
Eötvös Loránd University

Faculty of Science

Hopf algebras and their applications

in linguistics

Blanka Kövér

Diploma thesis, Mathematics BSc

Supervisors:

Gergely Zábrádi, András Kornai

Budapest, 2024

Contents

1 Hopf algebras in mathematics 4

1.1 Preliminaries . 4

Tensor products . 4

Algebras . 7

Lie algebras . 12

1.2 Elementary coalgebra theory . 13

1.3 Hopf algebras . 18

2 Hopf algebras in linguistics 25

2.1 Motivation and linguistic background 25

2.2 Mathematical formulation . 29

Bibliography 35

1

Acknowledgements

First of all, I would like to thank my supervisors for their tremendous help during

the preparation of this thesis: Gergely Zábrádi for his endless patience and hard work

during our meetings all semester, and András Kornai for reigniting my passion for

linguistics through his seminars and for introducing me to Hopf algebras. I would

also like to thank Avery Andrews for his invaluable insights on MCB. Moreover, I am

immensely grateful to my high school teachers for fostering my scientific curiosity

and enthusiasm, to my family for their never-ending support and encouragement,

and to my friends.

2

Preface

Hopf algebras are versatile algebraic structures. They first arose in the work

of Heinz Hopf in the context of algebraic topology in the 1940s. Since then, they

have appeared naturally and proven useful in several further areas of mathematics,

especially group theory and combinatorics. Starting with the 1990s, Hopf algebras

have found applications in theoretical physics as well, becoming a central tool

in perturbative quantum field theory. The latest (and perhaps most surprising)

emergence of a new application of these structures is as recent as 2023, when

mathematical physicist M. Marcolli and linguists R. Berwick and N. Chomsky

proposed ([7, 5, 6]) a potential application for Hopf algebras in linguistics, specifically

in generative syntax. They suggest that Hopf algebras may constitute a suitable

framework for the description of certain transformations of sentences. The aim of

this thesis is to provide a concise introduction to Hopf algebras and to briefly present

their use in linguistics.

3

Chapter 1

Hopf algebras in mathematics

The purpose of this chapter is to define Hopf algebras and present their

fundamental properties, to the extent that is necessary in order to describe their

applications in transformational grammar. After introducing some preliminaries, we

will develop the basics of coalgebra and Hopf algebra theory. Some theorems are

given without proof for purposes of brevity, but all proofs can be found in [1] or [3].

1.1 Preliminaries

Throughout the thesis, K denotes some fixed field.

Tensor products

First, we need to briefly introduce (or recall) the concept of the tensor product

of two vector spaces U and V . Here we give an explicit construction for the tensor

product U ⊗ V , but the concept can also be defined – from a category theoretical

point of view – via the universal property, which we will define shortly. In an

effort to keep this thesis self-contained and accessible to anyone with a standard

undergraduate math background, we take the concrete point of view.

Informally, the tensor product gives us a way to “multiply” elements of different

vector spaces U and V over the same field K.

Definition 1.1.1 (The tensor product). Let

L = K{(u, v) : u ∈ U, v ∈ V }

4

be the free vector space on U×V over K, that is to say, the elements of L are (finite)

formal linear combinations of pairs (u, v).

Let R be the linear subspace in L spanned by elements of the form

(u1 + u2, v)− (u1, v)− (u2, v)

(u, v1 + v2)− (u, v1)− (u, v2)

(λu, v)− λ(u, v)

(u, λv)− λ(u, v)

where u, u1, u2 ∈ U , v, v1, v2 ∈ V , and λ ∈ K. Then the tensor product of U and V

is the quotient space

U ⊗ V = L/R,

and the image (equivalence class) of (u, v) in U ⊗ V is denoted u⊗ v.

The elements of U ⊗ V are therefore linear combinations of elements ui ⊗ vi for

some ui ∈ U, vi ∈ V . Elements of the form u⊗ v are called pure tensors. Note that

not everything in U ⊗ V is a pure tensor! Some elements just cannot be expressed

in this simple form.

Proposition 1.1.2 (The universal property). Let ϕ : U×V → U⊗V be the function

that maps (u, v) to u ⊗ v. This map is clearly bilinear, by the construction of the

tensor product. Now if h : U × V → Z is any bilinear map, then there exists a

unique linear map h̃ : U ⊗ V → Z such that h = h̃ ◦ ϕ, in other words, h̃ makes the

following diagram commutative:

U × V U ⊗ V

Z

ϕ

h
h̃

The proof follows directly from our construction. This is a crucial property of the

tensor product – so crucial that in fact it is often used to define the tensor product

of two vector spaces. In this approach, U ⊗ V is defined as the unique vector space

together with a bilinear map ϕ which fulfills the universal property. Then we could

forget about the explicit construction that proved its existence, and deduce every

property of U ⊗ V from the universal property. We will make use of the universal

property repeatedly, however, we still find it useful to think of the elements of the

5

tensor product space as linear combinations of pure tensors, keeping in mind the

bilinearity which arose from factorizing with the corresponding relations.

A consequence of the universal property is that we get a practical way of defining

linear maps on U ⊗ V : if we want a linear map U ⊗ V → Z, simply define a

bilinear map h from U × V to Z, and the universal property will guarantee that h

factors through U⊗V , providing a suitable h̃. We will soon see two examples of this

application.

Now let us summarize a few basic properties of tensor products without proof.

1. If U and V are finite-dimensional vector spaces, dimU = n and dimV = m,

then U ⊗ V is also finite-dimensional, and dimU ⊗ V = n ·m.

2. The tensor product is associative in the following sense:

If U, V,W are vector spaces, then there exists a canonical isomorphism

(U ⊗ V)⊗W ∼= U ⊗ (V ⊗W).

This allows us to identify the two and denote this space with the triple tensor

product U ⊗ V ⊗W .

3. The tensor product of vector spaces is commutative in the sense that there

exists a canonical isomorphism

U ⊗ V ∼= V ⊗ U.

However, note that the tensor product of vectors is not commutative, i.e. u⊗v ̸=

v ⊗ u in general.

Let us now suppose that we have two linear maps, f : U → U ′ and g : V → V ′.

We want to define their tensor product, that is, a linear map from U ⊗V to U ′⊗V ′

induced by f and g. The universal property will provide this map for us. With

the above notations, let Z = U ′ ⊗ V ′, and define h : U × V → U ′ ⊗ V ′ to be

h(u, v) = f(u) ⊗ g(v). This map is bilinear due to the linearity of f and g and the

bilinearity of the tensor product. Hence it induces a unique linear map from U ⊗ V

to U ′⊗V ′, which we denote by f⊗g. If f and g are both injective or both surjective,

then the same is true for f ⊗ g.

6

Algebras

The main idea for an algebra is that we want a structure that is simultaneously

a K-vector space and a ring. Let us see how we can formalize this.

Let A be a ring with identity.

Definition 1.1.3 (The näıve definition of an algebra). A is a K-algebra if K is a

subset of the center Z(A) and 1K = 1A.

These are reasonable assumptions if we want A to behave like a vector space: the

conditions guarantee that we can multiply elements of A by scalars in K, and also

that scalars commute with all elements of the ring.

Example 1.1.4. A = K[x] is a K-algebra, since we can identify K with

constant polynomials, which commute with all polynomials. The same is true for

K[x1, . . . , xn].

What about the ring of n-by-nmatricesKn×n? Is this aK-algebra? Unfortunately,

by our definition above, it is not: K is not technically a subset of Z(Kn×n),

even though we feel that if we could somehow identify every scalar λ with the

corresponding diagonal matrix λI, the conditions would be fulfilled. This motivates

the following definition:

Definition 1.1.5 (The actual definition of an algebra). A is a K-algebra given a

ring homomorphism η : K → A such that η(K) ⊆ Z(A) and η(1K) = 1A. η is called

the unit.

Note that whenever η is a ring homomorphism on K, it is automatically injective,

so K ∼= η(K). This definition does make A into a vector space, since we can now

multiply elements of A by a scalar via λa := η(λ) · a.

Now Kn×n is indeed a K-algebra with η : λ 7→ λI.

Remark 1.1.6. Depending on how we define polynomials, we may also need a ring

homomorphism η in the case of K[x] to embed K into K[x]. If we define the

elements of K[x] to be sequences with terms in K which are eventually zero, then

η : λ 7→ (λ, 0, . . .) serves this purpose. However, if we think of polynomials as formal

expressions a0+a1x+ . . .+anx
n, then it is very natural to think of the scalar λ and

the constant polynomial λ as the same thing.

7

There exists an equivalent formulation of this definition in terms of commutative

diagrams. This will be very useful for us here since Hopf algebras are most easily

formulated using commutative diagrams.

Before we give the diagrammatic definition, a short remark is needed on the

tensor product of algebras. If A and B are K-algebras, then they can be regarded as

K-vector spaces (via η), hence their tensor product A⊗B is defined and is a vector

space as well. We can define a multiplication on A⊗B by letting

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2

and extending linearly. This product provides a ring structure on A⊗B (with identity

element 1A ⊗ 1B), making it into a K-algebra.

Definition 1.1.7 (The diagrammatic definition of an algebra). An (associative

unital) algebra over a field K is a vector space A over K equipped with linear maps

m : A ⊗ A → A (multiplication) and η : K → A (unit) such that the following

diagrams commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

m⊗id

id⊗m m

m

A⊗ A

K⊗ A A⊗K

A

m

η⊗id

∼=

id⊗η

∼=

Here the intuition is that the first diagram describes the associativity of the

multiplication map m, while the second diagram describes the same map η as above

that provides a way to embed K into A.

A brief note is due on what ∼= means here. Every element of K ⊗ A is a pure

tensor, since

n∑
i=1

λi ⊗ ai =
n∑

i=1

(λi · 1K)⊗ ai =
n∑

i=1

1K ⊗ λiai = 1K ⊗
n∑

i=1

λiai = 1K ⊗ a.

Then, on the left side of the second diagram, ∼= is simply the canonical

isomorphism h̃ from K ⊗ A to A which sends 1K ⊗ a to a. The existence of this

map is guaranteed by the universal property: h : K × A → A, (1K, a) 7→ a is

clearly an isomorphism which extends to h̃. An isomorphism between A⊗K and A

can be defined analogously.

Proposition 1.1.8. Definitions (1.1.5) and (1.1.7) are equivalent.

8

Proof. (1.1.7) =⇒ (1.1.5): This direction follows from a mostly mechanical checking

of the needed properties.

• A is a ring: Addition on A is given by the vector space structure. Define a

multiplication on A by

a · b = m(a⊗ b).

This product is associative since

(a · b) · c = m(a⊗ b) · c = m(m(a⊗ b)⊗ c),

a · (b · c) = a ·m(b⊗ c) = m(a⊗m(b⊗ c)),

and the first diagram states precisely that these two are equal. The identity

element is η(1K) since

η(1K) · a = m(η(1K)⊗ a) = a = a · η(1K)

holds by the second diagram. Distributivity is guaranteed by the bilinearity of

the tensor product and the linearity of m:

a · (b+ c) = m(a⊗ (b+ c)) = m(a⊗ b+ a⊗ c) =

= m(a⊗ b) +m(a⊗ c) = a · b+ a · c,

and right-distributivity can be checked the exact same way.

• η is a ring homomorphism: η clearly preserves addition due to its linearity. To

see that it also preserves multiplication, notice that since η(µ) ∈ A,

η(λ) · η(µ) = m(η(λ)⊗ η(µ)) = m((η ⊗ id)(λ⊗ η(µ))) =

= m((η ⊗ id)(1K ⊗ λη(µ))) = λη(µ) = η(λµ)

holds by the second diagram and the linearity of η. η(1K) = 1A holds by

definition.

• η(K) ⊆ Z(A): Using, again, the second diagram,

η(λ) · a = m(η(λ)⊗ a) = λa = m(a⊗ η(λ)) = a · η(λ).

9

(1.1.5) =⇒ (1.1.7): This direction is a little bit trickier since at one point we

will need to invoke the universal property. Otherwise, we are practically doing the

same as above but backwards.

• A is a vector space: Addition on A is given by the ring structure. Define

multiplication by a scalar by

λa = η(λ) · a.

To verify the vector space axioms, notice that

λ(µa) = λ(η(µ) · a) = η(λ) · (η(µ) · a) = (η(λ) · η(µ)) · a =

= η(λµ) · a = (λµ)a

holds due to associativity in the ring and the fact that η is a ring

homomorphism. Furthermore, note that

1Ka = η(1K) · a = 1A · a = a.

The two “distributivity” axioms follow from distributivity in the ring and again

from η being a ring homomorphism:

λ(a+ b) = η(λ) · (a+ b) = η(λ) · a+ η(λ) · b = λa+ λb,

(λ+ µ)a = η(λ+ µ) · a = (η(λ) + η(µ)) · a =

= η(λ) · a+ η(µ) · a = λa+ µa.

• There exists a linear map m which satisfies the first diagram:

We need to define a linear map on A⊗A. The multiplication map · : A×A→ A

is bilinear since it is clearly additive in both arguments by distributivity, and

(λa) · b = (η(λ) · a) · b = η(λ) · (a · b) = λ(a · b).

Therefore by the universal property, · induces a corresponding linear map m

defined by

m(a⊗ b) = a · b.

10

To see that m does satisfy the property described by the first diagram, notice

that the expressions

m(m(a⊗ b)⊗ c) = m((a · b)⊗ c) = (a · b) · c

m(a⊗m(b⊗ c)) = m(a⊗ (b · c)) = a · (b⊗ c)

are clearly equal, which is what we wanted.

• η is linear and satisfies the second diagram: η as a ring homomorphism clearly

preserves addition. It preserves multiplication by a scalar, as

η(λµ) = η(λ) · η(µ) = λη(µ).

(Note that here we think of λ as a scalar and µ as an element of the vector

space K.) The diagram is satisfied since

m(η(1K)⊗ a) = m(1A ⊗ a) = 1A · a = a = m(a⊗ η(1K)).

Example 1.1.9 (The group algebra). Let G be a finite group, with the group

multiplication simply written as juxtaposition. Consider the free vector space on G

over K denoted by KG, that is,

KG =

{∑
g∈G

αgg : αg ∈ K

}

is the vector space of formal linear combinations of the elements of G, where addition

and multiplication by a scalar are defined naturally. We can define multiplication

(denoted · for readability, but will be referred to as mKG) on KG using the group

multiplication in G in the following way: The set {1Kg : g ∈ G} forms a basis of KG.

We let 1Kg ·1Kh = 1Kgh for g, h ∈ G, and then extend linearly to the other elements

of KG. This product satisfies the ring axioms, thus KG is also a ring. Taking the

canonical ring homomorphism ηKG : K → KG, λ 7→ λ1G, we get an algebra structure

(KG,mKG, ηKG) called the group algebra.

What is the dual space of KG, i.e. the vector space of linear functionals on KG?

Linear maps KG → K correspond exactly to arbitrary functions G → K. Since

for finite-dimensional vector spaces, V is isomorphic to V ∗, here we obtain that

11

KG ∼= KG = {ϕ : G → K}, and the map f : g 7→ δg(x) (where δg is the Kronecker

delta function on G), when extended linearly, defines an isomorphism of vector

spaces between them.

KG is also an algebra over K: for instance, we can utilize the pointwise product of

functions ϕ, ψ ∈ KG, and letmKG(ϕ⊗ψ) = ϕ·ψ ∈ KG be the function g 7→ ϕ(g)ψ(g).

Note that this construction makes absolutely no use of the group structure. With

unit ηKG : K → KG, ηKG(1K) = ψ ≡ 1K, the identically 1K functional on KG, we

obtain an algebra structure (KG,mKG , ηKG).

Lie algebras

Definition 1.1.10. A Lie algebra is a vector space g over K, together with a map

[., .] : g× g → g called the Lie bracket such that

1. [., .] is bilinear,

2. [., .] is skew-symmetric, i.e. [x, y] = −[y, x] for all x, y ∈ g, and

3. the Jacobi identity holds:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g.

Note that (2) readily implies that [x, x] = 0 for all x ∈ g.

Example 1.1.11. g = R3 with [x, y] = x× y (the cross product) is a Lie algebra.

Example 1.1.12. Any associative algebra A can be made into a Lie algebra by

taking the Lie bracket to be

[x, y] = xy − yx

for all x, y ∈ A.

Proof. Bilinearity and skew-symmetry are evident from the definition. The Jacobi

identity follows directly from the associativity of the algebra, since

[x, [y, z]] = x(yz)− x(zy)− (yz)x+ (zy)x

[y, [z, x]] = y(zx)− y(xz)− (zx)y + (xz)y

[z, [x, y]] = z(xy)− z(yx)− (xy)z + (yx)z.

12

1.2 Elementary coalgebra theory

In Definition 1.1.7 of the previous chapter, we saw that the defining properties of

algebras can be captured by two commutative diagrams. Dualizing these diagrams

(that is, flipping all the arrows), we get the following definition for a coalgebra:

Definition 1.2.1. A (coassociative counital) coalgebra over a field K is a vector

space C over K equipped with linear maps ∆ : C → C ⊗ C (comultiplication) and

ε : C → K (counit) such that the following diagrams commute:

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗id

id⊗∆

∆

∆

C ⊗ C

K⊗ C C ⊗K

C

ε⊗id id⊗ε

∆

Here ∆(c) is an element of C⊗C, so it is of the form
∑

i c
(1)
i ⊗ c

(2)
i . We will often

use the following notation introduced by Sweedler [8]:

∆(c) =
∑
i

c
(1)
i ⊗ c

(2)
i =: c(1) ⊗ c(2).

Note that this is a slight abuse of notation, since ∆(c) is, most of the time, not

a pure tensor. However, this abbrevation is analogous to the widely used Einstein

summation convention in physics, and will be useful for our purposes.

Let us denote the map (∆⊗ Id)◦∆ by ∆3. Iterating ∆, we can recursively define

the map

∆n = (∆⊗ Id⊗n−2) ◦∆n−1

with the notation ∆2 = ∆. The coassociativity property guarantees that this is a

unique map from C to C⊗n, i.e., for all 0 ≤ i ≤ n− 2,

∆n = (Id⊗i ⊗∆⊗ Id⊗n−i−2) ◦∆n−1.

This allows us to, using Sweedler notation, denote the elements of the image of the

iterated coproduct by

∆n(c) = c(1) ⊗ . . .⊗ c(n).

Example 1.2.2. The ground field K is a coalgebra with the maps ∆ = ε = Id :

K → K = K⊗K.

Proposition 1.2.3. Let C be any coalgebra. Then its dual C∗ is an algebra.

13

Proof. The proof depends on the crucial fact that there is a canonical embedding

of C∗ ⊗ C∗ into (C ⊗ C)∗: if ϕ, ψ ∈ C∗ are linear functionals on C, let the image of

ϕ⊗ ψ be the linear map from C ⊗C to K that sends c⊗ d to ϕ(c)ψ(d). Composing

this embedding with ∆′ : (C ⊗ C)∗ → C∗, the dual map of ∆C , defines a product

on C∗. (Recall that the dual map of a linear map T : U → V is the linear map

T ′ : V ∗ → U∗ defined by T ′(f) = f ◦ T .) This product, by construction, can be

written as the convolution product

ϕ ∗ ψ = mK ◦ (ϕ⊗ ψ) ◦∆C

where mK is multiplication in K. As for the unit of C∗ we need a linear map η :

K → C∗, we can simply take η(λ) = λε. Associativity and the properties of the unit

follow by duality.

Remark 1.2.4. The converse is only true in finite dimensions: The dual of a finite

dimensional algebra is a coalgebra.

Proof. We do the exact same construction as above but in reverse: if m is the

multiplication map of the algebra A, then its dual m′ is a a linear map from A∗

to (A ⊗ A)∗. If A is finite dimensional, then since (A ⊗ A)∗ and A∗ ⊗ A∗ share the

same dimension, they are isomorphic (this is definitely not guaranteed in infinite

dimensions!), and the above embedding provides an isomorphism between them.

Again, composing m′ with this embedding gives a comultiplication map on A∗.

ε : A∗ → K ∼= K∗ is simply the dual map of η : K → A.

Let us return to our main example from the last chapter, the group algebra. We

will show that a coalgebra structure can also be defined on this.

Example 1.2.5 (The group coalgebra). Recall that we have previously (in Example

1.1.9) introduced two ways of looking at the group algebra: either as KG with

multiplication defined by the product in G or as the space KG of functions from

G to K with multiplication defined by the pointwise product of functions. Since we

purposefully took a finite group G, our group algebra A is finite dimensional, so by

the previous remark, its dual A∗ is a coalgebra.

14

Let us first consider A as KG and describe the coalgebra structure thus induced

on (KG)∗ = KG. The counit is simply the dual of the unit ηKG,

η′KG = εKG : (KG)∗ → K∗.

We may identify K with K∗ via the isomorphism λ 7→ (1K 7→ λ). Hence the above

map – explicitly – is the linear map such that εKG(δ1G) = 1 and εKG(δg) = 0 for

all g ̸= 1G. We get comultiplication similarly, via the dual map of mKG. m
′
KG is a

linear map from (KG)∗ to (KG ⊗ KG)∗ ∼= (KG)∗ ⊗ (KG)∗, where ∼= is given by

the isomorphism i : δx⊗y 7→ δx ⊗ δy. What is this explicitly? If the image of δg (for

some g ∈ G) under m′
KG is of the form m′

KG(δg) =
∑

x,y∈G
αx,yδx⊗y ∈ (KG ⊗ KG)∗,

then notice that, from the definition of the dual map, αx,y = (m′
KG(δg))(x ⊗ y) =

δg(mKG(x ⊗ y)) = δ(xy). Hence the only nonzero terms in the sum are the ones

where g = xy, or equivalently, y = x−1g. This shows that

∆KG(δg) = (i ◦m′
KG)(δg) = i

(∑
x∈G

δx⊗x−1g

)
=
∑
x∈G

δx ⊗ δx−1g.

Now let us take A = KG, and see what coalgebra structure mKG defines on KG.

The counit is the dual of ηKG ,

η′KG = εKG : KG =
(
KG
)∗ → K∗ = K.

Explicitly, this is the trivial linear map such that εKG(g) = 1 for all g ∈ G. Following

the exact same construction as above, m′
KG : KG =

(
KG
)∗ →

(
KG ⊗KG

)∗ ∼=(
KG
)∗⊗(KG

)∗
= KG⊗KG is the dual map, where ∼= is given by j : δδg⊗δh 7→ g⊗h.

m′
KG(g) is of the form

∑
x,y∈G

βx,yδδx⊗δy ∈
(
KG ⊗KG

)∗
with βx,y = (m′

KG(g))(δx⊗δy) =

mKG(δx⊗δy)(g) = δx(g)δy(g). Hence almost all terms are zero, and the sum simplifies

to

∆KG(g) = (j ◦m′
KG) (g) = g ⊗ g.

Note that this last construction – of ∆KG and εKG – did not use the group

structure at all, meaning that if instead of a group G we take an arbitrary set S, we

may construct a coalgebra structure on KS in the same fashion. This motivates the

following definition:

15

Definition 1.2.6 (Group-like elements). An element c of a coalgebra C is group-like

if ε(c) = 1 and ∆(c) = c⊗ c. The set of group-like elements is denoted Γ(C).

We will see later that Γ(C) is actually a group when C is a Hopf algebra.

Definition 1.2.7 (Primitive elements). An element c of a coalgebra C is primitive

if ∆(c) = c⊗ 1 + 1⊗ c.

Proposition 1.2.8 (Convolution). Let (A,m, η) be an algebra and (C,∆, ε) be a

coalgebra. Then the set Hom(C,A) of linear maps from C to A is an associative

algebra with unit η ◦ ε by the convolution product

f ∗ g = m ◦ (f ⊗ g) ◦∆.

Proof. First of all, ∗ is a linear map because it is a composition of linear maps.

Take f, g, h ∈ Hom(C,A). Then

((f ∗ g) ∗ h) = m ◦ ((f ∗ g)⊗ h) ◦∆ =

= m ◦ ((m ◦ (f ⊗ g) ◦∆)⊗ h) ◦∆ =

= m ◦ (m⊗ IdA) ◦ (f ⊗ g ⊗ h) ◦ (∆⊗ IdC) ◦∆ =

= m3 ◦ (f ⊗ g ⊗ h) ◦∆3 =

= (f ∗ (g ∗ h))

wheremn and ∆n denote the compositions ofm and ∆ (n−1) times (maps A⊗n → A

and C → C⊗n respectively). This proves the associativity of ∗.

As for the unit, we need to show that for all f ∈ Hom(C,A),

f ∗ (η ◦ ε) = f = (η ◦ ε) ∗ f.

Indeed,

f ∗ (η ◦ ε) = m ◦ (f ⊗ (η ◦ ε)) ◦∆ =

= m ◦ (IdA ⊗ η) ◦ (f ⊗ IdK) ◦ (IdC ⊗ ε) ◦∆ =

= f = (η ◦ ε) ∗ f.

To see why this is the case, and where we used the algebra and coalgebra structures

of A and C, perhaps it is useful to look at what the above map does to an element

16

in C. For any c ∈ C,

(f ∗ (η ◦ ε))(c) = (m ◦ (IdA ⊗ η) ◦ (f ⊗ IdK))(((IdC ⊗ ε) ◦∆)(c))

which, by the unitary property of C, is equal to

(m ◦ (IdA ⊗ η) ◦ (f ⊗ IdK))(c⊗ 1K) = (m ◦ (IdA ⊗ η))(f(c)⊗ 1K).

Now, by the unitary property of A, this equals f(c), which was what we wanted.

Remark 1.2.9. The canonical map A⊗ C∗ → Lin(C,A) is a morphism of algebras,

and an isomorphism when A or C is finite dimensional.

Now we introduce the concept of graded algebras and coalgebras, which is

fundamental in all of the examples we will consider later.

Definition 1.2.10. A vector space V is graded if it decomposes as a direct sum of

vector spaces V =
⊕

n∈N Vn. It is reduced if V0 = 0.

An algebra A is graded if it is a graded vector space with the additional condition

that the multiplication map m sends Ak ⊗ Aℓ to Ak+l. Similarly, a coalgebra C is

graded if ∆ sends Cn to
⊕

k+ℓ=nCk ⊗ Cℓ.

The classical example of a graded algebra is the polynomial ring K[x], where the

grading is provided by the degree of the polynomials.

Remark 1.2.11. Note that η(1K) ∈ A0, because if η took 1K to An for some n > 0,

then, since m(ak ⊗ η(1K)) = ak for all k ∈ N, ak ∈ Ak, m(Ak ⊗ An) ⊆ Ak+n would

not hold. Therefore the unit η maps K into A0.

Dually, let us show that the counit map ε has to take everything of degree higher

than zero to 0. Let us take an element x ∈ Cn for some n ≥ 1. Then its image

under the coproduct is of the form ∆(x) =
∑

k+ℓ=n c
(1)
k ⊗ c

(2)
ℓ with c

(i)
k ∈ Ck and

c
(i)
ℓ ∈ Cℓ, i = 1, 2. By the counitary property (see the right side of the diagram

below), (id⊗ ε)(∆(x)) =
∑

k+ℓ=n c
(1)
k ⊗ ε

(
c
(2)
ℓ

)
is in Cn⊗K, more precisely, is equal

to x⊗1K. Hence we see that c
(1)
n = x and ε

(
c
(2)
0

)
= 1K. (Furthermore, for all nonzero

terms c
(1)
k ⊗ c

(2)
n−k (0 ≤ k < n), we have ε

(
c
(2)
n−k

)
= 0.) Now, looking at the left side

of the diagram, we see that
∑

k+ℓ=n ε
(
c
(1)
k

)
⊗ c

(2)
ℓ ∈ K⊗ Cn. What is important to

us here is specifically that now we can conclude that 0 = ε
(
c
(1)
n

)
= ε(x), which was

what we wanted.

17

∑
k+ℓ=n

c
(1)
k ⊗ c

(2)
ℓ

K⊗ Cn ∋
∑

k+ℓ=n

ε
(
c
(1)
k

)
⊗ c

(2)
ℓ

∑
k+ℓ=n

c
(1)
k ⊗ ε

(
c
(2)
ℓ

)
∈ Cn ⊗K

x ∈ Cn

ε⊗id id⊗ε

∆

Definition 1.2.12. A graded (co)algebra is connected if (C0) A0 = K.

Example 1.2.13 (The polynomial (co)algebra). The polynomials K[x] naturally

form an algebra. A coalgebra structure can be defined on K[x] by

∆(xn) = (1⊗ x+ x⊗ 1)n =
n∑

k=1

(
n

k

)
xk ⊗ xn−k,

ε(1) = 1, ε(x) = 0.

This structure is a graded connected algebra and coalgebra.

1.3 Hopf algebras

Definition 1.3.1. A bialgebra is a 5-tuple (B,m, η,∆, ε) such that

• (B,m, η) is an algebra;

• (B,∆, ε) is a coalgebra;

• The algebra and coalgebra structures are ’compatible’ in some sense: ∆

and ε are morphisms of algebras, or equivalently, m and η are morphisms

of coalgebras. This equivalence is best expressed diagrammatically: both

conditions translate into the commutativity of the diagrams

B ⊗B B B ⊗B

B⊗4 B⊗4

m

∆⊗∆

∆

Id⊗T⊗Id

m⊗m

B ⊗B B

K⊗K K

m

ε⊗ε ε

∼=

K B

K⊗K B ⊗B

η

∼= ∆

η⊗η

K B

K K

η

= ε

=

where T (a⊗ b) = b⊗ a for a, b ∈ B.

18

Here the first and second (resp. third and fourth) diagrams express that m

(resp. η) is a coalgebra morphism, while the first and third (resp. second and

fourth) express that ∆ (resp. ε) is an algebra morphism.

Example 1.3.2. K[x] with algebra and coalgebra structure as per Example 1.2.13

is a bialgebra.

Example 1.3.3. (KG,mKG, ηKG,∆KG, εKG) forms a bialgebra, as shown by the

commutativity of the following diagrams. (We have omitted the indices for

readability.)

g ⊗ h gh gh⊗ gh

g ⊗ g ⊗ h⊗ h g ⊗ h⊗ g ⊗ h

m

∆⊗∆

∆

Id⊗T⊗Id

m⊗m

g ⊗ h gh

1K ⊗ 1K 1K

m

ε⊗ε ε

∼=

1K 1K1G

1K ⊗ 1K 1G ⊗ 1G

η

∼= ∆

η⊗η

1K 1K1G

1K 1K

η

= ε

=

Remark 1.3.4 (Graded bialgebras). A bialgebra B is graded if it is graded both as

an algebra and a coalgebra. From the previous section, we know that the unit η

maps K to B0, and ε is the null map on Bi for i > 0. It is connected if B0
∼= K. If B

is a graded connected bialgebra, then η is the inclusion K = B0 ↪−→ B, and ε is the

canonical projection from B to B0.

Lemma 1.3.5. (Connection between bialgebras and Lie algebras) The vector space

of primitive elements (see Definition 1.2.7) of a bialgebra B, written Prim(B), forms

a Lie subalgebra of B for the Lie bracket [x, y] = xy − yx.

Proof. Let x, y ∈ Prim(B). Then, since ∆ is an algebra map,

∆([x, y]) = ∆(x)∆(y)−∆(y)∆(x)

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ y)

= (xy − yx)⊗ 1 + 1⊗ (xy − yx) = [x, y]⊗ 1 + 1⊗ [x, y].

Now we are ready to define Hopf algebras. It follows from Proposition 1.2.8

that End(B) of a bialgebra B is an algebra for the convolution product, with unit

ν = η ◦ ε.

19

Definition 1.3.6. A Hopf algebra is a bialgebra H such that Id ∈ End(H) has a

left and right inverse S for the convolution product, called the antipode. That is,

(Id ∗ S)(h) = m

(∑
i

h
(1)
i ⊗ S

(
h
(2)
i

))
= η(ε(h))

= m

(∑
i

S
(
h
(1)
i

)
⊗ h

(2)
i

)
= (S ∗ Id)(h)

or, more compactly in Sweedler notation,

S
(
h(1)
)
h(2) = ν(h) = h(1)S

(
h(2)
)

for all h ∈ H.

Remark 1.3.7. If Id has a left inverse S ′ and a right inverse S ′′, then the two coincide.

This implies that the antipode, if it exists, is unique.

Visually, this definition can be expressed via the diagram below:

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

S⊗Id

m

∆

∆

ϵ η

Id⊗S

m

The intuition behind the antipode is that we think of it as somehow analogous

to an inverse. To strengthen this intuition, let us check that in the case of the group

bialgebra, the group inverse S(g) = g−1 is indeed an antipode.

Example 1.3.8 (The group Hopf algebra). Taking S(g) = g−1, the above diagram

becomes

g ⊗ g g−1 ⊗ g

g 1K 1G

g ⊗ g g ⊗ g−1

for elements g ∈ G. Hence when extended linearly, S does satisfy the requirements

for an antipode.

Let us also describe another relatively intuitive example:

20

Example 1.3.9 (The polynomial Hopf algebra). Let H = K[x] with the bialgebra

structure from 1.2.13. Then S (xn) = (−x)n is an antipode, since the following

diagram commutes:

∑
k

(
n
k

)
xk ⊗ xn−k

∑
k

(
n
k

)
(−x)k ⊗ xn−k

xn

1 n = 0

0 n ≥ 1

1 n = 0

0 n ≥ 1

∑
k

(
n
k

)
xk ⊗ xn−k

∑
k

(
n
k

)
xk ⊗ (−x)n−k

Theorem 1.3.10 (Takeuchi). Let H be a graded connected bialgebra. Then H is a

Hopf algebra with antipode

S =
∑
n≥0

(−1)nmn−1 ◦ π⊗n ◦∆n−1,

where π = Id − η ◦ ε : H → H, and we employ the notational convention that

m−1 = η, ∆−1 = ε, and m0 = ∆0 = Id.

Notice that the above sum is finite for any h ∈ H, since ∆n−1(Hm) = 0 for

n > m:

∆n−1(Hm) ⊆
⊕

i1+...+in=m

Hi1 ⊗ · · · ⊗Hin

implies that when n > m, in every possible partition i1, . . . , in of m there is an index

j such that ij = 0. This means that Hij = H0.

Lemma 1.3.11. π(H0) = 0

Proof. We will make use of the fact that a graded bialgebra H is connected if and

only if Id and η ◦ ε coincide on H0, i.e. Id|H0
= η ◦ ε|H0

. To see why this is the case,

consider the following commutative diagram:

K K

H0

∼=

η ε

If H is not connected, then dimH0 > 1. Hence dim(Id(H0)) > 1 while

dim(η(ε(H0))) = 1, meaning that the maps clearly cannot coincide on H0. On the

other hand, if dimH0 = 1 = dimK, then η is an isomorphism (its image must be

subspace, hence the whole of H0), and ε is its inverse. Therefore Id and η ◦ ε are

21

indeed the same on H0 = K. Since we defined π to be Id−η ◦ ε, this is exactly what

we wanted.

Now we know that π sends every “constant” (element of degree zero) to zero, and

hence (π⊗n ◦∆n−1) (hm) (for hm ∈ Hm) is also zero whenever n > m. Therefore the

sum is finite, and the definition of S indeed makes sense.

Proof. (Takeuchi) To show that S defined as above is an antipode, we need to show

that it is the (two-sided) inverse of Id for the convolution product. First notice that

by the definition of the convolution given in Proposition 1.2.8, mn−1 ◦ π⊗n ◦∆n−1 is

precisely π∗n, that is, π convolved with itself n times. Then

S ∗ Id =

(∑
n≥0

(−1)nπ∗n

)
∗ (π + η ◦ ε) =

=
∑
n≥0

(−1)nπ∗(n+1) +
∑
n≥0

(−1)nπ∗n ∗ (η ◦ ε) =

= −
∑
n≥0

(−1)n+1π∗(n+1) +
∑
n≥0

(−1)nπ∗n =

= π∗0 = m−1 ◦∆−1 = η ◦ ε

which was what we wanted. Id ∗ S = η ◦ ε follows similarly.

Takeuchi’s theorem provides us with an explicit formula for the antipode, but in

practice, this is usually inefficient to calculate. However, what matters most for our

purposes is the fact that the antipode exists – that we are right to speak of a Hopf

algebra whenever we have a graded and connected bialgebra.

Proposition 1.3.12. Let H be a Hopf algebra. Then the set Γ(H) of its group-like

elements (see Definition 1.2.6) is a group.

Proof. Let g, h ∈ Γ(H). We need to show that gh ∈ Γ(H), and that g has an inverse

in Γ(H). For simplicity, we will denote multiplication by juxtaposition, both in H

and in H ⊗ H. Then since ∆ is an algebra morphism, and by the properties of

group-like elements and the tensor product,

∆(gh) = ∆(g)∆(h) = (g ⊗ g)(h⊗ h) = gh⊗ gh.

Furthermore, since

22

g ⊗ g S(g)⊗ g

g 1K η(1K)

g ⊗ g g ⊗ S(g)

commutes, S(g) provides an inverse for g in H. To see that S(g) ∈ Γ(H) also holds,

we need the following lemma:

Lemma 1.3.13. In a Hopf algebra H, ∆ ◦ S = (S ⊗ S) ◦ T ◦∆.

Proof. First, notice that the following identities follow directly from the definition

of the convolution product and the fact that ν = η ◦ ε is its identity element:

ν(h) = (S ∗ Id)(h) = (m ◦ (S ⊗ Id) ◦∆)(h) = m
(
S
(
h(1)
)
⊗ h(2)

)
=

= S
(
h(1)
)
h(2) = h(1)S

(
h(2)
)

h = Id(h) = (ν ∗ Id)(h) = (m ◦ (ν ⊗ Id) ◦∆)(h) = ν
(
h(1)
)
h(2) = h(1)ν

(
h(2)
)

S(h) = (ν ∗ S)(h) = (m ◦ (ν ⊗ S) ◦∆)(h) = ν
(
h(1)
)
S
(
h(2)
)
= S

(
h(1)
)
ν
(
h(2)
)

Now, consider H with the coalgebra structure and H⊗H with the tensor product

algebra structure. We know from Proposition 1.2.8 thatHom(H,H⊗H) is an algebra

for the convolution product with unit ηH⊗H ◦ εH . For our convenience, let us define

the maps F,G : H → H ⊗H as

F = ∆ ◦ S and G = (S ⊗ S) ◦ T ◦∆.

We will show that ∆ is a left inverse for F and a right inverse forG w.r.t. convolution.

Then, indeed, G = G ∗ (∆ ∗ F) = (G ∗∆) ∗ F = F as promised.

Let us now perform the necessary calculations, making use of the above identities

whenever needed. (A word of caution: we will use Sweedler notation heavily and

unapologetically.) For any h ∈ H we have, since ∆ is an algebra morphism,

(∆ ∗ F)(h) = ∆
(
h(1)
)
F
(
h(2)
)
= ∆

(
h(1)
)
∆
(
S
(
h(2)
))

= ∆
(
h(1)S

(
h(2)
))

= ∆(ν(h)) = ∆(η(ε(h))) = ∆(ε(h)η(1K)) = ε(h)η(1K)⊗ η(1K) =

= (ηH⊗H ◦ εH)(h)

23

and, by reindexing1 the terms whenever convenient,

(G ∗∆)(h) = G
(
h(1)
)
∆
(
h(2)
)
=
(
S
(
h(1)(2)

)
⊗ S

(
h(1)(1)

)) (
h(2)(1) ⊗ h(2)(2)

)
=

=
(
S
(
h(2)
)
⊗ S

(
h(1)
)) (

h(3) ⊗ h(4)
)
= S

(
h(2)
)
h(3) ⊗ S

(
h(1)
)
h(4) =

= S
(
h(2)(1)

)
h(2)(2) ⊗ S

(
h(1)
)
h(3) = ν

(
h(2)
)
⊗ S

(
h(1)
)
h(3) =

= ε
(
h(2)
)
η(1K)⊗ S

(
h(1)
)
h(3) = η(1K)⊗ S

(
h(1)
)
ε
(
h(2)
)
h(3) =

= η(1K)⊗ S
(
h(1)
)
ε
(
h(2)(1)

)
h(2)(2) = η(1K)⊗ S

(
h(1)
)
ν
(
h(2)(1)

)
h(2)(2) =

= η(1K)⊗ S
(
h(1)
)
h(2) = η(1K)⊗ ε(h)η(1K) = (ηH⊗H ◦ εH)(h).

Therefore (∆ ∗ F) = ηH⊗H ◦ εH = (G ∗∆) as we wanted.

Getting back now to the proof of the proposition, we have, by the previous lemma,

∆(S(g)) = ((S ⊗ S) ◦ T ◦∆)(g) = (S ⊗ S)(g ⊗ g) = S(g)⊗ S(g),

which was what we wanted to show.

1As permitted by the coassociativity of ∆.

24

Chapter 2

Hopf algebras in linguistics

2.1 Motivation and linguistic background

We first strive to summarize the basics of modern (generative) syntax, the study

of sentence structure, for the interested mathematician. However, it cannot be

stressed enough that the following is only a bird’s-eye view, and for a comprehensive

treatment, the first few chapters of [2] should be consulted.

In generative syntax, the structure of a sentence is usually modeled as a binary

rooted tree. This means that when analyzing sentence structure, we start with the

whole sentence, and then repeatedly divide it in two parts (called constituents) until

we arrive at the individual words. For instance, when analyzing the sentence “The

boy ate the sandwich”, we instinctively feel that it is comprised of the parts “the

boy” and “ate the sandwich” (and not e.g. “the boy ate” and “the sandwich”) –

these words somehow seem to belong more strongly together. We can of course

repeat this process to identify “ate the sandwich” as a composition of “ate” and

“the sandwich” and “the boy” as “the” + “boy”, soon arriving at the following

hierarchical structure:

the boy ate
the sandwich

Figure 2.1: A very schematic syntactic tree

Here, the uppermost node (the root) represents the whole sentence, and the leaves

are labeled with the words of the sentence, but what is at the other, intermediate

25

nodes? We can roughly think of them as representing either parts of speech or

phrases, as can be seen in Figure 2.2:

S

NP

D

the

N

boy

VP

V

ate

NP

D

the

N

sandwich

Figure 2.2: A little more sophisticated, but still quite schematic syntactic tree

We used S to denote the sentence, and the other single letters to denote parts

of speech: N stands for noun, V for verb, and D for determiner. Determiners are

essentially articles (the, a, an), demonstratives (this, that), possessives (my, their)

or quantifiers (many, all). Further parts of speech that are often used are Adj for

adjectives, Adv for adverbs, and P for prepositions. The other type of node that

appears in our tree is of the form XP, which is short for X phrase: noun phrase (NP),

verb phrase (VP) etc., there exists a corresponding phrase structure for every part of

speech. The main idea is that in every constituent, there is one word that dominates:

for example, most of the properties of the phrase “the boy” are determined by the

properties of “boy” rather than those of “the” (more precisely, by the fact that

“boy” is a noun (N)). This is called the head of the phrase, and the phrase inherits

the head’s part of speech, hence, in this case, it becomes an NP.1

We have previously promised that we would model sentence structure as rooted

binary trees. Consider, however, the following structure:

NP

D

the

AdjP

big

N

book

PP

of poems

PP

with the blue cover

Figure 2.3: A seemingly non-binary syntactic tree

1To be more precise, “boy” is the semantic head of the phrase, as it clearly dominates the meaning. If one
considered instead “the”, the syntactic head, the phrase could be regarded as a DP.

26

This example is taken from [2]. A quick note on notation: a triangle in a syntactic

tree just represents a part of the tree that contains some further structure which we

do not want to analyze in detail.

The above tree is clearly not binary, what is more, we could append as many

prepositional phrases as we want (e.g. the big book of poems with the blue cover

from Blackwell by Burns etc.), arriving at an arbitrarily wide but flat structure.

The linguists’ response to this is that there is in fact a binary structure behind even

these examples, and further nodes, further categories (beside those denoted X and

XP) need to be introduced to model this structure. This is far from obvious at first

sight, but the need for its existence is strongly motivated by so-called constituency

tests. One such test is one-replacement, which essentially states that if a sequence of

words can be replaced by the word one in the following sense, then it should form

a constituent in the tree:

(1) I bought the big [book of poems with the blue cover], not the small [one].

Hence the phrase book of poems with the blue cover should be its own constituent

in whatever tree structure we assume, that is, there should be a node in the tree

such that its descendant leaves are exactly the words of the above phrase. The same

argument can be applied again for book of poems as in

(2) I bought the big [book of poems] with the blue cover, not the small [one] with

the red cover.

This implies rather the following deep structure for the whole phrase:

NP

D

the

N′
1

AdjP

big

N′
2

N′
3

N

book

PP

of poems

PP

with the blue cover

Figure 2.4: A tree according to X-bar theory

27

The assumption of this structure is called X-bar theory. Here we denote the

intermediate categories by X′, but the name comes from the fact that they are often

denoted X. In the figure above, N ′
3 corresponds to the constituent book of poems,

N ′
2 to book of poems with the blue cover, and so on.

In this example, we introduced intermediate categories for smaller constituents

within an NP, but we observe the same phenomenon within VPs, AdjPs, PPs, etc.

Of course, there is a difference in which type of children a certain node can have

(i.e. which type of phrases are allowed to modify it), but we see the same need for

X-bar categories arise. Abstracting away from the specifics, we can formulate rules

within the framework of X-bar theory to describe the hierarchical structure.2 These

rules are meant to be interpreted as a description of what kind of children a certain

type of node is allowed to have in the tree.

Now we have a relatively good theory that represents sentences as binary rooted

trees, as promised. However, there are some phenomena that even X-bar theory

cannot account for. Such are the inverted word order in English questions (cf. You

saw John. and Have you seen John?), passives (cf. The boy ate the bread. and

The bread was eaten.), and topicalization (emphasizing a certain phrase by having

it appear at the front of the sentence, cf. I like bagels. and Bagels, I like.), the

placement of negation and of adverbs in some languages like French, and VSO3

languages like Irish overall. Transformational grammarians explain these phenomena

by transformations of the trees called movement. Movement is a process in which

certain subsections of a syntactic tree are extracted and placed onto a different

part of the tree. Note that – for reasons internal to a particular understanding of

transformational theory – movement is only possible upwards in the tree.

I
like bagels

Bagels,
I like

Figure 2.5: Illustration of movement in a tree

In order to be able to describe movement, it is clear that we need a mathematical

structure capable of representing such transformations, i.e. allowing the repositioning

of subtrees within some (linguistically motivated) constraints. In recent papers [7,

5], Marcolli, Chomsky, and Berwick propose that Hopf algebras provide a suitable

2Though the number of bar-levels and the exact format of the rules are debated.
3VSO is short for Verb–Subject–Object, and refers to the word order of a language. For instance, English is an

SVO language, as typical word order is subject–verb–object as in The girl read the book. SVO and SOV are the
most common among the languages of the world, but a non-negligible 9% of languages follow a VSO word order.

28

framework. Intuitively, the coproduct will allow us to cut up our tree and extract

the corresponding subtree in order to insert it into another spot in the tree.

2.2 Mathematical formulation

Let us now introduce the precise formulation of how Hopf algebras may be used

to handle and manipulate syntactic trees. This short introduction closely follows [7]

and [4], a recent talk on the topic given by Marcolli specifically for mathematicians.

So far, we have been considering syntactic trees as the result of analyzing a

sentence in a top-down manner: we start with a sentence, divide it into two

constituents, and so on, repeating this process until we arrive at the single words.

As a matter of fact, sentences are actually thought to be generated through this

process, hence the name generative syntax. However, we might as well interpret the

process in the other direction, starting out with the individual words, combining

(merging) them via simple binary set formation, then repeatedly combining the

resulting objects until we arrive at the whole sentence. This latter, bottom-up view

will provide a useful framework for us in the following.

Mathematically, this is to say that we start with a set SO0 of lexical items (like

the, dog, eat, elephant, pretty, etc.) and syntactic features (like English past tense

marker -ed), and we denote the commutative, nonassociative operation that is binary

set formation by M. In other words, clearly

{α, β} = M(α, β) = M(β, α) = {β, α},

but

{γ, {α, β}} = M(γ,M(α, β)) ̸= M(M(γ, α), β) = {{γ, α}, β}.

Here α, β and γ may be elements of SO0, or they may be more complex objects

that we obtained via M. The set of syntactic objects SO is the set of all elements

that can be obtained from SO0 by repeated application of M:

Definition 2.2.1. A magma is a set S equipped with a binary operation ∗ such

that S is closed under ∗. (No further properties required.)

Definition 2.2.2. The set of syntactic objects SO is the free nonassociative

commutative magma generated by SO0.

29

In other words, a syntactic object is simply a result of repeated binary

set formation like {{the, students}, {are, exhausted}} or {{the, dogs}, {{eat,

everything}, {in, {the, house}}}}.

The free nonassociative commutative magma on a set S is canonically isomorphic

to the set TS of abstract binary rooted trees with leaves decorated by elements of S.

The identification is clear – for instance, the syntactic object {γ, {α, β}} corresponds

to the tree

γ α β

The word abstract means that there is no planar embedding assigned to the trees,

namely, that the leaves are not ordered. This is at first sight counterintuitive, since

we usually perceive language linearly, as a sequence of strings or words. However, it

proves useful to assume a nonplanar deep structure in the background, and regard

the apparent (ordered) surface-level structure only as a projection of the true deep

structure. Notice that the commutativity of M guarantees precisely that the leaves

are not fully4 ordered.

Example 2.2.3 (Syntactic trees are abstract). Multiple planar embeddings of an

abstract tree can correspond to the same syntactic object:

{α, β} = α β = β α

{γ, {α, β}} =
γ α β

=
γ β α

=
α β γ

=
β α γ

Let us now introduce the concept of workspaces. We think of the workspace

as the space where all syntactic operations happen, where sentences are formed

and transformed. It contains all available computational resources (i.e. all syntactic

objects, even multiple copies if needed), and our central operation, which we will

call Merge, will transform workspaces into new workspaces.

Definition 2.2.4. A workspace F is a binary forest whose connected components

are (finitely many) abstract binary rooted trees:

F = T1 ⊔ . . . ⊔ Tn with Ti ∈ TSO0

4Note that this interpretation does not allow all possible permutations of the leaves. For instance, in
Example 2.2.3, the remaining two permutations, βγα and αγβ, are not permitted, even though they do appear
in some languages. Consider, for example, the phrase call someone up in English. Such cases are usually handled
by so-called discontinuous constituents.

30

In linguistics, the Ti’s are called the members of the workspace. Denote the set of

all workspaces WS. Then WS ∼= FSO0 , where the latter denotes the set of all finite

binary non-planar forests with leaves decorated by elements of SO0.

As mentioned previously, certain substructures of syntactic objects sometimes

need to be extracted in order to be repositioned within the tree. We will call these

subtrees accessible terms.

Definition 2.2.5. Accessible terms of a syntactic object T are subtrees Tv ⫋ T ,

where v is a non-root vertex of T , and Tv is the subtree under v.

Accessible terms of a workspace F are the accessible terms of its members and

the members themselves.

Figure 2.6: Some accessible terms of a workspace F . Source: [4]

Definition 2.2.6 (Admissible cuts). Given a tree T ∈ TSO0 , consider forests Fv ⫋ T

of the form

Fv = Tv1 ⊔ . . . ⊔ Tvn

where Tvi ⫋ T are disjoint accessible terms. Every such Fv corresponds to an

admissible cut C of T with forest πC(T) = Fv and remaining tree ρC(T) attached

to the root. In a similar fashion, an admissible cut Fv of a forest F corresponds to

the union of some disjoint accessible terms of F .

Figure 2.7: A subforest of accessible terms and the corresponding admissible cut. Source: [4]

Now we are almost ready to define a Hopf algebra structure on WS. We still

need one last definition:

31

Definition 2.2.7. Let T be a tree, and let Tv be a subtree of T consisiting of vertex

v and its descendants (note: v can also be the root vertex). Then the quotient T/Tv

is defined as the rooted binary tree obtained by removing the entire tree Tv from T ,

and contracting the remaining edges if necessary.

T =

Td Tc

Tb

Ta

T/Td =

Tc Tb

Ta

Figure 2.8: Quotient trees and the contraction of edges

Remark 2.2.8. Note that the above definition does not exactly coincide with how

quotients in the Hopf algebra of rooted trees are usually defined in mathematics and

theoretical physics. This is, in part, to ensure that the quotient T/T is the empty

tree, which will also happen to be the unit in our Hopf algebra structure. Further

explanation and context is provided in [7, p. 6].

Lemma 2.2.9. Let T ∈ TSO0 be a rooted binary tree, and let Fv be a subforest of

T such that Fv =
⊔

i Tvi is the union of disjoint subtrees Tvi ⊆ T , v = (v1, . . . , vk) –

that is, Fv is either an admissible cut of T or, in the trivial case, the whole tree T .

Then the quotient T/Fv given by

T/Fv = (· · · (T/Tv1)/Tv2 · · ·)/Tvk

is well-defined and independent of the order of v1, . . . , vk. This extends to quotients

of forests F/Fv, in particular, Fv,w/Fv = Fw.

Proof. Fairly straightforward to check, see [7, Lemma 2.6].

There are many admissible cuts of a given tree or forest, and we want to keep track

of all of them to be able to access all accessible terms simultaneously. Hence instead

of defining the Hopf algebra structure on FSO0 itself, we will consider the space of

formal finite linear combinations of elements of FSO0 over Q, denoted V(FSO0).

Definition 2.2.10 (The Hopf algebra of forests). Consider the vector space

V(FSO0).

Let the product operation on V(FSO0) be simply given by ⊔: that is, let the

product of two workspaces be their disjoint union, and extend linearly. This is a

32

commutative, associative linear map. Hence (V(FSO0),⊔, η) forms an algebra, the

unit η being the constant mapping to the empty forest.

Let the coproduct operation ∆ : V(FSO0) → V(FSO0) ⊗ V(FSO0) be defined as

follows:

On trees T ∈ TSO0 , define

∆(T) =
∑
v

Fv ⊗ T/Fv

with Fv as per Lemma 2.2.9. Extend to forests F =
⊔
a

Ta by letting ∆(F) =
⊔
a

∆(Ta),

which we write as

∆(F) =
∑
v

Fv ⊗ F/Fv,

then extend linearly to V(FSO0). Let ε be the linear mapping that maps each formal

linear combination in V(FSO0) to the empty forest’s coefficient in it. These maps

fulfill the conditions of Definition 1.2.1, and thus (V(FSO0),∆, ε) is a coalgebra.

Proposition 2.2.11. (V(FSO0),⊔, η,∆, ε) is a Hopf algebra.

Proof. One needs to check coassociativity, the counitary property, and the

compatibility axioms of Definition 1.3.1. For the full proof, we refer the reader to [7,

Lemma 2.7]. Note that V(FSO0) is graded by the number of leaves, and connected,

thus the existence of the antipode is automatic by Takeuchi’s theorem (1.3.10).

Now that we have all the necessary apparatus at hand, let us describe how the

transformation of workspaces happens. Let us call the operation that transforms

workspaces into new workspaces (the exact mechanism to be specified below) Merge.

More precisely, Merge is a family of operations of the form MS,S′ with syntactic

objects S, S ′ ∈ SO. Given a workspace F , MS,S′ searches among all accessible

terms of F for a matching pair Tv ≃ S and Tw ≃ S ′. If a match is found, these two

terms are merged into

M(Tv, Tw) = Tv Tw
,

Tv and Tw are deleted from their original positions, and the above new tree is

appended to F . Let Tv and Tw originally be contained in the components Ti and Tj

respectively. Then all the other components Ta ⊂ F , a ̸= i, j are left unchanged by

33

the action of M(S, S ′). The above can be summarized by the formula

MS,S′ : F 7→ F ′ = M(Tv, Tw) ⊔ Ti/Tv ⊔ Tj/Tw ⊔
⊔
a̸=i,j

Ta.

Utilizing the Hopf algebra structure on V(FSO0), the action of Merge can be

expressed as

MS,S′ = ⊔ ◦ (B ⊗ 1) ◦ δS,S′ ◦∆,

that is to say: The coproduct ∆ first extracts all the accessible terms. Then δS,S′

finds a matching pair of accessible terms, which are then grafted – joined via adding

a new root – by the grafting operator B

B : T1 ⊔ . . . ⊔ Tn 7→
T1 T2 ... Tn

Finally, the product ⊔ reassembles the new workspace.

To conclude, a few brief remarks are due on all that we could not cover in

the scope of this thesis. The Merge operation as defined above in fact allows

more types of transformations than linguistically motivated, cases that violate the

aforementioned principle that movement is only possible upwards in a tree. Hence

a slight modification, a mechanism called Minimal Search is needed to eliminate

unwanted types of Merge. Furthermore, we have only been able to summarize the

very basics of how Hopf algebras can be used in the study of syntax – however, in an

even more recent paper [6], Marcolli, Chomsky, and Berwick also extend this Hopf

algebraic formulation to the interaction of syntax and semantics. To grasp the full

picture of Hopf algebras in linguistics, a thorough read of all three papers [7, 5, 6]

would be necessary.

34

Bibliography

[1] Federico Ardila. Hopf algebras and combinatorics – lecture series and notes.

https://fardila.com/Clase/Hopf/lectures.html. Accessed: 2024-05-13.

[2] Andrew Carnie. Syntax: A Generative Introduction, Second Edition. Blackwell

Publishing, 2006.

[3] Pierre Cartier and Frédéric Patras. Classical Hopf Algebras and Their

Applications. Springer, 2021.

[4] Matilde Marcolli. An algebraic model for generative linguistics – a talk in

the ACPMS seminar. https://www.math.ntnu.no/acpms/view_talk.html?

id=151. Accessed: 2024-05-15.

[5] Matilde Marcolli, Robert C. Berwick, and Noam Chomsky. Old and New

Minimalism: a Hopf algebra comparison. 2023.

[6] Matilde Marcolli, Robert C. Berwick, and Noam Chomsky. Syntax-semantics

interface: an algebraic model. 2023.

[7] Matilde Marcolli, Noam Chomsky, and Robert Berwick. Mathematical Structure

of Syntactic Merge. 2023.

[8] Moss E. Sweedler. Hopf Algebras: Notes from a Course Given in the Spring of

1968. W. A. Benjamin, 1969.

35

https://fardila.com/Clase/Hopf/lectures.html
https://www.math.ntnu.no/acpms/view_talk.html?id=151
https://www.math.ntnu.no/acpms/view_talk.html?id=151

	Hopf algebras in mathematics
	Preliminaries
	Tensor products
	Algebras
	Lie algebras

	Elementary coalgebra theory
	Hopf algebras

	Hopf algebras in linguistics
	Motivation and linguistic background
	Mathematical formulation

	Bibliography

