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1 Introduction
Managing credit risk is one of the most important tasks for financial insti-

tutions to ensure safe operation. The keystone of this is the risk management
recommendations issued by the Basel Committee. The Basel II regulation
opened the door to the use of IRB (internal rating based) models, which
have further developed and become more complex in terms of risk manage-
ment methods and models. Whether it is Foundation-IRB or Advanced-IRB
models, in both cases the probability of default is calculated using their own
internal methods. The Vasicek credit risk model [14], which is at the center of
my thesis, provides an opportunity for this, as Somanath Chatterjee [4] also
demonstrates. The model places great emphasis not only on the probability
of default but also on default correlation, and it is capable of integrating the
effects of macroeconomic factors as well as the risk of individual borrowers.

The aim of my thesis is to present the parameter estimation methods
of the Vasicek model in detail and compare them. Besides the economic
assumptions and mathematical theory, I also address the implementation
difficulties and apply the presented methods to real historical S&P data.

The 2nd chapter presents the essential concepts and terminologies used
in credit risk modeling, thereby providing a solid foundation for the sub-
sequent chapters. Beyond the evolution of Basel regulations, I define and
illustrate the most important concepts and demonstrate the assumptions we
will use concerning homogeneous risk classes and why default correlation is
important.

In Chapter 3, I present the Merton’s structural model [12], which is his-
torically considered one of the earliest credit risk models, but its fundamental
principle is still used in the most modern models. The basic idea is that a
company goes bankrupt when the market value of its assets falls below the
level of its liabilities. Besides the assumptions and applications of the model,
I also discuss its limitations.

The 4th chapter discusses CreditMetrics [11], a widely used methodology
for measuring portfolio credit risk. This chapter covers the model’s structure,
underlying assumptions, and how it quantifies the risk of credit events in a
portfolio context, demonstrating its practical applications and benefits.

The framework for the above three chapters is provided by Jiri Witzany’s
book “Credit Risk Management” [15], which offers an excellent general insight
into the topic of credit risk.

In the 5th chapter, I present the Vasicek model, which gives the title of
this thesis. While many introduce it as a single-factor model, I start with a
multi-factor approach and demonstrate how it can be reduced to a single-
factor model. Besides its basic idea, I explain what economically acceptable
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assumptions can be additionally used to reduce the number of parameters
and thus the degrees of freedom of the model. The restrictions are necessary
due to the reliability of parameter estimates, as although portfolios can cover
a very large number of companies, the historical data span is never more than
30-40 years. I also discuss its application within the Basel framework.

The 6th chapter focuses on the methods and techniques used to esti-
mate the parameters of the Vasicek model. The method of moments is most
commonly used in practice. Gordy [9] used this method to compare the two
largest credit risk models, CreditMetrics and CreditRisk+. Another study by
Gordy and Heitfield [10] pointed out that this method has a significant down-
ward bias in estimating default correlations when using short-term data, and
therefore, they suggested maximum likelihood estimation methods. This rec-
ommended method was used by Klaus Düllmann and Harald Scheule [7] on
historical data of german companies, supplemented with asymptotic estima-
tors. Later, Paul Demey, Jean-Frédéric Jouanin, Céline Roget, and Thierry
Roncalli [5] further developed the method into a tractable multi-factor setup,
and they examined homogeneous risk groups by sectors rather than by grades.

In Chapter 7, I present the results of empirical investigations performed
on synthetic and historical data. I use the methodology presented by Gordy
and Heitfield for generating synthetic data. Using Monte Carlo simulation, I
create confidence intervals for the parameter estimates and thereby compare
the methods. I also fit the model to the historical default rate data of S&P
from 1981 to 2020 under different restrictions. The results obtained are com-
pared with the findings of previous studies that worked with time series up
to the early 2000s.

In Chapter 8, I address the challenges encountered during the implemen-
tation of the model and the ideas for individual solutions. To my knowledge,
previous studies do not cover this part, although I believe that good imple-
mentation is essential for the proper use of a financial model. This chapter
also touches on topics such as numerical integration, one-dimensional and
multi-dimensional optimization. I implemented the model in Python, and
the full source code is available in the following GitHub repository:
https://github.com/PeterKiss18/VasicekPDModel.

In the final chapter, in addition to drawing conclusions, I also discuss
potential future research directions.
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2 Fundamental concepts for Credit Risk
Credit is money provided by a creditor to an obligor. Credit risk refers

to the possibility that a contracted payment may not be fulfilled. The initial
interest in credit risk models stemmed from the need to determine the amount
of economic capital required to support a bank’s exposures.

2.1 Basel regulations and their evolution

Since the Basel Accord of 1998, minimum capital requirements have been
internationally coordinated. Under Basel I, bank assets were allocated into
four broad risk categories with risk weightings from 0% to 100%. Corporate
loans received a 100% risk weight, while retail mortgages, considered safer,
received a 50% weight. The minimum capital was then set in proportion to
these weighted assets:

Minimum capital requirement = 8%×
∑

weighted assets

This approach was criticized for its lack of granularity, failing to capture
the cross-sectional distribution of risk. For example, all mortgage loans had
the same capital requirement, regardless of borrower risk profiles like loan-
to-value or debt-to-income ratios. In response, Basel II introduced a more
granular risk weighting approach. Credit risk management techniques under
Basel II are classified into:

• Standardised approach: A simple categorisation of obligors without
considering their actual credit risks, often relying on external credit
ratings.

• Internal Ratings-Based (IRB) approach: Banks use their internal
models to calculate the regulatory capital requirement for credit risk.

These frameworks determine the risk-weighted assets (RWA), which are the
denominator in key capitalisation ratios (Total capital, Tier 1, Core Tier 1,
Common Equity Tier 1). The IRB approach uses a formula approximating
the Vasicek model of portfolio credit risk, detailed in Chapter 5.

Basel III did not change the minimum capital requirement but introduced
stricter rules to ensure the quality of capital, including a 4.5% minimum
CET1 requirement and usable capital buffers. Although Basel III refined the
definition of capital, it retained the Basel II risk-based framework for mea-
suring risk-weighted assets, improving the standardised approach for credit
risk and linking it more closely with the IRB approach.
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2.2 Probability of Default (PD) and related concepts

In the Basel framework, a key parameter, which is used to calculate the
regulatory capital for credit risk, is the probability of default, often indicated
with the acronym PD. The probability of default (PD) is a financial term
describing the likelihood of a default over a particular time horizon. In fi-
nance and lending, “default” refers to the failure of a borrower to fulfill their
contractual obligations or meet the terms specified in a loan agreement. More
specifically, under Basel II, a default event on a debt obligation is said to have
occurred if it is unlikely that the obligor will be able to repay its debt to the
bank without giving up any pledged collateral and the obligor is more than
90 days past due on a material credit obligation. In order to discuss about
PD calculation, it is necessary to precisely define the fundamental concepts
related to loss.

When banks estimate the economic capital necessary to support their
credit risk activities, they use an analytical framework that relates the re-
quired economic capital to the probability density function (PDF) of credit
losses, also known as the loss distribution of a credit portfolio. Let us have a
portfolio of assets (and liabilities), and let X (a random variable) denote the
loss on the portfolio in a fixed time horizon T. Let

FX(x) = Pr[X ≤ x]

be the cumulative distribution function of X. Let’s define the quantile with
given a α probability level, as

qXα = inf{x | FX(x) ≥ α}.

These losses will play a role in threshold models, which assume that a default
event occurs when the value of assets exceeds the liabilities.

From a statistical perspective, the Value-at-Risk (VaR) is nothing more
than a quantile of the loss distribution. From an economic standpoint, it
expresses the potential maximum absolute loss that can be realized on the
probability level α.

The two important components of credit risk are expected loss (EL)
and unexpected loss (UL). The EL represents the amount of credit loss
the bank expects to experience over a given time horizon, considered the
normal cost of doing business covered by provisioning and pricing policies.

EL = E[X]

In contrast, the UL represents the risk of the portfolio, with capital held to
offset this risk. Within the IRB methodology, the regulatory capital charge
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depends only on UL. The unexpected loss (UL) also known as relative Value-
at-Risk (VaRrel

α ) is defined as

UL = qXα − EL.

These concepts are visually illustrated in Figure 1, which shows an ex-
ample of a loss density function, depicting the notions of unexpected and
expected loss.

Expected Loss Unexpected Loss

Economic Capital

Potential Loss

Fr
eq

ue
nc

y

Average
99th Percentile
Stress Loss

Figure 1: Loss Distribution

The probability of losses beyond the combined amount of expected loss
and unexpected loss — meaning the probability that the bank would be
unable to fulfill its credit commitments using its profits and capital — is
represented by the shaded area on the right-hand side of the curve, which
is referred to as stress loss. If capital is set according to the gap between
EL and VaR, and EL is covered by provisions or revenues, the likelihood
of the bank remaining solvent over a one-year horizon equals the confidence
level. Under Basel II, capital is set to maintain a supervisory fixed confidence
level, typically 99.9%, meaning an institution is expected to experience losses
exceeding its capital once in 1,000 years.

Banks must decide on the time horizon over which they assess credit risk.
In the Basel context, a one-year time horizon is used across all asset classes.
Exposure at default (EAD) is the predicted total amount of credit expo-
sure a bank expects to have at the time a borrower defaults on a loan.
Loss Given Default (LGD) represents the proportion of the exposure that
will not be recovered after default. It is expressed as a percentage of EAD.
The expected loss of a portfolio is the product of the proportion of oblig-
ors that might default within the time frame, the outstanding exposure at
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default (EAD), and the loss given default (LGD). Under the Basel II IRB
framework, the probability of default (PD) per rating grade is the average
percentage of obligors defaulting over one year. Assuming a uniform LGD
value for a given portfolio, EL can be calculated as the sum of individual
expected losses in the portfolio:

EL =
∑

(PD ·EAD ·LGD) .

2.3 Homogeneous risk classes

In the Vasicek model, we assume that all firms have been successfully cat-
egorized into a few risk classes that exhibit certain homogeneity properties,
as defined below.

• Every obligor within a given risk class has the same probability of
default.

• The correlation between any two aboligors within a c given risk class
is constant, i.e.,

ρm,n = ρc ∀m,n ∈ c.

• For a given pair of risk classes (c, d), the correlation between two oblig-
ors (m ∈ c, n ∈ d) depends only on the two classes:

ρm,n = ρc,d ∀m ∈ c, n ∈ d.

Risk classes can be constructed based on rating grades, geographical loca-
tions, industrial sectors, or a combination of these criteria. Let us introduce
the following notations:

• G: the number of risk classes

• ng,t: the number of firms in class g at time t

• dg,t: the number of firms that defaulted in class g at time t

• µg,t =
dg,t
ng,t

the default rate

We aim to model the default rate variable, but the variance of this default
rate for a given risk class heavily depends on the correlation between the
defaults of the firms within that class. Intuitively, the higher the correlation,
the more likely it is that other firms in the class will default if one defaults
at time t. For this reason, we also model the default correlations.

The role of the correlation is illustrated in Figure 2, which shows the
distribution of the annual default rate for a risk class consisting of 1,000 firms
under different correlations (each firm individually has a 20% probability of
default).
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Figure 2: Distribution of annual default rates for different correlation levels
with a common default probability of 20% and 1000 obligors in the risk class.

3 Merton’s structural model
Merton’s structural model is a fundamental framework for assessing credit

risk. The model posits that a firm defaults on its debt (D) if the value of
its assets (A) falls below the debt, i.e., A < D. Based on this criterion, it
is categorized among threshold models, which is a common feature with the
Vasicek model.

Considering stochastic changes in the firm’s equity, we use a stochastic
model for A(t), starting at an initial value A0 > D. In a simplified scenario
with a single loan and bullet repayment of D at time T , default occurs if
A(T ) < D (Fig. 3). If A(T ) ≥ D, there is no default, and the remaining
shareholders’ value is A(T )−D.

The model has been formulated not only to theoretically define the proba-
bility of default but, in fact, primarily to apply the theory of option valuation
to the valuation of debt and equity in the market. The final payoff for credi-
tors at maturity (T ) is expressed as

D(T ) = D −max(D − A(T ), 0).

The value of risky debt can theoretically be calculated by subtracting the
value of a put option on the firm’s assets from the value of risk-free debt.
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This put option, with an exercise price D and maturity T , is sold to the
shareholders in exchange for the premium paid over the risk-free interest
rate. The shareholders’ payoff at time T is calculated as

E(T ) = max(A(T )−D, 0).

Figure 3: Merton’s structural model 1

Consequently, the equity value E(0) can be theoretically valued akin to
the European call option on the assets, with the exercise price D. In cases
where the asset value follows a geometric Brownian motion described by
the (3.1) stochastic differential equation, the call and put options can be
evaluated using the Black-Scholes-Merton formula.

dA(t) = µA(t)dt+ σA(t)dW (t). (3.1)

While the model presents a sophisticated theoretical framework, it suffers
from several significant limitations. First, the asset market value process is
latent, typically unobservable empirically in most situations. However, there
exists a functional relationship between equity prices and asset prices as
specified by the model, allowing for the transformation of parameters de-
rived from stock data into parameters applicable to latent asset values using
stochastic calculus. Additionally, the model inaccurately presupposes that
default can only occur at the predetermined time T , whereas in practical
scenarios, default could happen at any point up to the maturity date. Con-
sequently, American options would be more suitable than European ones for
modeling this reality. Another complication arises from the diverse liquidity
of assets (ranging from short-term to long-term and spanning financial to
non-financial), necessitating varied discounting approaches during a distress
situation.

1Source: [15, p. 125, Figure 4.4]
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4 CreditMetrics
The CreditMetrics methodology is a risk management approach primarily

utilized for the assessment and management of credit risk by financial insti-
tutions, including banks and investment firms. Initially published by J.P.
Morgan in 1997, the main objective of the methodology is to analyze and
manage credit portfolio risk. Originally, the methodology was designed for
bonds priced by their market values, but the approach can also be adapted
for a loan portfolio, with losses calculated according to accounting provisions
that follow a specific classification system.

The model is based on ratings that are assumed to determine the values
of individual debt instruments. The model utilizes Monte Carlo simulation
and is based on ratings assumed to determine the values of individual debt
instruments.

The model’s fundamental principles:

• Today’s prices of bonds are determined by their current ratings and
the term structure of risk-free interest rates, which remains constant
during the analysis.

• Future prices of bonds (e.g., in a 1-year horizon) are determined by
their future ratings.

• Rating migration probabilities are obtained from historical data.

• Correlations between rating migrations are captured using asset corre-
lations.

• The asset correlations are calculated by mapping the firms into various
economic sector indices.

• Lastly, by simulating future ratings and market values for all bonds
in the portfolio, the empirical distribution of the portfolio value is
obtained, along with measures of expected and unexpected losses at
various probability levels.

Explaining the above principle steps in more detail:
Regarding bond valuation, we assume that for each rating s, there is a

term structure of zero-coupon interest rate rs(t) for every maturity t. This
allows us to calculate the value of a bond by summing the present values
of its cash flows, where we discount with the appropriate points on the zero
coupon yield curve for the given rating. The zero coupon rates imply the
forward rates, and this allow us to determine the forward price of a bond,
conditional on its future rating.
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We can simulate rating migration given certain initial ratings, using his-
torical transition probabilities, which are regularly disclosed by major rating
agencies in transition matrix.

Another key input factor is the recovery rate (RR) that is the amount of
credit recovered through foreclosure or bankruptcy procedures in event of a
default, expressed as a percentage of face value. The recovery rate depends
on the bond’s seniority classes, which define the order in which liabilities
are satisfied in the case of bankruptcy (with senior bonds having the highest
priority and junior subordinated bonds the lowest). We consider this rate as
a random variable, the expected value and standard deviation of which we
know from historical data. However, in a simplified approach, it is assumed
to be constant, using the average value.

To simulate joint migrations of many bonds from different issuers, we have
to take into account their correlations. A crucial aspect of this model is its use
of Merton’s credit risk option model, which establishes a link between a firm’s
asset value and its total debt. In CreditMetrics, the rating change of a bond b
is modeled by a continuous random variable r(b), which follows the standard
normal distribution N(0, 1). We can interpret it as an appropriately scaled
credit scoring change. Starting with an initial rating, one can establish a series
of thresholds for r(b) that, based on the probabilities of rating transitions,
are designed to trigger potential rating migrations.

According to the Merton model, the probability of default is determined
by the distance of lnA(t) from lnP . If we look at the logarithm of the asset
value instead of the (3.1) equation, it follows a Brownian motion with drift:

d(lnA) =

(
µ− σ2

2

)
dt+ σdW.

The larger this distance, the better the credit rating should be. Thus, starting
from an initial rating, the rating migration at time 1 is determined by the
standardized N(0, 1) asset return:

r =
1

σ

(
ln

A(1)

A(0)
−
(
µ− σ2/2

))
If the return is positive, then there is a rating improvement, and if the

return is negative, then there is a rating deterioration based on the rating
migration thresholds.

Given debtors i = 1, ..., N all we need to know is the matrix Σ of corre-
lations ρij = ρ(ri, rj) between the standardized asset returns, and the rating
migration thresholds. These correlations could be estimated from the equity
returns data, if all the companies are liquidly traded on stock markets. Since
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this is usually not the case, CreditMetrics proposes the use of a single-, or
multi-, factor model, breaking down debtors’ returns into a combination of
systematic factors and independent, idiosyncratic, debtor specific factors.

ri =
k∑

j=1

wi,jr (Ij) + wi,k+1ϵi

where r(Ij) is the standardized return of the Ij systematic factor (e.g. sector
or country index), and ϵi is the standardized debtor specific factor. Since
the systematic factors can be correlated, it is generally insufficient to require∑k+1

j=1 w
2
i,j = 1 to standardize ri. Determining the weights, and thus the corre-

lations, is a crucial step in the model and is often one of the most challenging
parts of the CreditMetrics methodology. The Technical Document suggests
an expert approach: estimating the weights of the systematic factors and the
complementary idiosyncratic factor. When more systematic sector or country
factors are involved, the “participation” of the debtor in these indices must
be specified and combined appropriately.

Given the asset return correlation matrix Σ, scenarios can be generated
by sampling a vector of standardized normal variables u, and multiplying it
by the Cholesky matrix A such that r = Au, where A is a lower triangular
matrix with the property that AA⊤ = Σ. We then determine the rating
migrations based on the thresholds and the simulated portfolio value V (r)
at the end of the period. By repeating this procedure, we obtain a large
number of sampled values V1, V2, . . . , VM , and an empirical distribution of
the portfolio market value. In the case that there is only one systematic
factor, or a few of them, it is computationally more efficient to sample first
of all the systematic factors, and then the independent idiosyncratic factors
generating ri for all the exposures.

The empirical distribution is used to estimate the α-quantile, represent-
ing the Value at Risk (VaR) at a specified confidence level. The confidence
intervals of these estimations must also be considered. Typically, the preci-
sion of a plain Monte Carlo simulation is of the order 1√

M
, where M is the

number of simulations. Therefore, at least 10,000 simulations are required to
achieve satisfactory precision.

Similarly, in the Vasicek model a standard normal distribution variable
will determine the defaults, and there this variable will be also divided into
systematic and idiosyncratic components.
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5 Vasicek model
The credit risk model proposed by Vasicek in 1987 [14] serves as the

foundation for Basel’s regulatory capital requirements and enjoys widespread
use in the financial industry.

Let Ti denote the time when the i-th obligor defaults. It is customary
to assume that everyone will defaults once, but the timing is uncertain, so
Ti < ∞ is regarded as a random variable. Let Qi be the cumulative probabil-
ity distribution of Ti. Let Yi = Φ−1 (Qi (Ti)) denote the variable obtained af-
ter the quantile-to-quantile transformation from Ti to a standardized normal
distribution, where Φ is the cumulative distribution function of the standard
normal distribution.

Using the previous notations, the i-th obligor defaults within 1 year if
and only if

Yi ≤ Φ−1(PD),

where PD = Qi(1) represents the 1-year probability of default.
Suppose the latent variable Yi, which represents the normalized return of

an obligor, can be written in the following form:

Yi = ωi · Z+ ξi · ϵi (5.1)

where Z is a K-vector of systematic risk factors. These factors capture un-
foreseen shifts in economy-wide such as interest rates, GDP growth rates,
commodity prices and stock market indices, which affect asset returns across
different sectors. It is assumed that Z is a mean-zero normal random vector
with a Ω variance matrix. The sensitivity of obligor i to Z is measured by
a ωi vector of factor loadings. The term ϵi represents obligor-specific risk,
where each ϵi is assumed to follow a standard normal distribution, being in-
dependent across obligors and also independent of Z. For simplicity, the Ω
covariance matrix is considered to have ones on its main diagonal (implying
each Zk has a standard normal marginal distribution), and the weights ωi

and ξi are scaled so that Yi has a mean of zero and a variance of one.
As mentioned, the obligor defaults if Yi is below Φ−1(PD) threshold, and

if we consider Yi as representing the normalized return of the obligor, we can
recognize the basic idea of the threshold model seen in Chapter 3. From now
on, I will denote this default threshold by γ.

To enable model calibration using historical data typically available from
rating agencies, obligors are grouped into G homogeneous “buckets” indexed
by g. In the ensuing applications, these buckets correspond to an ordered set
of rating grades. However, a bucketing system can theoretically be defined
along multiple dimensions. For instance, a bucket might consist of obligors
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of a given rating in a specific industry and country. Assume that within a
bucket, all obligors have the same default threshold γg, meaning the PD of
obligors in grade g is:

pg = Φ(γg).

The vector of factor loadings is assumed to be constant across all obligors
in a grade, thus we can rewrite the equation for Yi as one-factor Gaussian
copula model:

Yi = wg ·Xg +
√
1− w2

g · ϵi, (5.2)

where

Xg =

K∑
k=1

Zkωg,k√
ω′
gΩωg

(5.3)

is a univariate bucket-specific common risk factor. So Yi is driven by a Xg

common systematic (macroeconomic) factor, and an ϵi idiosyncratic inde-
pendent factor, where both Xg and ϵi follow independent standard Gaussian
distributions.

The G-vector X = (X1, . . . , XG) has a multivariate normal distribution.
Let σgh denote the covariance between Xg and Xh. Intuitively, we expect
σgh > 0. The factor loading on Xg for obligors in bucket g is:

wg =
√

ω′
gΩωg. (5.4)

which is bounded between zero and one. Note that due to the scaling con-
vention, which sets the variance of Y to 1, we can eliminate the ξi variable
from equation (5.1). Thus, in equation (5.2) we can express the weights of
both factors as a function of wg. In the following, I will refer to Xg as risk
factor, elements of Z as structural risk factors, wg as factor loading, and ωg

as structural factor loadings.

Default rate correlations

Default rate correlations among obligors are driven by correlations in the
risk factors. It can be demonstrated that the default correlation between an
obligor in bucket g and another in bucket h is:

ρgh =
F (γg, γh;wgwhσgh)− p̄gp̄h√

p̄g(1− p̄g)
√

p̄h(1− p̄h)
, (5.5)

where F (z1, z2; c12) denotes the joint CDF for a mean-zero bivariate normal
random vector with unit variances and covariance c12. In the special case
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where both obligors are in the same bucket, the within-bucket default corre-
lation is:

ρg =
F (γg, γg;w

2
g)− p̄2g

p̄g(1− p̄g)
. (5.6)

Possible restrictions

Given sufficient data, it is possible to estimate all G(G + 1)/2 default
correlations defined by equations (4) and (5). However, with limited data,
many parameters may be unidentified or poorly identified, necessitating the
imposition of ex-ante restrictions on factor loadings and risk factor corre-
lations. Equations (5.5) and (5.6) define G(G−1)

2
default correlations, which

we could theoretically estimate if we had sufficient data. However, in reality,
data is always scarce, making the parameters unidentified or poorly identi-
fied. To avoid this, we impose ex-ante restrictions on the factor loadings and
risk factor correlations.

One Risk Factor restriction : X1 = X2 = . . . = XG. (R1)

R1 is equivalent to requiring that σgh = 1 for all (g, h) bucket pairs. A suffi-
cient condition for R1 is that there is exactly one structural risk factor (i.e.,
K = 1). This condition is not always met, for example, if there are obligors
working in different sectors or countries, they are likely influenced by dif-
ferent structural factors, but if the portfolio is relatively homogeneous, then
this constraint can be a reasonable approximation.

The strongest restriction one can impose on the factor loadings is to
assume that they are constant across all obligors:

Same Factor Loading Restriction: wg = wh ∀g, h bucket pairs. (R2)

The combination of R1 and R2 restrictions imply that the structural factor
loadings are constant across buckets.

Using for loss calculation

Let’s assume we have j = 1, 2, . . . , J obligors with the same probability
of default PD in a homogeneous bucket:

Yj = w ·X +
√
1− w2ϵj.

Using Monte Carlo simulation, we generate data by first generating the value
of the systematic factor, x ∼ N(0, 1), and then generating values ϵj ∼ N(0, 1)
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for each borrower: If J is sufficiently large, by the law of large numbers, the
conditional probability of default is:

Pr
[
wX +

√
1− w2ϵj ≤ Φ−1(PD) | X = x

]
= Pr [Tj ≤ 1 | X = x] = PD1(x);

i.e., the rate of default PD1, conditional on the systematic factor X = x.
Ordering the probability by Xj and utilizing the fact that Xj follows a

standard normal distribution, the conditional probability can be expressed
as:

PD1(x) = Pr
[
wX +

√
1− w2ϵj ≤ Φ−1(PD) | X = x

]
=

= Pr
[
ϵj ≤ Φ−1(PD)−wx√

1−w2

]
= Φ

(
Φ−1(PD)−w·x√

1−w2

)
Since the conditional portfolio rate of default, PD1(m), depends monotoni-
cally only on the single factor, m ∼ N(0, 1), we can use the quantiles of m
to determine the unexpected default rate at any desired probability level, α
(e.g., 99%), by setting m = Φ−1(1 − α) = −Φ−1(α). Thus, the unexpected
default rate at the probability level α can be expressed as:

UDRα(PD) = Φ

(
Φ−1(PD) + w · Φ−1(α)√

1− w2

)
. (5.7)

The same argument may be applied to a portfolio of exposures with dif-
ferent probabilities of default, driven by a rating scale, assuming that for each
rating grade the number of exposures is large. The total losses of a portfo-
lio (L) consisting of J clients can be calculated by summing the individual
losses, which is expressed as:

L =
J∑

j=1

EADj ·LGDj ·Dj(Xj, ϵj)

where EADj is the exposure at default, LGDj is the loss given default (de-
fined in Section 2.2) and Dj is a dummy variable that indicates if the clients
defaults. The losses conditional to a macroeconomic scenario are given by:

E[L|x] =
J∑

j=1

EADj ·LGDj ·Φ
(
Φ−1(PD)− w · x√

1− w2

)
.

As we can see, the individual-specific risk completely disappears. However, in
the general scenario of multi-factor and non-granular portfolios, closed-form
expressions are unavailable, necessitating the use of Monte Carlo methods or
approximate formulas.
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Basel II/III Capital Formula

Even though the first Consultative Papers [2] proposed measures to cap-
ture portfolio granularity by penalizing less diversified portfolios, the final
version of the Basel capital calculation formula is portfolio invariant. It is
based on the following equation:

RWA = EAD ·W,

W = K · 12.5,
K = (UDR99.9%(PD)− PD) · LGD ·MA .

(5.8)

The variables in the equation are defined as follows:

• RWA (Risk-Weighted Assets): The total value of assets, weighted ac-
cording to credit risk.

• W : Risk Weight applied to the exposure.

• K: Capital requirement ratio.

• UDR99.9%(PD): Unexpected default rate at the 99.9% confidence level.

• MA (Maturity Adjustment): Adjusts the risk weight based on the ma-
turity of the exposure.

Originally, the Risk Weights were determined from the ratings using a
regulatory table, and this was replaced by the (5.8) formula. The number
12.5 in the formula refers to the reciprocal of 8%, which was a typical leverage
ratio under previous regulatory frameworks.

Banks applying the Internal Ratings-Based (IRB) approach must esti-
mate the Probability of Default (PD) parameter and, in the advanced ap-
proach, the Loss Given Default (LGD) and Exposure at Default (EAD) pa-
rameters using their internal models that satisfy a number of qualitative re-
quirements. The correlation parameter in the (5.7) formula is provided by reg-
ulation and varies according to different segments. For corporate, sovereign,
and bank exposures, the correlation is set as a weighted average between 0.12
and 0.24, depending on the PD:

w = 0.12 ·
(
1− e−50·PD

1− e−50

)
+ 0.24 ·

(
e−50·PD − e−50

1− e−50

)
. (5.9)
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The correlation is slightly reduced for Small and Medium-sized Enter-
prises (SME) exposures, reflecting their lower size and higher diversification.
Similarly, for consumer loans, the correlation is a weighted average between
0.03 and 0.16, while for mortgages it is fixed at 0.15, and for revolving loans
(e.g., credit cards), it is 0.04. The maturity adjustment (MA) is applied only
to corporate, sovereign, and bank exposures to differentiate risk between
shorter and longer maturities:

MA =
1 + (M−2.5) · b

1− 1.5 · b
, (5.10)

b = (0.1182− 0.05478 · ln(PD))2. (5.11)

For retail receivables, the adjustment is not used (MA = 1). Regula-
tors have set a high confidence level (α = 99.9%), which is considered over-
conservative compared to analogous regulations in the insurance industry,
such as Solvency II, which uses a confidence level of 99.5%. This high con-
fidence level might compensate for imperfect diversification not reflected in
the model. The correlation coefficients are adjusted to reflect different lev-
els of diversification, with lower coefficients for SMEs and revolving credits,
where higher diversification is expected.

Advantages

1. Risk Sensitivity: The Basel II formula offers improved risk sensitivity
compared to the Basel I RWA calculation.

2. Simplicity: Despite its improvements, the formula remains relatively
simple, allowing banks to estimate key parameters without sophisti-
cated simulation or analytical portfolio modeling.

3. Encourages Higher Standards: The intention behind the IRB ap-
proach is to motivate banks to adopt higher credit risk management
standards, with IRB capital requirements typically being slightly below
the Standardized Approach requirements for the same portfolio.
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Disadvantages

1. Simplifying Assumptions: The Vasicek model, which underpins the
Basel formula, makes significant simplifying assumptions, such as as-
suming a perfectly diversified portfolio and ignoring the effects of low
diversification due to limited exposures.

2. Unexpected Recovery Risk: The model underestimates unexpected
recovery risk, which can be significant. Empirical studies [1] show that
recovery rates are negatively correlated with the probability of default,
leading to potential underestimation of economic capital during down-
turns.

3. Pro-Cyclicality: Basel II capital requirements are pro-cyclical, be-
ing relatively low during economic booms and high during recessions.
This can exacerbate economic cycles, encouraging more lending during
booms and restricting it during downturns.

Overall, while the Basel II/III capital formulas represent a significant ad-
vancement in risk sensitivity and regulatory standards, they also introduce
new challenges and complexities to their predecessors that need ongoing re-
finement and management.
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6 Parameter estimation of Vasicek model

6.1 Moment based estimation

The concept of method of moments parameter estimation is that the first
and second moments of the conditional p(x) probability of default match the
time series of default rates for T → ∞. The unconditional PD is estimated
by the average p of the time series of default rates.

E[p(x)] = p (6.1)

Let d̂t be the number of defaults during year t, and let n̂t denote the
number of obligors at the start of year t. Let p̂t denote the observed default
frequency d̂t/n̂t. Assuming that n̂t is independent of the realization of xt, the
conditional probability’s variance V can be derived as follows.

V [p̂] = E[V [p̂ | p(x), n̂]] + V [E[p̂ | p(x), n̂]] (6.2)

In equation (6.2), we used the law of total variance for V [p̂]. The variable
d̂t follows a Binom(n̂t, p(xt)) binomial distribution because the obligors de-
faults are assumed to be independent conditional on x. Hence, we obtain the
expected value of the conditional variance of p̂ using equation (6.3a).

E [V [p̂ | p(x), n̂)] = E
[
V
[
d̂ | p(x)

]
/n̂2
]

(6.3a)

= E [p(x) (1− p(x)) /n̂] (6.3b)

= E [1/n̂]
(
E [p(x)]−

(
V [p(x)] + E [p(x)]2

))
(6.3c)

= E [1/n̂] (p̄ (1− p̄)− V [p(x)]) (6.3d)

The expression in (6.3a) is obtained by substituting the variance of the bino-
mial distribution into (6.3b), where the mutual independence of x and n̂ and
the equality E[p(x)2] = −V [p(x)] + E[p(x)]2 are exploited to derive the ex-
pression in (6.3c). Finally, by substitution of (6.1), we obtain the expression
in (6.3d).

E[p̂ | p(x), n̂] = p(x) (6.4)

The equation (6.4) holds true by definition, and it implies equation (6.5).

V [E[p̂ | p(x), n̂]] = V [p(x)] (6.5)

Replacing equations (6.5) and (6.3d) into equation (6.2) yields equation (6.6).

V [p̂] = E [1/n̂] (p̄ (1− p̄)− V [p(x)]) + V [p(x)] (6.6)
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By rearrangement, equation (6.6) leads to the expression for V [p(x)].

V [p(x)] =
V [p̂]− E [1/n̂] p̄ (1− p̄)

1− E [1/n̂]
(6.7)

On the right-hand side of equation (6.7), for historical data, each term is
known, thus we calculate the unconditional variance using this formula.

Now that we know how to calculate the unconditional variance from his-
torical data, we want to express this quantity as a function of the sought
parameters p and w. Let y1 and y2 the 2 latent variable for 2 obligors in the
same grade. Assume that the obligors have the same w factor loading in our
one systematic risk factor model.

y1 = w · x+
√
1− w2 · ϵ1

y2 = w · x+
√
1− w2 · ϵ2

(6.8)

The default events of the two obligors are independent conditional on x, thus
the probability that both y1 and y2 are below the given cut-off value C, i.e.,
both obligors default, can be calculated as in equation (6.9).

Pr(y1 < C & y2 < C |) = Pr(y1 < C | x) · Pr(y2 < C | x)

= Φ

(
C − xw√
1− w2

)2

= p(x)2
(6.9)

Then we express the unconditional variance as the difference between the
second moment, in order to substitute p(x)2 based on equation (6.9).

V [p(x)] = E[p(x)2]− E[p(x)]2

= E[Pr(y1 < C & y2 < C | x)]− E[p(x)]2
(6.10)

Using the fact that y1 and y2 are standard normally distributed with correla-
tion w2, the unconditional expectation equals the value of a two-dimensional
normal cumulative distribution function:

E[Pr(y1 < C & y2 < C | x)] = BIVNOR(C,C,w2), (6.11)

where BIVNOR(z1, z2, w
2) is the bivariate normal cdf for Z ≡ [z1 z2]

′ such
that

E[Z] =

[
0
0

]
, V [Z] =

[
1 w2

w2 1

]
.

Substituting equations (6.11) and (6.1) into equation (6.10), we obtain:

V[p(x)] = BIVNOR(C,C,w2)− p2. (6.12)
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It is evident that in the variance calculation, the square of the w factor
loading appears always, so the equations would hold true for both +w and −w
cases. However, from an economic perspective, we always choose the positive
w since intuitively and empirically, there appears to be a positive correlation
between the x common systematic factor and the obligor’s default-inducing
variable y.

The cut-off value C determines the unconditional probability in a grade,
so in order to match the first moment, the equation p = Φ(C) (where Φ is
the standard normal cumulative distribution function) must be satisfied.

In summary, first, we set the C threshold value based on the average his-
torical default rate, C = Φ−1(p). For fitting the parameter w factor loading,
first, we calculate the unconditional variance from historical data based on
equation (6.7) (from realized variance, the value of E[1/n̂], and the value of
p), then adjust the value of w to satisfy equation (6.12).

In Chapter 7, I compare this MM parameter estimation on synthetic
simulated data with the maximum likelihood estimation (discussed in the
following Chapter 6.2), and also apply them to historical S&P data.

6.2 Maximum likelihood

Our goal is to determine those w factor loadings and the γ default thresh-
old parameters from historical data that maximize the value of the likelihood
function. Historical data includes the number of obligors for G rating grades
at the beginning of each year and how many of them defaulted by the end of
the year over T years. The model assumes that wg and γg are constant over
time, and that the values of the risk factors X are independent over time. In
the following, I will use the conventional notation:

• dg: the number of defaults in grade g

• ng: the number of obligors in grade g

• d: G-long vector whose elements are ng

• n: G-long vector whose elements are ng

• wg: factor loading for grade g

• γg: default threshold for grade g.

Conditional on Xg, the default events of obligors in grade g are indepen-
dent and can be considered individually as Bernoulli distributed with the
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following probabilities:

pg (Xg) = Φ

(
γg − wgXg√

1− w2
g

)
. (6.13)

Therefore, dg the number of defaults in grade g conditional on Xg follows
a binomial distribution

L (dg | Xg) =

(
ng

dg

)
pg (Xg)

dg (1− pg (Xg))
ng−dg . (6.14)

The joint likelihood of conditional d defaults on X is the product of the G
conditional likelihoods specified in (6.14), because defaults are conditionally
independent across grades

L(d | X) =
G∏

g=1

(
ng

dg

)
pg(xg)

dg(1− pg(xg))
ng−dg .

The unconditional likelihood for d is thus expressed as:

L(d) =

∫
RG

G∏
g=1

(
ng

dg

)
pg(xg)

dg(1− pg(xg))
ng−dgdF (x). (6.15)

Here, F (x) denotes the multivariate normal cumulative distribution func-
tion of X. The parameters in Equation (6.15) are w = (w1, . . . , wG), γ =

(γ1, . . . , γG), and Σ, which is the variance matrix of X that includes G(G−1)
2

free covariance parameters.
Note that this (6.15) likelihood corresponds only to a single time point,

and the values of the X risk factors are assumed to be independent over time.
Therefore, the overall likelihood function over the entire time period is the
product of the likelihood functions at individual time points, as we will see
later in the (8.1) formula.

Theoretically, we could maximize the product of (6.15) over T observa-
tions concerning all 2G + G(G−1)

2
free parameters simultaneously, providing

unrestricted full information maximum likelihood estimates of the param-
eters. However, this approach is computationally feasible only for a small
G.

MLE1

Unless the common factor covariance parameters are specifically of in-
terest, a limited information approach that does not require estimating the
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elements of Σ is preferable. By integrating Xg out of equation (6.14), we
derive the marginal likelihood:

L(dg) =

∫
R

(
ng

dg

)
pg(x)

dg(1− pg(x))
ng−dgdΦ(x). (6.16)

This function depends only on the parameters wg and γg, allowing us
to estimate w and γ by maximizing the marginal likelihood for each grade
independently. This method provides our least restrictive maximum likeli-
hood estimator (MLE1), which imposes no constraints on the parameters
of the default model described in Chapter 5. This estimator does not use
information about potential correlations in default rates across grades, mak-
ing it asymptotically inefficient (except in the unrealistic special case where
σgh = 0 for all g ̸= h).

MLE2

Assumption (R1) implies that the effect of X on all obligors can be repre-
sented by a single standard normal scalar variable X. Under this restriction,
we can rewrite (6.15) as:

L(d) =

∫
R

G∏
g=1

(
ng

dg

)
pg(x)

dg(1− pg(x))
ng−dgdΦ(x) (6.17)

Maximizing this (6.17) likelihood over w and γ that becomes our second
maximum likelihood estimator (MLE2).

MLE3

Similarly, (R1) and (R2) can be imposed by replacing the vector w in
equation (6.17) with a single loading w and maximizing the resulting likeli-
hood concerning γ and the scalar w. This method will be referred to as our
third maximum likelihood estimator (MLE3).

If both (R1) and (R2) hold, then all the maximum likelihood estima-
tors described are consistent, and the (MLE3) estimator achieves the lowest
possible asymptotic variance, making it the most efficient among consistent
estimators. It is crucial to note, however, that in finite samples, some or all
of these maximum likelihood estimators may be biased.

In the next chapter, we use Monte Carlo simulations to investigate the
small sample properties of these estimators and compare them with the
method of moments estimator, which was described in 6.1.
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7 Empirical results
In this chapter, we examine the properties of the parameter estimates

previously introduced. However, since all data are scarce in reality, we analyze
the asymptotic properties on synthetically generated data. If we had data
over a sufficiently long period, the choice between models would be a tradeoff,
as the more constrained MLE methods are more precise (if their assumptions
hold true), but the less constrained models are more robust to specification
errors. The use of generated data helps not only in studying asymptotic
properties but also in examining the bias of parameter fittings, as unlike
with historical data, we know the theoretical values of the parameters here.

In the analysis, I use the 4 methods described earlier:

• MM: momentum estimation for each grade

• MLE1: maximum likelihood estimation for each grade

• MLE2: maximum likelihood estimation with (R1) assumption

• MLE3: maximum likelihood estimation with (R1) and (R2) assump-
tions

7.1 Synthetic dataset

With the satisfaction of (R1) and (R2), I generate the synthetic data
using Monte Carlo simulations, where the input parameters are the T length
of the time period , the w common factor loading, the PDs of the grades and
the number of obligors (which for simplicity, I assumed to be constant over
time).

I use the input parameters and method proposed by Gordy [10] for con-
structing the data, creating three grades where Grade A corresponds to S&P
grades A and BBB, Grade B corresponds to the S&P BB grade, and Grade
C corresponds to the S&P B grade. The real parameters for the three grades
can be read from Table 1.

Grade Factor loading PD Gamma Number of obligors
A 0.45 0.0015 -2.9677 400
B 0.45 0.0100 -2.3263 250
C 0.45 0.0500 -1.6449 100

Table 1: Generated Rating Grades
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In the equation (7.1), the variables Xt and ϵi,t are generated from a stan-
dard normal distribution. If the resulting value of Yi,t is less than the thresh-
old value corresponding to the grade of the i-th obligor, then a default event
occurs.

Yi,t = w ·Xt +
√
1− w2 · ϵi,t, (7.1)

where Yi,t is the latent variable of the i-th obligor at time t, Xt is the value
of the common risk factor at time t, and ϵi,t is the idiosyncratic risk value
associated with the i-th obligor at time t.

To investigate the bias that varies with time horizon size, I generate data
for 20, 40, 80, and 160 years, although in reality, we never have historical
default rates for 80 and 160 years. For each T , we conduct 500 simulations,
that is, we generate 500 datasets, and for each dataset, we perform parameter
fitting with the four methods described above. By taking the 5% and 95%
quantiles of the 500 fitted estimates, we obtain the confidence interval for
the parameter estimation with the given method. The results are shown in
Figure 4, where the median of the estimates is marked in blue, and the true
parameter is indicated by a green dashed line.

As expected, increasing T results in the estimated factor loadings’ means
converging to 0.45 for all grades and estimators. The Table 8 shows the
mean, standard deviation, percentiles, and Root Mean Squared Errors (RM-
SEs) calculated from the true factor loading for T=20 years. We observe that
introducing more restrictions leads to more accurate estimates. The evolu-
tion of these descriptive statistics with increasing time horizons can be seen
in the Table 6. Interestingly, when bias is present, it is always negative, sug-
gesting that risk might be underestimated and potentially exposing us to
greater danger than originally planned. Not surprisingly, both variance and
RMSE decrease with increasing T, indicating that the properties of all four
estimators improve as T increases.

For small T, the accuracy of the MM method lags significantly behind
the others, and MLE1 also underperforms compared to the more restrictive
estimators, and this trend becomes more evident in the percentiles. It is worth
noting that, in practice, such data sizes are typically available.

The descriptive statistics for the default threshold parameter estimates
are presented in Tables 7 and 9. Here, we observe that even for small T, all
four estimators accurately estimate the default threshold value and, conse-
quently, the probability of default (PD).

Overall, it can be said that the MLE3 estimator performed the best.
In reality, if we do not use the parameter restrictions, we may obtain

significant bias. However, if we do use the restrictions and the assumptions
are not true, the estimates will be weaker due to specification error.
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Figure 4: Estimated factor loadings by sample size
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7.2 S&P historical dataset

In this chapter, I employ the previously introduced maximum likelihood
and method of moments estimation techniques on historical rating data ob-
tained from S&P. The historical default rates between 1981 and 2020 can be
seen in Table 10 of the appendix. However, data on the temporal evolution
of the number of examined companies were not available, so I assumed the
number of obligors to be constant over time, corresponding to the 2020 data,
which can be read from Table 2.

Rating AAA AA A BBB BB B CCC/C
# of rating 8 322 1,432 1,855 1,289 2,078 238

Table 2: Number of ratings as of 1/1/2020

The quantities required for the MM estimation are calculated in Table
3. The data contains information on 7 ratings from AAA to CCC/C, but in
the top 2 grades, there were either no defaults or too few defaults to reliably
estimate the PD. Therefore, I will only model the ratings from A to CCC/C.
Certainly, the AAA and AA grades are important in practice, but they often
require additional methodologies that are beyond the scope of this thesis.

p E[1/n̂]
√
V [p̂]/p

√
V [p]/p

AAA 0.0000 0.0092 0.0000 -
AA 0.0001 0.0030 0.0006 0.3175
A 0.0005 0.0017 0.0010 0.6048
BBB 0.0019 0.0026 0.0025 0.5760
BB 0.0086 0.0038 0.0098 0.9325
B 0.0419 0.0041 0.0320 0.7017
CCC/C 0.2492 0.0360 0.1165 0.3377

Table 3: Empirical Default Frequency and Volatility

The estimated factor loading parameters are shown in Table 4, while the
estimated factor loading parameters are displayed in Table 5. We find that
there is no monotonic relationship between the default correlation and the
grades, and thus the default thresholds that determine them.

Some previous studies did not directly estimate the w factor loading but
assumed that it can be expressed as:

wg = f(λ(γg))
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where f is a continuous monotonic function that maps real numbers to the
interval [−1, 1], and λ maps the default thresholds to the real number line.
For example, the following functions are often assumed:

f(λ) =
2

π
arctan(λ),

λ(γ) = β0 + β1γ + β2γ
2.

(7.2)

In this case, the beta coefficients would be estimated. For MLE2, the g
function would be linear (with the constraint β2 = 0), while for MLE3, it
would be constant (with the constraints β1 = 0 and β2 = 0). In my dataset,
I have not used such index functions, as the data did not strongly support
their applicability. Future studies might explore this avenue further.

A BBB BB B CCC/C
MM 0.3208 0.3053 0.3443 0.3280 0.3519
MLE1 0.5379 0.5072 0.4023 0.3454 0.3333
MLE2 0.2580 0.3081 0.2866 0.3296 0.2340
MLE3 0.3004 0.3004 0.3004 0.3004 0.3004

Table 4: S&P estimated w factor loadings

The estimated default thresholds according to the four methods are rela-
tively close to each other, which is consistent with the results observed in the
Monte Carlo simulations. Compared to previous studies [10] fitted on ear-
lier datasets, I obtained similar parameters for the A, BBB, and BB rating
grades. However, while the B grade has a slightly lower, the CCC/C grade
has significantly higher default probabilities, which can also be observed in
historical data.

A BBB BB B CCC/C
MM -3.2741 -2.8865 -2.3842 -1.7289 -0.6770
MLE1 -3.1696 -2.8031 -2.3656 -1.7281 -0.6574
MLE2 -3.2573 -2.8874 -2.3834 -1.7303 -0.6764
MLE3 -3.2549 -2.8902 -2.3833 -1.7328 -0.6738

Table 5: S&P estimated γ default thresholds

In the following, I will present the methodologies related to numerical
implementation that emerged during the model implementation.
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8 Numerical methods
In this chapter, I discuss the problems encountered during the imple-

mentation of parameter estimations and elaborate on my own solutions in
detail. The literature often does not address this part, although I believe it
is at least as important to obtain numerically stable solutions as to be fa-
miliar with the fundamental assumptions of the model. Therefore, I dedicate
an entire chapter to it as a supplement, to ensure that my results are fully
reproducible.

8.1 Integration in the Likelihood function

As previously mentioned, the essence of maximum likelihood parameter
estimation is to maximize the likelihood value in equation (8.1) with respect
to the parameters γ and w:

L(d) =
T∏
t=1

∫
R

G∏
g=1

(
ng,t

dg,t

)
pg(x)

dg,t(1− pg(x))
ng,t−dg,tdΦ(x), (8.1)

where dg,t is the number of defaults in grade g at time t, and ng,t is the
number of obligors in grade g at time t.

Even at a single point in time, the likelihood value is relatively small
for larger grade buckets, and this is further compounded by multiplying the
values calculated for all time points. Therefore, we typically work with the
log-likelihood value for numerical manageability:

LL(d) =
T∑
t=1

log

∫
R

G∏
g=1

(
ng,t

dg,t

)
pg(x)

dg,t(1− pg(x))
ng,t−dg,tdΦ(x)

 . (8.2)

There is no analytical formula for calculating the integral, so we must
use numerical integration tools. One approach is to utilize the relationship
in equation (8.3), where ϕ is the density function of the standard normal
random variable, and calculate the value in equation (8.4).∫ ∞

−∞
f(x) dΦ(x) =

∫ ∞

−∞
f(x)ϕ(x) dx (8.3)

LL(d) =
T∑
t=1

log

∫
R

G∏
g=1

(
ng,t

dg,t

)
pg(x)

dg,t(1− pg(x))
ng,t−dg,t · ϕ(x)dx

 (8.4)
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The problem with this is that we still integrate over the entire real line while
the integrand function takes non-negligible values only in a small neigh-
borhood around 0. The numerical integration functions built into popular
Python packages calculate the integral value based on an equidistant divi-
sion by default, so for such a function concentrated around 0, the numerical
absolute error is of the same order of magnitude as the integral value itself.

Inverse CDF method
Partly for this reason, the so-called Inverse CDF method [6] is used in

practice to numerically calculate the integral, the essence of which is the
transformation in equation (8.5).∫ ∞

−∞
f(x)ϕ(x) dx =

∫ 1

0

f
(
Φ−1(y)

)
dy (8.5)

Thus, the log-likelihood function value is calculated based on the below equa-
tion:

LL(d) =
T∑
t=1

log

 1∫
0

G∏
g=1

(
ng,t

dg,t

)
pg(Φ

−1(y))dg,t(1− pg(Φ
−1(y)))ng,t−dg,tdy

 .

8.2 The unimodality of the Log-Likelihood function

Given a dataset, d is fixed, so this log-likelihood value can be considered
a function of γ and w. In the case of MLE1 method, we examine the grade
classes separately, so this is a 2-parameter optimization (now w and γ are
scalars) for each bucket. In the case of MLE2 estimator, if we have G grade
buckets, then we need to optimize with respect to 2 · G parameters. In the
case of MLE3, we assume a common factor loading and different threshold
values, so here we need to maximize the log-likelihood value with respect to
G+ 1 parameters.

Before starting the optimization, it is worth examining the shape of the
multidimensional log-likelihood function to see if it is unimodal, meaning
whether the local maximum equals the global maximum. It is worth
examining the contour lines in the cross-sectional plots of the multidimen-
sional log-likelihood function because, for non-negative functions, concavity
is a special case of log-concavity, which is a part of quasi-concavity, and all
of these are unimodal (if they have a local maximum on their domain).

If we have 2 grades and consider the log-likelihood function with respect
to 2 thresholds and a common factor loading, then the cross-sectional contour
lines of the function are shown in Figure 5. The contour lines appear convex,
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suggesting that the function is unimodal, although it should be noted that
unimodality is not generally proven. It should be noted that the success of
some optimizers is fundamentally dependent on convexity.
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Figure 5: Plane sections of the log-likelihood function

8.3 Variable change

To enhance the numerical stability of the optimization, I use a variable
change introducing a and b as variable vectors instead of γ and w, as shown
in equation (8.6).

ag = − wg√
1− w2

g

bg =
γg√
1− w2

g

(8.6)

This simplifies the pg(x) function from the form in equation (6.13) to the
form in equation (8.7).

pg (x) = Φ (ag · x+ bg) . (8.7)

Then, we can consider the likelihood function as a function of a and b. After
maximizing the log-likelihood with respect to a and b, we can recover the
estimated w and γ parameters based on the equations in (8.8).

wg = − ag√
a2g + 1

γg = bg ·
√

1− w2
g

(8.8)
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8.4 Finding the maximum in multiple dimensions

Since calculating the log-likelihood function is computationally intensive
and the gradient can only be calculated numerically, likely magnifying the
numerical error, I do not recommend a gradient-based optimizer to find the
optimal parameters. Several multidimensional optimizers were tested, leading
to the selection of the Nelder-Mead method, specifically its SciPy implemen-
tation based on the paper by Fuchang Gao and Lixing Han [8], and now I
will briefly introduce this method.

Nelder-Mead method

The Nelder-Mead simplex algorithm is a popular direct search method
used for solving unconstrained optimization problems. It is especially useful
when the gradient of the objective function is unavailable or unreliable. This
algorithm, introduced by John Nelder and Roger Mead [13], is designed to
minimize a scalar-valued function f : Rn → R.

The algorithm uses a simplex, which is a geometric figure consisting of
n+1 vertices in n-dimensional space, to iteratively approximate the minimum
of the objective function.

Each iteration of the algorithm involves evaluating the function at the
vertices of the simplex and updating the simplex based on these evaluations.
The algorithm operates using four primary operations: reflection, expansion,
contraction, and shrinkage. These operations adjust the position of the sim-
plex to explore the search space and find the minimum of the f objective
function.

Algorithm Description:

• Initialization: The algorithm begins with an initial simplex defined by
n+ 1 vertices, {x1, x2, . . . , xn+1}. These vertices are ordered such that
f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). The centroid xc of the best n vertices
is computed as:

xc =
1

n

n∑
i=1

xi.

• Reflection: The reflection point xr is calculated as:

xr = xc + α(xc − xn+1),

where α > 0 is the reflection coefficient. If f(x1) ≤ f(xr) < f(xn), then
xr replaces xn+1 and the algorithm proceeds to the next iteration.
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• Expansion: If f(xr) < f(x1), an expansion is performed to explore
further in the reflected direction. The expansion point xe is computed
as:

xe = xc + β(xr − xc),

where β > 1 is the expansion coefficient. If f(xe) < f(xr), then xe

replaces xn+1; otherwise, xr replaces xn+1.

• Contraction: If f(xn) ≤ f(xr) < f(xn+1), an outside contraction is
performed:

xoc = xc + γ(xr − xc),

where 0 < γ < 1 is the contraction coefficient. If f(xoc) ≤ f(xr), xoc

replaces xn+1. If f(xr) ≥ f(xn+1), an inside contraction is performed:

xic = xc − γ(xr − xc).

If f(xic) < f(xn+1), xic replaces xn+1; otherwise, a shrinkage step is
executed.

• Shrinkage: If none of the above steps produce a better point, the sim-
plex is contracted towards the best vertex:

xi = x1 + δ(xi − x1), i = 2, . . . , n+ 1,

where 0 < δ < 1 is the shrinkage coefficient. This step reduces the size
of the simplex and ensures convergence.

In the standard implementation, the parameters for these operations are
typically chosen as {α, β, γ, δ} = {1, 2, 0.5, 0.5}.

Stopping Criteria: The algorithm terminates when the standard de-
viation of the function values at the vertices of the simplex falls below a
predefined tolerance.

Convergence Properties: The convergence of the Nelder-Mead algo-
rithm is well-studied in low dimensions but less understood in higher di-
mensions. For strictly convex functions in two dimensions, the algorithm
converges to the global minimum under certain conditions. However, there
are known examples where the algorithm fails to converge to a stationary
point, particularly for higher-dimensional or poorly scaled problems.

Adaptive Variants: To address the limitations of the standard Nelder-
Mead algorithm in high dimensions, adaptive variants have been proposed.
These variants adjust the algorithm’s parameters based on the problem’s di-
mensionality and the current iteration’s performance. For instance, adaptive
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schemes may modify the reflection, expansion, contraction, and shrinkage
coefficients to improve convergence rates and robustness.

For the MLE2 and MLE3 maximum likelihood estimators, I used an adap-
tive variant of the Nelder-Mead method [8].

8.5 One-dimensional search

The advantage of the method of moments is that it relies on far fewer
assumptions than the maximum likelihood methods. Additionally, thanks to
analytical formulas, it is much more manageable both numerically and in
terms of computational demand. I only used an one-dimensional search to
find the optimal factor loading. The objective function is given by the square
of the difference between the two sides of equation (6.12), where the left side
is calculated from the empirical data, and the right side is a function of the
factor loading.

I used the Brent’s algorithm [3] to find the minimum point of the function,
which combines the bisection method with the secant method. Furthermore
it uses inverse parabolic interpolation when possible to speed up convergence
of golden section method.

The objective function is convex, so the local minimum found using
Brent’s algorithm is also the global minimum.
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9 Conclusion
This thesis has explored the Vasicek credit risk model, focusing on its pa-

rameter estimation methods and their applications to synthetic and histori-
cal data. The results underscored that MLE, particularly when incorporating
more restrictions, offered superior accuracy and reduced bias, aligning with
previous studies.

While the method of moments is numerically well manageable, the some-
what more sophisticated maximum likelihood method posed numerical chal-
lenges, and it was instructive to tackle these.

Beyond understanding the Vasicek framework, i.e., the Gaussian copula’s
mathematical background and the business context, it was fascinating to see
what numerical methods the model implementation requires.

In my further work/research, I will likely encounter this methodology
again, and the following questions can still be explored:

• it is interesting to examine whether non-global optimization can always
be used, i.e., whether the log-likelihood function is always unimodal

• investigating other methods, such as Gordy and Heitfield [10], who
modeled default correlation as a function of the default threshold.
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Year AAA AA A BBB BB B CCC/C
1981 0.00 0.00 0.00 0.00 0.00 2.33 0.00
1982 0.00 0.00 0.21 0.35 4.24 3.18 21.43
1983 0.00 0.00 0.00 0.34 1.16 4.70 6.67
1984 0.00 0.00 0.00 0.68 1.14 3.49 25.00
1985 0.00 0.00 0.00 0.00 1.50 6.53 15.38
1986 0.00 0.00 0.18 0.34 1.33 8.45 23.08
1987 0.00 0.00 0.00 0.00 0.38 3.13 12.28
1988 0.00 0.00 0.00 0.00 1.05 3.68 20.37
1989 0.00 0.00 0.18 0.61 0.73 3.40 33.33
1990 0.00 0.00 0.00 0.58 3.57 8.56 31.25
1991 0.00 0.00 0.00 0.55 1.69 13.84 33.87
1992 0.00 0.00 0.00 0.00 0.00 6.99 30.19
1993 0.00 0.00 0.00 0.00 0.70 2.62 13.33
1994 0.00 0.00 0.14 0.00 0.28 3.09 16.67
1995 0.00 0.00 0.00 0.17 0.99 4.59 28.00
1996 0.00 0.00 0.00 0.00 0.45 2.91 8.00
1997 0.00 0.00 0.00 0.25 0.19 3.52 12.00
1998 0.00 0.00 0.00 0.41 0.82 4.64 42.86
1999 0.00 0.17 0.18 0.20 0.95 7.31 33.82
2000 0.00 0.00 0.27 0.37 1.16 7.71 35.96
2001 0.00 0.00 0.27 0.34 2.98 11.56 45.45
2002 0.00 0.00 0.00 1.02 2.90 8.20 44.44
2003 0.00 0.00 0.00 0.23 0.59 4.07 32.93
2004 0.00 0.00 0.08 0.00 0.44 1.45 16.30
2005 0.00 0.00 0.00 0.07 0.31 1.75 9.09
2006 0.00 0.00 0.00 0.00 0.30 0.82 13.33
2007 0.00 0.00 0.00 0.00 0.20 0.25 15.24
2008 0.00 0.38 0.39 0.49 0.81 4.11 27.27
2009 0.00 0.00 0.22 0.55 0.75 11.03 49.46
2010 0.00 0.00 0.00 0.00 0.58 0.87 22.83
2011 0.00 0.00 0.00 0.07 0.00 1.68 16.42
2012 0.00 0.00 0.00 0.00 0.30 1.58 27.52
2013 0.00 0.00 0.00 0.00 0.10 1.65 24.67
2014 0.00 0.00 0.00 0.00 0.00 0.78 17.51
2015 0.00 0.00 0.00 0.00 0.16 2.42 26.67
2016 0.00 0.00 0.00 0.06 0.47 3.76 33.17
2017 0.00 0.00 0.00 0.00 0.08 1.00 26.56
2018 0.00 0.00 0.00 0.00 0.00 0.99 27.18
2019 0.00 0.00 0.00 0.11 0.00 1.49 29.76
2020 0.00 0.00 0.00 0.00 0.93 3.52 47.48

Table 10: Historical Default Rates by Credit Rating

Source: Standard & Poor’s Global Ratings, Annual Default Study
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Magyar nyelvű összefoglaló
A szakdolgozatom célja a Vasicek hitelkockázati modell bemutatása és

paraméterbecsléseinek vizsgálata. A modell lényege a csődvalószínűségek és
ezek korrelációjának modellezése egy egyfaktoros Gauss-kopula segítségével.
A módszer annyira elterjedt, hogy a Bázel II óta a tőkeszámítás is ezen
alapszik.

A dolgozatom elején a legfontosabb hitelkockázati fogalmak definiálása
mellett kitérek a tőkeszámítás alapjaira is a Bázeli keretrendszerben. Ezután
Merton strukturált modelljét mutatom be, amely a csődök modellezésének
alapját adja. Feltételezi, hogy akkor csődöl be egy cég, ha eszközeinek értéke
a kötelezettségeinek mértéke alá csökken. A következő fejezetben a Credit-
Metrics módszertanáról írok, amely mára a portfólió hitelkockázat mérésének
egyik standardjává vált. Alapfeltevése, hogy az egyes adósságinstrumentumok
értékét a kockázati besorolásuk határozza meg.

A Vasicek modellt először többfaktoros modellként vezetem be, majd vis-
szavezetem egyfaktorosra. A modell alapfeltevésein túl kifejtem azt is, hogy
milyen további korlátozásokat lehetne bevezetni a szabadságfokok csökken-
tése érdekében, hogy pontosabb paraméterbecsléseket kapjunk. A gyakorlat-
ban egyszerűsége és könnyű használata miatt a momentum módszer az el-
terjedt eljárás a paraméterek becslésére. Gordy és Heitfield [10] rámutatott,
hogy rövid időtávú adatok esetén ez jelentős negatív torzítással rendelkezik,
ezért maximum likelihood becslési módszereket mutattak be. Ezen három
maximum likelihood esztimátor egyre több alapfeltevést használ, és ezáltal
egyre kevesebb paraméterrel rendelkezik.

Az említett módszereket implementáltam Pythonban, és generált ada-
tokon megvizsgáltam a becslések tulajdonságait. Az előző tanulmányokkal
egybehangzó eredményeket kaptam, vagyis ha igazak az alapfeltevések, akkor
a leginkább korlátozott modell adja a legpontosabb becslést. Azonban a
gyakorlatban a feltételezések megkérdőjelezhetők, és ezáltal modell speci-
fikációs hiba torzíthatja a becslést. Az S&P által közzétett 1981 és 2020
közötti csődráták adathalmazára is alkalmaztam a paraméterbecsléseket, és
a csődvalószínűségeket meghatározó küszöbértékekre hasonló értékeket kap-
tam, mint a korábbi tanulmányok, amelyek még 2002-ig tartó adatokkal dol-
goztak.

A dolgozatomban külön fejezetet szenteltem az implementálás során előjött
numerikus módszereknek, ahol a numerikus integráláson túl érintem az egy-
illetve többdimenziós optimalizálás témakörét is.

További kutatási irány lehet a log-likelihood függvény logkonkavitásának
vizsgálata, hogy megbizonyosodjunk arról, hogy az optimalizálással kapott
lokális optimum egyben globális optimum is.
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