

Proof. By the equivalence of forms q and r, we have Ar = ST AqS for some S ∈
GL2(Z). Suppose that we have an integer k which is represented by r, so we have
x, y ∈ Z such that r(x, y) = k. We now have

k = r(x, y) =
(
x y

)
Ar

x

y

 =
(
x y

)
ST AqS

x

y



Let us define
u

v

 = S

x

y

. u and v are also relatively prime since x and y are

relatively prime and S ∈ GL2(Z). By the identity above, we have k = q(u, v) which
finishes the proof.

Lemma 3.2.7. A primitive quadratic form q properly represents m ∈ Z if and only
if there are numbers b, c ∈ Z such that q is properly equivalent to the quadratic form
mx2 + bxy + cy2.
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Proof. ⇐: Plugging x = 1, y = 0 into mx2 + bxy + cy2 gives m, so m is properly
represented by the latter quadratic form. By their proper equivalence, m is also
properly represented by q.

⇒: Let q(u, v) = m. We need a matrix S ∈ SL2(Z) whose first column is (u, v)T .
This can be achieved by the Eucledian Algorithm since (u, v) = 1. Now ST AqS has
upper-left entry m and so the proof is finished.

Definition 3.2.8. For a binary quadratic form q(x, y) = ax2 + bxy + cy2, the
discriminant of the form, denoted by D, is defined to be b2 − 4ac.

Proposition 3.2.9. Equivalent forms have the same discriminant.

Proof. We first observe that for any quadratic form q with discriminant D, D =
−4 det Aq holds. Now let q and r be two equivalent quadratic forms such that Ar =
ST AqS. Using the multiplicativity of the determinant of square matrices, det Ar =
(det S)2 det Aq follows. Since S ∈ GL2(Z), (det S)2 = 1 holds, which confirms the
claim.

Definition 3.2.10. The sign of D and a determine which numbers can be repre-
sented by the form:

• If D > 0, both positive and negative numbers are represented and the form is
called indefinite.

• If D < 0 and a > 0, only positive numbers are represented by the form and
we call it positive definite.

• If D < 0 and a < 0, only negative numbers are represented by the form and it
is called negative definite.

Proposition 3.2.11. For any q binary quadratic form, its discriminant D is con-
gruent to either 0 or 1 modulo 4. Also, all such numbers are discriminants of some
quadratic form.

Proof. Recall that D = b2 − 4ac, so the remainder modulo 4 indeed needs to be
either 0 or 1. For a given D = 4k + 1, a = b = 1, c = −k fulfills the requirements
and similarly, for D = 4k, a = 1, b = 0 and c = −k defines an appropiate quadratic
form.

Lemma 3.2.12. If D ≡ 0, 1 mod 4 and m is an odd integer, m is properly rep-
resented by a primitive quadratic form q with discriminant D if and only if D is a
quadratic residue modulo m.
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Proof. If q properly represents m, then q(x, y) = mx2 + bxy + cy2 can be assumed
based on Lemma 3.2.7. Consequently we have D = b2 − 4mc, from which D ≡
b2 mod m follows.

On the other hand, if we have D ≡ b2 mod m, it can be assumed that D and
b have the same parity as otherwise, b can be replaced by m + b. Consequently
we have D ≡ b2 mod 4m since the congruence holds true for both m and 4 and
they are relatively prime. Thus D can be written in the following form using an
integer c: D = b2 − 4mc. Considering the quadratic form q(x, y) = mx2 + bxy + cy2,
we immediately see that it has discriminant D and it is primitive. q also properly
represents m trivially with x = 1, y = 0 and the proof is complete.

We now turn our attention towards the reducedness of positive definite binary
quadratic forms. Recall that reducedness was defined for general quadratic forms in
Definition 3.1.5 and let us examine what this definition means for the binary case.
It means that a binary quadratic form q(x, y) = ax2 + bxy + cy2 is reduced if and
only if all of the following conditions are met:

• All the integers properly represented by q are greater than or equal to a,

• If x2 = ±1 and x1 ∈ Z, then q(x1, x2) ≥ c.

• b is non-negative.

We will use a different definition here in the binary case presented below:

Definition 3.2.13. A primitive positive definite form q(x, y) = ax2 + bxy + cy2 is
said to be reduced if |b|≤ a ≤ c holds and either a = c or a = |b| implies b ≥ 0.

We first notice that the two definitions are quite similar, in fact if a binary
quadratic form is reduced by one of the definitions, then the quadratic form possibly

conjugated by
1 0

0 −1

 (flipping the sign of b) is reduced by the other definiton.

This matrix is in GL2(Z) but is not in SL2(Z), hence we can say that the difference
between the two definitons can be fixed by equivalence, but not necessarily a proper
equivalence.

Our next theorem may seem as a special case of Theorem 3.1.8, but it is stronger
as it demands proper equivalence and also states uniqueness, two important prop-
erties which weren’t true in the general case.

Theorem 3.2.14. Every primitive positive definite form is properly equivalent to a
unique reduced form.
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Proof. As for the existence part of the theorem, we use Theorem 3.1.8. By the notes
above on the two different definitions, we conclude that for any binary quadratic
form q we have another quadratic form p which is reduced by our new definition
and they are equivalent, but not necessarily properly equivalent. This means that
the determinant of the base change between the Aq and Ap can be ±1 and we want
it to be +1. If it is +1, we leave it unchanged and are done. If it is −1 and none of

a = c or a = |b| hold, we can swap the sign of b by conjugating with
1 0

0 −1

 and

the equivalence will become proper.
Our last two cases are when either a = c or a = |b| hold, but the equivalence is

improper. Based on the definiton of reducedness, in these cases we also know that
b ≥ 0, from which a = b follows in the second case which will be very useful for us. If

a = c holds, we conjugate by
0 1

1 0

 to swap a and c and the equivalence is proper

again. If a = b holds, the matrix we conjugate with is
1 0

1 −1

. Its determinant is

−1 but leaves our specific matrix unchanged, making the equivalence proper again.
We tackle uniqueness next, the statement is that any two reduced positive definite

quadratic forms are properly inequivalent. We assume to the contrary that we have
two reduced binary quadratic forms q(x, y) = ax2 + bxy + cy2 and r(x, y) = a′x2 +
b′xy + c′y2 which are properly equivalent, i.e. we have γ ∈ SL2(Z) such that Aq =
γT Arγ.

Since q is reduced, we have |b|≤ a ≤ c and thus q(x, y) ≥ (a−|b|+c) ·min(x2, y2).
Specifically, if none of x or y is zero, q(x, y) ≥ a−|b|+c, so a is the smallest non-zero
value of q, represented by exactly x = ±1, y = 0. Since equivalent forms represent
the same set of integers (see Proposition 3.2.6), we have showed that a = a′.

To finish the proof, we need to examine three cases based on the possible equal-
ities between the coefficients of q:

1. |b| < a < c. Here we have c as the second smallest integer properly rep-
resented by q as c < a − |b|+c. We want to show that c = c′. c′ ≥ a

holds surely and if c′ = a, then we have four solutions to r(x, y) = a in
(±1, 0) and (0, ±1) contradicting to only having two solutions to q(x, y) = a

in (±1, 0). So we can conclude that c′ > a, meaning that c′ is second smallest
integer properly represented by r, hence we have c = c′ by using Proposi-
tion 3.2.6 again. Since the discriminants of the two forms are equal, we de-
duce b = ±b′. We now consider the matrix γ ∈ SL2(Z) which conjugates
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Aq into Ar. Suppose γ =
a0 b0

c0 d0

 and we have a0d0 − b0c0 = 1. Now

a = q(1, 0) = r(a0, b0) and c = q(0, 1) = r(c0, d0) are proper represantations,
meaning that (a0, b0) = ±(1, 0) and (c0, d0) = ±(0, 1), from which γ = ±I

follows. This means that q = r.

2. a = c. (implying b ≥ 0) Here we have four solutions to q(x, y) = a meaning
that there should also exist four solutions to r(x, y) = a, meaning that c′ = a

also holds. By the equality of discriminants, we have b = ±b′ again. This case
is easier however, since b, b′ ≥ 0 is forced by reducedness, hence q = r holds.

3. |b| = a < c. (implying c > a = b > 0) The smallest integer properly
represented by q is a again, also being represented only by (±1, 0). But c is
now properly represented not only by (0, ±1) but also by ±(1, −1). Hence,
there should also be four proper solutions to r(x, y) = c′, meaning that there
are solutions besides (0, ±1). Any vector including a number of absolute value
at least 2 will result in a number larger than c, so we also need to have
r(±1, ∓1) = c, meaning again that b′ = b = a and from this we deduce
c = c′ and p = q again.

We arrived at a contradiction in each of the cases, so the proof is complete.

Definition 3.2.15. Two quadratic form of discriminant D belong to the same class
if they are properly equivalent to each other. The number of these classes for a given
D is denoted by h(D).

Theorem 3.2.16. h(D) is finite for all D < 0.

Proof. This follows directly from Theorems 3.2.14 and 3.1.12.

So we have shown that the class number is finite for all negative discriminants
D. Note that for every n ∈ N, the quadratic form x2 + ny2 is always reduced and
its discriminant is −4n. To show that h(D) ̸≡ 1, we give two reduced properly
inequivalent quadratic forms with D = −20 as an example: One is x2 + 5y2 and the
other is 2x2 + 2xy + 3y2. One can easily check that they are indeed both reduced
and have discriminant −20 and the simple observation that 3 is properly represented
by the latter form but not represented by the former form shows that they are not
equivalent.

We conclude Chapter 3 by defining a special set of discriminants.
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Definition 3.2.17. An integer D is called a fundamental discriminant if it is a
discriminant of a binary integral quadratic form (see Proposition 3.2.11) and satisfies
one of the followings:

• D ≡ 1 (mod 4) and D is square-free.

• D = 4d, where d ≡ 2, 3 (mod 4) and d is square-free.

We will learn more about fundamental discriminants and their connection to
quadratic number fields later in Chapter 4.



Chapter 4

Quadratic number fields

In this chapter, we study the quadratic extensions of Q, the field of the rational
numbers. An interesting question to study is what will the ring of integers look
like in Q(

√
d) for different integers d. For example, for which values d does the

Fundamental Theorem of Number Theory hold in the ring of integers of Q(
√

d)?
At the end of the chapter, we will be able to prove our main result, which builds
the strong connection between the ideal classes of quadratic number fields and the
quadratic binary forms.

We again follow the book of Cox [1] and author’s notes from the lectures of
Zábrádi.

4.1 Ring of algebraic integers of number fields

We begin by defining number fields in general which are the primary objects we
will be working with. We will focus on the specific case where the degree of the
field extension is 2, this will be highlighted in Definition 4.1.2 and characterised by
Proposition 4.1.3.

Definition 4.1.1. K is a number if field if it is a subfield of C and has a finite degree
over Q.

Definition 4.1.2. Let K denote Q(
√

d), the extension of the field of rationals by√
d for some integer d.

Proposition 4.1.3.
Q(

√
d) = {p + q

√
d : p, q ∈ Q}

Proof. It is sufficient to show that H = {p + q
√

d : p, q ∈ Q} is a field, since all
numbers of the form p+q

√
d are clearly elements of Q(

√
d) because they are exactly
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the Q-linear combinations of 1 and
√

d. The only interesting part is to check that
division does not lead outside the set H. This holds because

p + q
√

d

r + s
√

d
= p + q

√
d

r + s
√

d
· r − s

√
d

r − s
√

d
= pr − qsd

r2 − ds2 + qr − ps

r2 − ds2

√
d ∈ H

The above equality confirms that H is indeed a field and concludes the proof.

We recall a few well-known notations concerning elements of Q(
√

d). For α =
a + b

√
d ∈ Q(

√
d), where a, b ∈ Q, we say that the conjugate of α, denoted by ᾱ is

a−b
√

d, the trace of α, denoted by Tr(α) is α+ᾱ = 2a and the norm of α is denoted
by N(α) and defined to be αᾱ = a2 − db2. Note that the norm of the elements is
indeed a norm in the usual sense.

One of the most important and fundamental concepts of this chapter is the
algebraic integer. Similarly to the usual integers, Z, the algebraic integers contained
inside a number field turn out to form a ring with addition and multiplication, as
pointed out by Corollary 4.1.4.

Corollary 4.1.4. The set of algebraic integers in C form a ring.

Proof. We have to show that α and β being algebraic integers imply α ± β and α · β

also being algebraic integers. By 2.2.2, we know that the rings Z[α] and Z[β] have
finitely generated additive groups, so lets suppose that {a1, . . . an} and {b1, . . . bm}
generate them, respectively. Then, Z[α, β] is generated by {aibj|1 ≤ i ≤ n, 1 ≤ j ≤
m}, so it is also finitely generated. Finally, α ± β and α · β are elements of Z[α, β],
so by the third characterization of 2.2.2, they are also algebraic integers.

After having a basic knowledge of algebraic integers in general, we move on to
examine the set of algebraic integers contained in a number field K. Unsurprisingly,
they also form a ring, and in the case of K = Q(

√
d), we will also have an explicit

charachterization by 4.1.7.

Definition 4.1.5. Let OK denote the set of algebraic integers in K:

OK = {α ∈ K | ∃f ∈ Z[x] monic : f(α) = 0}

Proposition 4.1.6. OK is a subring of C.

Proof. OK is defined to be the intersection of the ring of algebraic integers in C and
K, which are both rings. As a consequence, OK is a ring itself.

Proposition 4.1.7. Let d be a square-free integer, and K = Q(
√

d). OK is:
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• Z[
√

d] if d ≡ 2, 3 (mod 4).

• Z
[√

d + 1
2

]
if d ≡ 1 (mod 4).

Proof. For an arbitrary element α = a+b
√

d ∈ K, we need a necessary and sufficient
condition on a and b for α to be an algebraic integer. By the fourth statement in
2.2.2, we know that mα(x) = (x−a−b

√
d)(x−a+b

√
d) = x2 −2ax+a2 −b2d ∈ Z[x].

So α ∈ OK ⇐⇒ −2a and a2 − b2d are both integers. We first examine the
d ≡ 1 (mod 4) case, let us denote d = 4d′ + 1 where d′ ∈ Z. Clearly, 2a needs to be
an integer, let 2a = a′ ∈ Z. We have

(a′)2

4 − b2(4d′ + 1) = a2 − b2d ∈ Z

Since (a′)2 gives remainder 0 or 1 modulo 4, 4b2(4d′ + 1) = (2b)2(4d′ + 1) needs to
give the same remainder meaning that 2a = a′ and 2b have the same parity. This

confirms that the ring of algebraic integers in this case is indeed Z
[√

d + 1
2

]
.

Concerning the d ≡ 2, 3 (mod 4) case, if a were not an integer but the half of
one, a2 would be an integer +1

4 , so b2d is also an integer +1
4 . Since d ≡ 2, 3 (mod 4),

it follows that b is irrational, a contradiction. Thus a needs to be an integer and as
a consequence, b also. So the ring of algebraic integers in this case is Z[

√
d].

It is important that by examining the minimal polynomials of
√

d and
√

d+1
2 in

the two cases of 4.1.7 respectively, we can obtain primitive integral binary quadratic
forms with a fundamental discriminant.

In the case of d ≡ 2, 3 (mod 4), the minimal polynomial of
√

d is x2 − d which
corresponds to the quadratic form q(x, y) = x2 − dy2. It is easy to see that q is
primitive. The discriminant of q is 4d which is a fundamental discriminant by 3.2.17.

If d ≡ 1 (mod 4), we are looking for the minimal polynomial of
√

d+1
2 , which turns

out to be x2 +x− d−1
4 . The correspondng quadratic form is r(x, y) = x2 +xy + d−1

4 y2

which is also primitive. Its discriminant is d itself, which is also fundamental by
3.2.17.

Definition 4.1.8. If K = Q(
√

d), let dK denote the discriminant of the minimal
polynomial of the primitive element of OK.

Proposition 4.1.9. dK =

4d if d ≡ 2, 3 mod 4,

d if d ≡ 1 mod 4.

Proof. This is a direct consequence of Proposition 4.1.7 and the discussion of the
minimal polynomials above.
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We now understand the motivation behind the definition of fundamental discrim-
inants earlier. As a next step, we would like to decide if the Fundamental Theorem
of Arithmetic holds in OK for a given negative dK. To answer this question, we need
to study the ideals of OK.

4.2 Assigning ideals to quadratic forms

The main goal of the remainder of the thesis is to prove that there is a bijection
between the reduced binary quadratic forms of discriminant d and the ideal classes
of the ring of algebraic integers of a field extension Q(

√
d) where d is a negative

fundamental discriminant. This is to be shown in several steps: we first need to
assign an ideal to each quadratic form, then assign a quadratic form to each ideal
and finally show that these two functions are the inverses of each other.

Some statements in the paragraph above are intentionally not precise as some
concepts are yet to be defined (for example, we will assign a quadratic form to ideal
classes, not ideals). The goal of this paragraph is to give an overview of what is
described below precisely.

In this section we will construct a function from the set of reduced quadratic
forms to the set of ideals of OK. The converse is discussed in Section 4.3.

Proposition 4.2.1. Let us suppose we have a binary integral positive definite
quadratic form q(x, y) = ax2 + bxy + cy2 with discriminant dK < 0. Then we have
−b +

√
dK

2 ∈ OK.

Proof. Our first observation is that dK = b2 − 4ac ≡ b2 (mod 4). Consequently, if dK

is odd, then dK ≡ 1 (mod 4) and b is also odd. In this case, we have −b +
√

dK

2 =

−b + 1
2 + 1 +

√
dK

2 ∈ OK.
On the other hand, if dK is even, then it is also divisible by 4 and b is also even.

Thus, −b +
√

dK

2 = −b

2 +
√

dK

2 ∈ Z[
√

dK] = OK

As a next step, we will show that a certain set of numbers defined by the quadratic
form q indeed forms an ideal of OK.

Lemma 4.2.2.
Iq = a · Z + −b +

√
dK

2 · Z◁ OK
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Proof. The sum and difference of elements of Iq are clearly also in Iq. Also, if we
multiply an element of Iq with an integer, it stays in Iq. The only interesting part
is to show that multiplication by other elements of OK also do not lead out of Iq.

Let us introduce the notation τ = −b +
√

dK

2a
which is one of the roots of the

polynomial ax2 +bx+c. Now Iq = a(Z+τ ·Z) so it is sufficient to prove that Z+τ ·Z
is closed to multiplication by elements of OK since we have seen that Iq is a subset
of OK.

Our next observation is that it would suffice to show that OK = Z+ aτ ·Z, since
(Z+τ ·Z)(Z+aτ ·Z) ⊆ Z+τ ·Z+aτ 2 ·Z where we can calculate aτ 2 = b2+dK−2b

√
dK

4a
=

2b2−4ac−2b
√

dK
4a

= −c − b−b+
√

dK
2a

= −c − bτ ∈ Z + τ · Z.

We know that OK can either be equal to Z +
√

dK

2 · Z or Z + 1 +
√

dK

2 · Z, but

since we have b ≡ dK (mod 4), it indeed follows that OK = Z + −b +
√

dK

2 · Z and
the proof is finished.

So far we have constructed function which assigns an ideal to each quadratic
form. A natural question arising here is if we could also construct the inverse of this
function. This is what we are going to study from now on.

4.3 Assigning quadratic forms to ideals

Suppose we have an ideal I ◁ OK. We would like to somehow define a quadratic
form only depending on I, but we need some preparation for that.

Definition 4.3.1. The norm of an ideal, denoted by N(I) is defined to be |OK : I|.

Proposition 4.3.2. If I = α · OK is a principal ideal, then N(I) = N(α).

Proof. OK can be naturally identified with Z2 as an Abelian group.
If α ∈ Z, then α · OK ∼= (α · Z)2 and its index is α2 = N(α).
If α /∈ Z, then let Sα denote the multiplication by α, which is an Abelian group

homomorphism. Let α = a + b
dK +

√
dK

2 where a, b ∈ Z. We calculate the value of
α2 and write it up as a Z-linear combination of 1 and α:

α2 = a2 + 2ab
dK +

√
dK

2 + b2
(

dK +
√

dK

2

)2
=

= a2 − b2dK(dK − 1)
4 + (b2dK + 2ab)dK +

√
dK

2 =
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= −dKab − a2 − b2dK(dK − 1)
4 + (dK + 2a)α

Both coefficients are integers as either dK or dK − 1 is divisible by four because dK

is a fundamental discriminant. Now, let us write up the matrix of Sα in the basis
(1, α): 0 −dKab − a2 − b2dK(dK − 1)

4
1 (dK + 2a)


The index |OK : I| is equal to the absolute value of the determinant of the matrix

above, which is quite easy to compute: dKab + a2 + b2dK(dK − 1)
4 .

Our claim is equivalent to this value being equal to N(α) so we have to verify
this by another computation:

N(α) = αᾱ =
(

a + b
dK +

√
dK

2

)(
a + b

dK −
√

dK

2

)
=

= a2 + abdK + b2d2
K

4 − b2dK

4 = dKab + a2 + b2dK(dK − 1)
4

The next statement concerning the norm of elements included in a certain ideal
follows from Proposition 4.3.2 and will have important consequences later.

Proposition 4.3.3. If α ∈ I ◁ OK, then we have N(I)|N(α).

Proof. Let Iα denote the principal ideal generated by α, which is α · OK. We have
Iα ⊆ I because α ∈ I. Since I is a ring itself, also Iα ◁ I follows, from which we
obtain N(α) = N(Iα) = |OK : Iα|= |OK : I|·|I : Iα|= N(I) · |I : Iα|. Since |I : Iα| is
an integer, the proof is finished.

In the next definition we describe the binary quadratic form corresponding to
the ideal I.

Definition 4.3.4. Suppose I ◁ OK and I = α · Z + β · Z for some α, β ∈ OK. We
define the quadratic form of ideal I as

fI(x, y) = N(α · x − β · y)
N(I)

Here we have a free choice because the ideals α · Z + β · Z and β · Z + α · Z
are the same but the quadratic forms assigned to them are not neccessarily equal
formally, so we have to make an assumption to make this function well-defined. The
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assumption we make is that β

α
is in the upper half plane, which is denoted by H

(the complex numbers with positive imaginary part). This means that if we have an
ideal where this ratio would have a negative imaginary part, we swap the order of
the two numbers, making the ratio and element of H. This way, the quadratic form
assigned to the ideal is well-defined in every case.

Proposition 4.3.5. For I = α · Z + β · Z◁ OK we have N(I)2 = (α · β̄ − ᾱ · β)2

dK
.

Proof. We know that N(I) = |OK : I|, which is the ratio of the areas of the par-
alelogram spanned by α and β and the base paralelogram of the grid OK. Since OK

is either equal to Z +
√

dK

2 · Z or Z + 1 +
√

dK

2 · Z, the square of the area of the

base paralelogram of OK is −dK

4 (which is a positive number). The square of the

area of the paralelogram spanned by α and β is (α × β)2 = −(α · β̄ − ᾱ · β)2

4 . As a

conclusion, we get N(I)2 = (α · β̄ − ᾱ · β)2

dK
as desired.

We would like to show that fI has some properties we could naturally expect.

Proposition 4.3.6. fI is a positive definite quadratic form with discriminant dK.

Before proving Proposition 4.3.6, let us show an example together with Figure
4.1 to make it easier to understand and visualise the proof and the concepts we are
examining.

Suppose we have d = −5, consequently K = Q(i
√

5), OK = Z[i
√

5] and dK =
−20. Stating otherwise OK is Z+ i

√
5 ·Z. This is the black dotted rectangular grid in

Figure 4.1. The square of the area of the base paralelogram (in this case, rectangle)
of OK is (1 ·

√
5)2 = 5 = −dK

4 as shown by Proposition 4.3.5.
Let us examine the ideal spanned by α = 4+i

√
5 and β = 1+2i

√
5, I = α·Z+β·Z.

The square of the area of the base paralelogram of ideal I is (4 · 1.75
√

5)2 = 245.
The square of the norm of I is 49, so we have N(I) = 7. The ideal is shown on
Figure 4.1 in red with the two generating elements α and β highlighted in blue.

Now let us compute fI for this specific ideal. We need to divide N(α ·x−β ·y) by
7. N(α ·x−β ·y) = (α ·x−β ·y)(α · x − β · y) =

(
(4+ i

√
5) ·x− (1+2i

√
5) ·y

)(
(4−

i
√

5) ·x−(1−2i
√

5) ·y
)

= 21x2 −28xy +21y2. So we have fI(x, y) = 3x2 −4xy +3y2

whose discriminant is indeed 16 − 4 · 3 · 3 = −20 = dK and we also see that fI is
really positive definite in this case.
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ℜ

ℑ

0
1

i
√

5
α = 4 + i

√
5

β = 1 + 2i
√

5

Figure 4.1: An ideal generated by two elements of OK for d = −5

One can also check which ideal will be assigned to this quadratic form fI by the
function defined in Section 4.2. Let J = IfI

denote this ideal defined in Lemma 4.2.2

as J = 3 · Z + 4 +
√

−20
2 · Z = 3 · Z + (2 + i

√
5) · Z. This is not exactly I, but we

can compute that I = J · 4 + i
√

5
3 holds in this case. So we obtain IfI

= c · I for
some c ∈ C. Now we see a reason to identify ideals which can be multiplied into each
other and we will formalise exactly this property in Definition 4.3.7.

After this brief side track of looking at an example, we continue by prooving our
Proposition 4.3.6.

Proof of Proposition 4.3.6. By Proposition 4.3.3, we know that N(I)|N(α ·x−β ·y)
holds for all x, y ∈ Z since α · x − β · y is an element in ideal I. Let us evaluate
N(α · x − β · y):

N(α · x − β · y) = (α · x − β · y)(ᾱ · x − β̄ · y) = N(α)x2 + N(β)y2 − Tr(α · β̄)xy

Substituting x = 1, y = 0 gives N(I)|N(α), x = 0, y = 1 gives N(I)|N(β). If we
substitute x = y = 1 into the equation, we get N(I)|N(α)+N(β)−Tr(α · β̄), which
yields N(I)|Tr(α · β̄) when combined with the previous two divisibilities. So all the

coefficients of the N(α · x − β · y)
N(I) ∈ R[x, y] are indeed integers, so we conclude that

fI(x, y) ∈ Z[x, y], the quadratic form is integral.
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We need to calculate the discriminant of fI using the identity proved in Propo-
sition 4.3.5:

dfI
= b2 − 4ac = Tr(α · β̄)2 − 4N(α)N(β)

N(I)2 =

= (α · β̄ + ᾱ · β)2 − 4α · ᾱ · β · β̄

N(I)2 = (α · β̄ − ᾱ · β)2

N(I)2 = dK

The form fI is also positive definite because fI(1, 0) > 0 and the discriminant is
negative.

We now define an equivalence relation of the non-zero ideal of OK which is
motivated by example worked through above:

Definition 4.3.7. Suppose 0 ̸= I, J ◁ OK. We say I is equivalent to J , denoted by
I ∼ J if there is a non-zero c element in K for which c · I = J .

Proposition 4.3.8. The relation defined above is indeed an equivalence relation.

Proof. Reflexivity if clear with the choice of c = 1 ∈ K. For symmetry, we need to
take the inverse element of c which is also in K since it is a field. As for transitivity
we need to multiply two elements, which again does not lead out of K and we are
done.

Once we know that this is an equivalence relation, it would be natural to consider
the equivalence classes of ideals up to this relation. This is also motivated by the
example worked through above showing that it can happen that IfI

̸= I, but IfI
∼ I

holds.

Definition 4.3.9. The class group of K is defined to be CK = {I ◁ OK : I ̸= 0}/∼, the
set of the non-zero ideals of OK factorised by the equivalence relation defined above.

We would also like to show that this set called the class group also has a group
structure. To prepare this, we define the multiplication of ideals and show some
basic properties.

Definition 4.3.10. If we have I, J ◁ OK, then their product is

IJ =
{ n∑

k=1
ikjk : n ∈ N, ik ∈ I, jk ∈ J

}

As we are preparing to show that CK is a group, we want to prove that this
multiplication is well-defined on the elements of CK, i.e. the equivalence classes of
ideals.
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Proposition 4.3.11. If we have I ∼ I ′ and J ∼ J ′, then IJ ∼ I ′J ′ holds.

Proof. By the definition of equivalence (4.3.7), we have I = c1 · I ′ and J = c2 · J ′

for some c1, c2 ∈ OK. For each choice of n ∈ N, ik ∈ I ′, jk ∈ J ′ in I ′J ′, we can
choose n ∈ N, c1ik ∈ I, c2jk ∈ J which will form an element of IJ with c1c2 · I ′J ′ ∋
c1c2 · ∑n

k=1 ikjk = ∑n
k=1(c1ik)(c2jk) ∈ IJ . So we have IJ ∼ I ′J ′.

Proposition 4.3.12. For an ideal 0 ̸= I ◁OK we have: I ∼ OK ⇐⇒ I is principal.

Proof. ⇒: From I ∼ OK we have I = c · OK for some c ∈ OK by Definiton 4.3.7. So
we have I = {c · α : α ∈ OK} = ⟨c⟩, as a consequence, I is principal.

⇐: We now have I = ⟨c⟩ for some c ∈ OK, consequently, I = c · OK.

We define the conjugate of an ideal as it will be needed to invert elements in
group CK:

Definition 4.3.13. For any I ◁ OK, let us define its conjugate Ī = {ᾱ : α ∈ I}.

Proposition 4.3.14. For any 0 ̸= I ◁ OK, IĪ = N(I) · OK is a principal ideal.

Proof. Suppose we have α, β ∈ I. We observe that N(I)|N(α) = α · ᾱ and
N(I)|N(β) = β · β̄. Since α + β ∈ I also holds, we deduce N(I)|N(α + β) =
N(α) + N(β) + α · β̄ + ᾱ · β = N(α) + N(β) + Tr(α · β̄). Consequently, both the

trace and the norm of α · β̄

N(I) are integers since they are Tr(α · β̄)
N(I) and N(α)N(β)

N(I)2 ,

respecively. If we consider the polynomial x2 −Tr
(

α · β̄

N(I)

)
·x+N

(
α · β̄

N(I)

)
, we see im-

mediately that its coefficients are integers with the leading coefficient being one, so

its roots are elements of OK. But α · β̄

N(I) is a root itself as the polinomial was exactly

constructed that way. We conclude that α · β̄ ∈ N(I) · OK, i.e. IĪ ⊆ N(I) · OK.
Conversely, we need to show that N(I) itself is an element of IĪ. For all α ∈ I,

we have N(α) = α · ᾱ ∈ IĪ. And since IĪ is an ideal, it is specifically a subgroup for
addition, so a Z-linear combination of elements in I is also in IĪ. Now we investigate
the coefficients of the quadratic form assigned to I: fI(x, y) = N(x · α − y · β)

N(I) =:

ax2 + bxy + cy2. Here we can calculate the coefficients: a = N(α)
N(I) , c = N(β)

N(I)

and b = N(α + β) − N(α) − N(β)
N(I) . The discriminant of fI has been shown to be dK

which is a square-free integer. (a, b, c)2|b2−4ac = dK, so we conclude that (a, b, c) = 1,
i.e. the three coefficients are relatively prime. If the coefficients are relatively prime
together, it means that N(I) is expressable as a Z-linear combination of N(α), N(β)
and N(α + β), all of which are elements of IĪ, hence N(I) ∈ IĪ.
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After this showing some important properties of the ideal class group and prin-
cipal ideals, we are prepared to prove that CK is really a group.

Lemma 4.3.15. CK is an Abelian group for the multiplication of ideals.

Proof. We have shown earlier that multiplication is well-defined. Associativity and
commutativity follows from the associativity and commutativity of the usual mul-
tiplication and addition of numbers.

For an ideal I, its inverse is defined to be Ī. We have seen in Proposition 4.3.14
that IĪ is principal and in Propostion 4.3.12 that principal ideals are equivalent to
OK. The class corresponding to OK (and all the other principal ideals) will be the
identity element of the group.

Note that the proof presented above holds for all Dedekind domains. A different
proof of Lemma 4.3.15 and the previous statements can be found in [4]. This proof
is due to Hurwitz and is specific to the number field case.

We have arrived to the most important point of this thesis, where we will prove
that the two maps defined earlier are inverses of each other. This specifically shows
that CK is always a finite group since we know that h(D) < ∞ for all D < 0 by
Theorem 3.2.16.

Theorem 4.3.16. Let d < 0 be a square-free integer, K = Q(
√

d) and dK be the
fundamental discriminant assigned to d (see Definition 3.2.17). The two functions
I 7→ fI and f 7→ If are inverses of each other. They are both bijections between CK

and the proper equivalence classes of quadratic forms with discriminant dK.

Proof. Firstly we need to check that the function I 7→ fI is also well-defined as
a function from CK to the SL2(Z)-equivalence classes of binary quadratic forms.
Equivalently, we need to verify that I ∼ J =⇒ fI ∼SL2(Z) fJ . From I ∼ J , J = c · I

follows for some c ∈ OK. Suppose that I = α · Z + β · Z, so we obtain fI(x, y) =
N(α · x − β · y)/N(I). The generating elements of J can be chosen to be c · α and c ·
β, so we can compute fJ(x, y) = N(c · α · x − c · β · y)/N(c · I) = c2N(α · x − β · y)/c2N(I) =
N(α · x − β · y)/N(I) = fI(x, y).

On the other hand, we also need to verify that f ∼SL2(Z) g =⇒ If ∼ Ig.
We assume that f(x, y) = ax2 + bxy + cy2, g(x, y) = a1x

2 + b1xy + c1y
2 and the

witness of their proper equivalence is γ =
p q

r s

 ∈ SL2(Z) for which f(x, y) =

g(px+qy, rx+sy) holds. Let τf ∈ H be one of the roots of the univariate polynomial
f(x, 1). Since f(x, 1) has real coefficients, its two roots are conjugates of each other,
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so one of them is inside H. Solving the equation we obtain τf = −b +
√

dK

2a
. Since

we know that If = a · (Z + τf · Z) we deduce that τf = β/α using the usual notation
If = α · Z + β · Z (where β/α ∈ H). Now let us benefit from the SL2(Z)-equivalence
of f and g:

0 = f(τf , 1) = g(p · τf + q, r · τf + s) = (r · τf + s)2 · g
(

p · τf + q

r · τf + s
, 1

)

We are interested in what τg is, the solution of 0 = g(x, 1) in H. Based on the
calculation above, it can either be p · τf + q

r · τf + s
or p · τ̄f + q

r · τ̄f + s
, whichever is in H. With

the help of Theorem 2.1.2, we can decide that since p · τf + q

r · τf + s
is exactly γ(τf ) by

the group action defined there, so we deduce p · τf + q

r · τf + s
∈ H, consequently, τg =

p · τf + q

r · τf + s
. We want to show that If = a · (Z + τf · Z) and Ig = a1 · (Z + τg · Z) are

equivalent to each other. Since equivalence means same up to constant factor, it is
enough to show the equivalence of Z + τf · Z and Z + τg · Z:

Z + τg · Z = Z + p · τf + q

r · τf + s
· Z ∼ (r · τf + s) · Z + (p · τf + q) · Z

Since γ =
p q

r s

 ∈ SL2(Z) represents an orthogonal transformation in the

vector field R2, the grid spanned by
τ

1

 is equivalent to the grid spanned byp q

r s

 τ

1

 =
p · τ + q

r · τ + s

, which shows If ∼ Ig.

So far we have shown that both functions are well-defined on the sets of CK and
the equivalence classes of quadratic forms, respectively. It remains to prove that
these functions are really bijections and are the inverses of each other.

Suppose we have a quadratic form of discriminant dK f(x, y) = ax2 + bxy + cy2.
Then If = a · (Z+ τf ·Z) holds as computed above. Let us evaluate fIf

with the help

of the identity τf = −b +
√

dK

2a
:

fIf
(x, y) = N(a · x − aτf · y)

N(If ) =
a2(x − −b+

√
dK

2a
y)(x − −b−

√
dK

2a
y)

N(If ) =

=
a2x2 + abxy + b2−dK

4 y2

N(If ) = a(ax2 + bxy + cy2)
N(If ) = a

N(If )f(x, y)
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It remains to show that a = N(If ) holds. This is verified by the fact that the base

paralelogram of the grid If = a · Z + −b +
√

dK

2 · Z has base a and height of
√

dK

2 ,
i.e. the base length is a times the base length of grid OK with the height being the
same, showing N(If ) = |OK : If |= a.

As a next step, suppose that I = α · Z + β · Z is given with τ = β/α being one of

the roots of fI(x, 1). Now evaluate what this polynomial is: fI(x, 1) = N(α · x − β)
N(I) .

We see that τ is really a root: N(β/α · α − β) = N(0) = 0. Now IfI
= a(Z + τ · Z) =

a

α
(α · Z + β · Z) = a

α
· I ∼ I, hence IfI

and I are equivalent.
From the two functions being inverses of one another it follows that both of them

are also bijections. We have showed every statement of the theorem, so the proof is
complete.

After proving the main theorem of the thesis, there are several questions arising.
What is the use of this theorem apart from its beauty? Why are we only working
with negative discriminants? What would break if we observed positive discriminants
and how can it be fixed? In the final Section 4.4 we tackle some of these questions
to some extent and prospose some good literature for those interested.

4.4 Conclusions

One immediate application of Theorem 4.3.16 within algebraic number theory is the
classification of quadratic fields whose number rings are principal ideal domains. We
have seen previously that the ideals equivalent to OK itself are exactly the principal
ideals. Thus, OK is a PID if and only if h(dK) = 1. We have a classification for these
numbers due to Baker, Stark and Heegner from the second half of the 20th century:

Theorem 4.4.1 (Baker, Stark, Heegner). Suppose D is a negative integer with
D ≡ 0, 1 mod 4. Then

h(D) = 1 ⇐⇒ D ∈ {−4, −8, −12, −16, −28, −3, −7, −11, −19, −27, −43, −67, −163}

As a consequence, we have a finite list of negative disciminants D for which the
Fundamental Theorem of Number Theory holds in OQ(

√
D).

Concerning positive discriminants, things get harder right away as it can happen
that two reduced binary quadratic forms are properly equivalent to each other. Even
though both sets are finite, the correspondence between equivalence classes of binary
quadratic forms and ideal classes also has to be slightly modified. In case D > 0
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is a fundamental discriminant, one obtains a bijection with the so called narrow
class group which is potentially twice as big as the ideal class group. As opposed to
the above theorem, it is an open problem whether there are infinitely many D > 0
with h(D) = 1. A good reference to learn about the case of positive discriminants
is Chapter VII.2. of the book of Fröhlich and Taylor. [3].
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