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Absztrakt

Név: Mesko Alex Istvan
Cim: Reinsuring Longevity: How Age Group Dynamics Influence Longevity Insurance Returns
Kulcsszavak: Hosszu élettartam kockazat, HosszU élettartam viszontbiztositas

Az elmdlt évtizedek rdmutattak arra, hogy a hosszu és tartalmas élet tobbé mar nem csupan
alom, hanem val6sag. Szamos ipai és tarsadalmi tényez6 kedvezé egyiitt allasa hozzajarult az
¢letkilatasok példazatlan javulasahoz, melynek koszonhetden a varhatd élettartam is eddig nem
latott szinteket ért el. A halanddsag javulasaval egyidoben az ebbdl vonatkoztathatd kockazatok
és kihivasok is napvilagot lattak. Ezen kockazatok a hétkoznapi szemlélé szamara koénnyen
rejtve maradhatnak a pozitivumok takardsdban, ugyanakkor jelentdségiik nem tekinthetd
csekélynek. Jelen dolgozat célja, hogy a ,,hosszua élet kockazat” kérdéskorét, mint a halanddsag
javulasébol szarmaztathato egyik kihivast taglalja.

A hosszt élet kockdzat teljeskorli megértése végett, a dolgozat kiemelt hangstlyt helyez a
jelenség hatterének, illetve lehetséges kockazatkezelési mddozatainak bemutatasara. Mindezt
elsésorban a biztositasi ipardg szempontjabol téve, tekintettel arra, hogy ez az iparag van a
legnagyobb mértékben kitéve a vizsgalt kockézatnak. A dolgozat kutatési kérdéskorét tekintve,
egy specifikus kockazatkezelési modozatra, a ,,Hosszu Elet Viszontbiztositasra” fokuszal. A
kozponti kérdés, hogy hogyan is alakul a hossz( élet viszontbiztositdas megtérilése a
viszontbiztositd szemszogébdl kiilonbozé korcsoportokat tartalmazd viszontbiztositasba adott
portfélidk esetén. Egészen pontosan, hogyha a viszontbiztositasba adott portf6lié 60-70, 70-80,

illetve 80-90 éves személyek szerzddéseit tartalmazzak.

A dolgozat soran végzett kutatas ramutatott arra, hogy a hosszUélet viszontbiztositas megtérilése
valéban fligg a viszontbiztositasba adott portfdlié életkor kompozicidjatol. Tovabba a
megtériilések eloszlasa nem csak kiilonb6zott, de nagyobb szoras volt megfigyelhetd a magasabb
korcsoporti  portfoliok  esetében. Ebbdl  kovetkeztetés képpen levonhatdo, hogy a
viszontbiztositasi kockézat magasabb iddsebb személyek szerzOdéseit tartalmazd portfoliok
esetében. Ez a jelenség konzisztens maradt azokban az esetekben is, hogyha a viszontbiztositas
arazadsa soran 1%, illetve 2% arrést alkalmazott a viszontbiztositd. Fontos kiemelni, hogy a

vizsgalatok Magyarorszagi személyeket tartalmazé portfolidk feltételezése mellett zajlottak.



Abstract
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Living a long and prosperous life is a common dream, spanning our society from poor to rich.
Owing to the various factors, this dream has become a reality over the past decades, with
mortality improvements reaching unprecedented levels in human history. However, this
remarkable rise in human life expectancy has also revealed adverse risks which may seem less
obvious to the ordinary observers. The objective of the current research, among other purposes,
is to examine a specific one of these emerging risks called “longevity risk”, affecting mostly the

insurance industry.

To gain better understanding of longevity risk, a comprehensive overview of longevity risk
management solutions was conducted. Considering the main question of the research, it
concentrated on a specific solution called Longevity Reinsurance or in other words, Insurance-
Based Longevity Swap. The aim of the present research was to explore how the return of
reinsurance contract varies when the demographic characteristics of the underlying reinsured
population changes. Specifically, what is the impact of demographic factors, such as age groups,

on the return of Longevity Insurance from the perspective of the reinsurer?

The research revealed that the return distribution of the reinsurance contract was significantly
dependent on the age composition of the reinsured portfolio. Furthermore, the return
distributions were not only different, but the standard deviation of the return increased for
underlying reference portfolios consisting of older individuals. In other words, there is greater
risk associated with reinsuring portfolios that include older individuals. This effect remained
consistent in cases when additional margins were applied to ensure the profitability of the

reinsurer.

The compared portfolios consisted of individuals aged 60-70, 70-80 and 80-90 while the applied
margin cases were 0%, 1% and 2%. The nationality of the individuals in each portfolio was

assumed to be Hungarian with the corresponding mortality characteristics.
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1 Introduction

Living a long and prosperous life is a common dream, spanning our society from poor to
rich. Owing to the various factors, this dream has become a reality over the past decades, with
mortality improvements reaching unprecedented levels in human history (Burger et al. 2012).
However, this remarkable rise in human life expectancy has also revealed adverse risks which
may seem less obvious to the ordinary observers. The objective of the current research, among
other purposes, is to examine a specific one of these emerging risks called “longevity risk”,
affecting mostly the insurance industry. The following chapters provide a detailed overview of
longevity risk, initiating with a comprehensive introduction to mortality improvements and

concluding with potential risk management solutions.

Longevity risk and its adverse effects impact insurance entities through the individuals they
provide service to. Therefore, insurance entities frequently seek to mitigate this emerging risk,
connecting to the increase in human life expectancy, by employing various risk management

solutions.

While the research direction presented numerous possibilities, the central focus of the study
revolves around a specific risk management solution called Longevity Reinsurance or in other
words, Insurance-Based Longevity Swap. By creating a Longevity Reinsurance contract via
simulation, the aim of the current research is to observe how the underlying portfolio’s
demographic features, such as the age of the individuals influence the performance of the
longevity risk management instruments. Specifically, whether the age of the individuals in the
portfolio has significant impact on the return of the Longevity Reinsurance contract from the
perspective of the reinsurer. To address this question, three underlying portfolios were
constructed, “given into reinsurance” through Longevity Insurance and then compared. The

underlying portfolios consisted of people aged 60-70, 70-80, and 80-90.

Considering the structure of the research, chapter 2 examines the theoretical background of
mortality improvements and longevity risk management. Following this, chapter 3 outlines the
research question and hypotheses, while chapter 4 presents the methodology employed. Finally,

chapter 5 delves into the results obtained.



2 Theoretical background

2.1 Mortality improvements

One of the most significant advancements of our time is the remarkable rise in human life
expectancy. Over the past century, mortality has undergone a rather accelerated decline,
unprecedented in the known human history. The uniqueness of the development lies not just in
its progressive nature but also in its equal impact across all age groups (Burger et al. 2012).
Although the pace of the progression moderates (Raleigh, 2019), and its volume even tends to
change in time (Vékas, 2020), the final boundary of the development remains unclear as it is

expected to decrease even further during the upcoming decades (Ebeling, 2018).

Considering the personal benefits of mortality improvements, the warm welcome of the
phenomenon is beyond dispute (Alburto et al., 2020). As entire nations live longer thanks to
contributing factors such as medical improvements and food supply related advancements
(Burger et al. 2012; Yue, 2012), human life expectancy has a seemingly clear path to rise
unchallenged (Ebeling, 2018). Despite a temporary setback caused by the recent COVID-19

pandemic, mortality trends remain uninterrupted as illustrated in Figure 1.

Figure 1, Comparison of life expectancy developments by gender and country
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Source: Own work, based on Eurostat (2024), Life expectancy by age and sex dataset.



Besides the rising trend of life expectancy, Figure 1 sheds light on the significant difference
between males and females. The female population not only has a better prospect for a longer life
than their male counterparts when considering Hungary, but this identified difference also
remains consistent when considering the European Union in general. Additionally, Figure 1 also
foreshadows Table 1, which presents twenty years of life expectancy development for 10

countries.

Table 1, Life expectancy by country

Year Czechia France Hungary Netherlands Austria Poland Romania Slovakia Sweden Norway

2022 79.1 82.3 76.2 81.7 81.1 77.4 75.3 77.2 83.1 82.6
2021 77.2 824 74.3 81.4 81.3 75.5 72.8 74.6 83.1 83.2
2020 78.2 82.3 75.7 81.4 81.3 76.5 74.2 77 82.4 83.3
2019 79.3 83 76.5 82.2 82 78 75.6 77.8 83.2 83
2018 79.1 82.8 76.2 81.9 81.8 777 75.3 774 82.6 82.8
2017 79.1 82.7 76 81.8 81.7 77.8 75.2 77.3 82.5 82.7
2016 79.1 82.7 76.2 81.7 81.8 78 75.2 77.3 82.4 82.5
2015 78.7 824 75.7 81.6 81.3 775 74.9 76.7 82.2 82.4
2014 78.9 82.9 76 81.8 81.6 77.8 75 77 82.3 82.2
2013 78.3 824 75.8 814 81.3 77.1 75.1 76.6 82 81.8
2012 78.1 82.1 75.3 81.2 81.1 76.9 744 76.3 81.8 81.5
2011 78 82.3 75.1 81.3 81.1 76.8 744 76.1 81.9 81.4
2010 7.7 81.8 74.7 81 80.7 76.4 73.7 75.6 81.6 81.2
2009 774 81.5 74.4 80.9 80.5 75.9 73.7 75.3 815 81
2008 77.3 81.4 74.2 80.5 80.6 75.6 73.5 749 81.3 80.8
2007 77 81.3 73.6 80.4 80.3 75.4 73.1 74.6 81.1 80.6
2006 76.7 80.9 73.5 80 80.1 75.3 72.5 74.5 81 80.6
2005 76.1 80.3 73 79.6 79.5 75 71.9 74.1 80.7 80.3
2004 75.9 80.3 73 79.3 79.3 74.9 714 74.2 80.7 80.1
2003 75.3 79.3 72.6 78.7 78.8 747 71 73.8 80.3 79.6
2002 75.4 79.4 72.6 78.5 78.9 74.5 70.9 73.8 80 79

Source: Own work, based on Eurostat (2024), Life expectancy by age and sex dataset.

While mortality improvements are undeniable in each observed country, its pace and magnitude
differ significantly from nation to nation. For instance, Eastern European countries such as
Hungary have both a lower initial life expectancy at the start of the observation period and do not
reach the same level of life expectancy either, compared to their Western European counterparts.
Based on these findings, it can be safely concluded that mortality improvements are consistent
but are also highly influenced by the unique characteristics of individual nations, which

viewpoint is also supported by Burger et al. (2012).
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2.1.1 Longevity risk

The adverse consequences of mortality improvements emphasized in chapter 2.1 are
commonly called ,,longevity risk”. Longevity risk generally refers to the exposure resulting from
the uncertainty surrounding the development of aggregate mortality rates (Blake et al., 2006,
Blake et al., 2019). In the present thesis, the concept of longevity risk is defined as the difference
between the Net Present Value of Cash Flows (PVCF) under shocked mortality and the Net
Present Value of Cash Flows (PVCF) under the best estimate mortality.

To gain a fundamental understanding about the risks posed by longevity, it is essential to
define its individual and aggregate aspects. Simply put, individual-level longevity risk refers to
the possibility that individuals may outlive their wealth due to longer-than-anticipated survival
duration, which was unforeseen during their years of financial saving. On the other hand,
aggregate-level longevity risk is considered in context of entire birth cohorts rather than
individual people. If the cohort represents an aggregate of individuals born in the same year, then
aggregate-level longevity risk refers to the possibility that the average member of the cohort
experiences a longer-than-anticipated lifespan, leading to higher-than-expected average years of
survival (MacMinn et. al., 2006; Stallard, 2006).

Regarding the nature of the longevity risk, it is not a surprise that the issue appears abstract to the
ordinary observer, as it is mostly concerns them indirectly. Indeed, those entities most affected
by the adverse implications of the longevity phenomenon are the ones with specific financial
exposure to this domain. Specific financial exposure in the present context means services that
operate over several decades and are highly reliant on the development of both individual and
cohort mortality. Entities exhibiting such characteristics primarily include defined benefit (DB)
pension funds and life annuity service providers as their operational stability is significantly
threatened by mortality rate decrease that exceeds their preliminary projections, leading to
substantial differences compared to their initial pricing and reserving calculations. In contrast,
life insurance providers often benefit from improvements in mortality rates, underscoring the
notion that what poses a threat to one service line may present an opportunity for another (Blake
et al., 2006; Denuit et al., 2007; Blake et al., 2019).

Although the increase in human life expectancy had been acknowledged and observed for

several decades, the potential negative consequences of longevity risk only gained widespread
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attention in December 2000. This notorious date marks the collapse of the Equitable Life
Assurance Society (ELAS), the world’s oldest life office at the time, an event that shook the
previously well-founded confidence in the predictability of aggregate longevity. Incidents like
this or the pension crisis encouraged both the regulatory authorities and entities exposed to
longevity risk, to pay greater attention to the phenomenon and to seek out alternative financial

solutions to mitigate their increasing exposures (Blake et al., 2008; Blake et al., 2019).
2.1.2 Affected entities

As the topic of mortality improvements has been thoroughly introduced in chapters 2.1 and
2.1.1, it is also essential not to overlook the industry that has emerged to address financial
aspects of supporting elderly individuals. The affected entities share the common feature of
providing lifelong services which traditionally means annuity products (Ngai & Sherris, 2011).
By definition, annuities are financial products, which grant the purchaser a regular income. The
frequency of the payments is typically monthly or annual, while the amount is determined by the
size of the paid premium for which the annuity right was purchased (Blake, 1999). In general,
annuities have many variations, and not all of them necessarily provide benefits until the death of
the purchaser. To be precise, temporary annuities paid until death of the purchaser or until the
end of the predefined contract term, whichever occurs sooner (Banyér, 2021). Even though all
types of annuities are affected by mortality improvements, whole life annuities are the ones
particularly influenced by the recent life expectancy trends (Ngai & Sherris, 2011).

Placing the annuities into a narrower context, these kinds of financial products are typically
provided by entities of the insurance industry. In particular, life insurance companies and pension
funds possess both the business expertise and legal foundation to engage into this specific market
segment (Blake et al., 2019). However, according to Blake (1999), participants of the annuity
market may not necessarily benefit from the rapid development of mortality. In fact, mortality
improvement indirectly causes the extension of the payout period of annuity products (Tsai et al.,
2011). As mortality rates fall faster than initially anticipated, the originally calculated purchase
price becomes less and less sufficient. The issue becomes critical when the improving mortality
rates diverge significantly from the rates used during pricing. This can render the product

financially unstable, threatening both the promised payments and the insurance company itself



(Blake et al., 2006). For instance, mortality improvements are often miscalculated to the level of

20 percent difference within just 10 years (Blake, 1999).

In addition to pension funds and life insurance companies, national pension schemes are also
experiencing the impact of the increased life expectancy prospects. Because of their implicit
nature, Defined Benefit (DB) pension schemes are especially sensitive to mortality
improvements (Blake et al., 2019). Based on Bodie et al. (1988) description, DB pension plans
are characterized by their dependence on a specific calculation formula. This formula serves as
the basis for the pension amount determination and usually takes into account the individual’s
years of work and size of their salary. In contrast, the other major type of pension systems relies
on the consistent contribution of its participants. Defined Contribution Plans (DC) are built on
the approach that employees or in some cases the employer makes regular in-payment to the
individual’s retirement account. The size of the in-payments is usually predetermined and
calculated as the fraction of the employee’s salary. As the years pass, the deposited amount
increases through the repeated contributions. The assessment of the DC plan in any given time is

the current market valuation of the assets within the retirement account.

Basically, the benefit of both DB and DC pension plans can be considered as a lifetime annuity
(Antolin, 2007). However, in the case of DC plans, the amount is determined by the accumulated
yearly contributions, unlike DB plans, which rely on a formula without a supporting savings
account (Bodie et al.,1988). Therefore, DB plans are more vulnerable to mortality improvements
as the increasing life expectancy results in an extended payment duration that may not have been
accounted for in the initial calculation of the formula. This reason besides other aspects such as
decline in long term interest rates and increasing regulatory burdens effectively moves the
personal and national preferences closer to DC based solutions. Although a historical trend of
transitioning from DB to DC can be clearly observed, the process has experienced a significant
acceleration over the past several decades and is expected to gain even more momentum in the
near future (Broadbent et al., 2006).

2.1.3 Longevity risk and Solvency |1

The present chapter serves as a brief overview of a special consequence stemming from
longevity risk. Considering the novel directive of solvency capital requirements, entered in force

on January 2016, for insurance companies and pension funds under the jurisdiction of the
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European Union, the risk resulting from longevity got shed light on from a new perspective.
Under the regime of Solvency 1, insurance and reinsurance undertakings are obligated to define
and keep a sufficient level of capital to cover the risks they face. To achieve this goal, companies
are required to assess and manage their exposures comprehensively, including the risks arising
from the improvement of mortality. In other words, insurance companies and pension funds
should prove that the reserves they keep and the capital they possess are adequate and are able to
cover potential losses emerging from, for instance, longevity (EU, 2009). The elements of the
risk management framework proposed by the Solvency Il directive is illustrated in Figure 2.

Figure 2, Components of solvency capital requirements under the regime of Solvency |1

Solvency Capital

Basic Solvency . . .
Capital Requirement Operational risk Adjustments
1 1 1 1 1 1 1
1. Life underwriting 2. Health 3. Non-life 4. Market risk 5. Counterparty 6. Intangible assets
risk underwriting risk underwriting risk : default risk risk
— i. Mortality || - Long-term |_{ i-Premiumand | £ 1o rate
health insurance reserve
" . ii. Short-term " " .
— ii. Longevity | health insurance | [ ii. Lapse — ii. Equity
iii. Disability —
morbidity iii. Catastrophe iii. Catastrophe iii. Property
— iv. Lapse — iv. Spread
— v. Life-expense — v.Currency
. - vi. Market risk
— vi. Revision — .
concentrations
— vii. Catastrophe — vii. Liquidity

Source: Own work, based on Vékas (2016, p. 19)

The Basic Solvency Capital Requirement is determined based on individual risk modules
(represented with Arabic numbers) which are further divided into submodules (lowercase roman
numbers). The calculations are done on submodule basis first, and then aggregated into the risk
modules. Besides ,,Basic Solvency Capital Requirement”, the “capital requirement for

operational risk” and the “adjustment for the loss-absorbing capacity of technical provisions and



deferred taxes” serve as the basic for the calculation formula of Solvency Capital Requirement.
Longevity risk (ii), as the focus of the present paper, represents one of the submodules of the life
underwriting risk (1.) module (EU, 2009).

Solvency Capital Requirement (SCR) is defined to ensure that insurance companies are able to
meet their payment obligations with the probability of 99,5% over a one-year period. To
rephrase, by meeting the Solvency Capital Requirements, insurance companies are not expected
to become financially distressed due to adverse events more than once in every two hundred
years. In order to accomplish this objective, the risks identified in the submodules are aggregated
to get the SCR for individual modules and the same aggregation applies to the modules to get the
SCR for the Basic Solvency Capital Requirement. This process involves taking into account
correlations at both the submodule and module levels (EU, 2009; Vékas, 2016).

The Solvency 1l regime and therefore longevity risk itself have direct impact on the amount of
capital held by insurance and reinsurance undertakings (EU, 2009). For a company, regardless of
its industry, keeping capital incurs emerging costs that can be characterized from several aspects.
One way to properly assess it is through financial assets like bonds (Modigliani & Miller, 1958).
Due to its inherent nature, longevity exposure is considered a particularly capital-intensive risk
within the current framework. Longevity risk is typically regarded as a trend risk with a long-
term perspective. Given its low probability to experience significant fluctuations within a short
period, the capital reserved for extreme longevity scenarios is only assumed to be required over
decades. Hence, insurance and reinsurance undertakings are strictly bound by regulations to limit
the transferrable longevity-related liabilities as the associated risks primarily have remote

consequences (Michaelson & Mulholland, 2014).

Considering the insurance industry, cost-of-capital clearly reflects in product pricing, particularly
regarding life annuities. Due to the costs associated with holding capital, insurance companies
have a great interest in finding alternative solutions to reduce their longevity exposure. By doing
S0, they can decrease the amount of funds they are required to hold as solvency capital, resulting
in cost-saving benefits. Longevity versions of financial instruments, such as longevity swaps,
offer a viable solution as these instruments are capable of reducing solvency capital requirement
by mitigating longevity risk (Meyricke & Sherri, 2014). Financial instruments exhibiting these

capabilities are presented in more detail in subsequent chapters.



2.2 Longevity risk management

Before delving into the introduction of financial instruments devised to mitigate substantial
damages resulting from longevity risk, it is worth devoting a thought of the potential size of the
global longevity risk market. To capture the sense of grandiosity, Michaelson and Mulholland
(2014) quantified the global longevity risk market through the aggregate accrued liabilities of the
developed world’s retirement systems. In total, the accumulated retirement obligations of the
world’s developed economies were estimated to fall in the astonishing range of $60 trillion to
$80 trillion already in 2012! This defined range is a subject to the development of mortality rate
improvements. Each year with an unexpected rise in the average lifespan of individuals who
have already reached the age of 65 implies a 4-5% increase in the global pension liabilities
(Swiss Re Europe, 2012). In the current context, an unanticipated rise in the average lifespan
means an increase of mortality improvements by 0.8%, or alternatively, a decrease in mortality
rates by 13%. Based on approach of the Risk Management Solutions (2014), it is possible to
calculate the standard deviation for a sustained shock of annual mortality improvements.
Considering a shock of mortality improvements lasting more than 10 years, the standard
deviation is estimated to be approximately 0.80% when compared to expected level. Michaelson
and Mulholland (2014) utilized this calculation to determine the effect of a longevity tail event.
To be precise, a 2.5 standard deviation event coincides with a trend change of 2%
(0.80%x%2.5=2%) resulting in an increase in longevity-related liabilities of about 10-12.5%.
Therefore, an unforeseen rise in life expectancy may lead to the escalation of global retirement

obligations by an additional $5-8 trillion or even more.

There have been several techniques developed throughout the past decades to mitigate the
financial exposure, emerging due to the risk associated with longevity. In professional terms, the
practice of mitigating financial exposure is commonly referred to as 'hedging'. Hedging is a
financial strategy aimed at reducing the risk of unfavourable price movements in assets. It
involves taking proactive measures to reduce the variability of cash flows, thereby minimizing
the probability of incurring significant losses or bankruptcy costs (Kim et al., 2006). In the
following sections the two mainstream directions of longevity risk hedging will be presented:

Insurance Based Solutions and Capital Market Solutions.



2.2.1 Insurance-Based Solutions

Insurance-based hedging solutions are widely considered the traditional way of dealing with
undesirable longevity risk. The term includes three main methods: Pension Buy-outs, Pension
Buy-ins and Insurance-Based Longevity Swaps, the latter also known as Longevity Reinsurance
(Blake et al., 2019). Considering the approach of Michaelson and Mulholland (2014, p.20), the
listed hedging alternatives often referred to as “pension risk transfer contracts”, besides the used
naming conventions. The naming essentially depicts the underlying functions as the purpose of
these methodologies is to facilitate the transfer of longevity risk from public and private pension
funds to a wider range of risk takers. Since many actors at longevity risk often lack sufficient
compensation and appropriate risk management tools, they have become increasingly interested
in opportunities to transfer the affected liabilities off their balance sheets using the
aforementioned methods. One of the most publicized instances include the case of General
Motors (GM) and Prudential Financial in November 2012. During the transaction, General
Motors transferred $29 billion in pension plan assets. In exchange, Prudential took on the
responsibility of paying the $26 billion pension owed to approximately 110,000 retired GM
employees in the United States. This exchange allowed GM to reduce economic volatility
associated with the financing of the pension plan and to improve its valuation transparency at the
same time (Morgan Stanley, 2012).

While insurance-based hedging solutions share the same purpose, their way of achieving the
desired outcome differ in several aspects. The main differences are manifested in the
management of assets in question, the bearing of investment risk, and the administration of
pension payments. Particularly regarding the allocation of responsibilities among the actors,
participating in the transaction. After highlighting their differences, it is important to also
emphasize one of their main common characteristics, in addition to their same goal. Insurance-
based hedging solutions offer a high level of customization due to their nature, leading to full
compensation for the specific risks faced by the hedger (Michaelson & Mulholland, 2014).
Because of this feature, hedging solutions of this kind are classified as “customised

indemnification solutions” (Blake et al., 2019, p. 8).

The clientele of Insurance-Based hedging solutions is highly dependent on the counterparty.

Although investment banks are often associated with Longevity Swaps, Insurers and DB pension
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plans constitute the main target audience of the mentioned solutions. Therefore, in the following

subsections the entity buying the hedge will often be referred to as ,,pension plan.” (Kiff, 2022).
2.2.1.1 Pension Buy- outs

Pension Buy-outs represent the oldest traditional solution for addressing longevity
exposure. During a buy-out transaction, the hedger transfers all its liabilities at risk,
supplemented with an initial up-front premium. The up-front premium serves as the
compensation to the other party in the transaction for taking over the pension obligations (Kiff,
2022).

As the first extensively introduced insurance-based hedging alternative, the detailed example of
Blake et al. (2019, p. 9) is presented to be able to grasp the essence of the method. Consider two
companies: a pension fund called ABC and a life insurer company XYZ. The pension plan assets
(A) of ABC are valued at 85, while the pension plan liabilities (L) are valued at 100, resulting in
a deficit of 15. Assuming that ABC approaches XYZ with the opportunity of a full pension but-
out, XYZ values the pension liabilities of ABC at 120. This means that compared to the valuation
of ABC company’s actuary, there is an additional premium of 20 increasing the deficit from 15 to
35. Due to diligence, XYZ also takes on the assets of ABC. Therefore, ABC has the obligation to
additionally contribute 35 (120-85=35) from its internal or external resources (like borrowing).

Although the former example may not seem a good deal for the first sight, ABC reaches its initial
objective: hedging its longevity exposure. Suppose ABC lacks the sufficient resources and
decides to take on, for example, a loan. In this case the financial exposure associated with the
loan - such as interest rate and inflation risks - is less volatile and better understood by
investment analysts and shareholders than the risk associated with the fluctuation of pension
liabilities. Nevertheless, regardless of the sourcing of the additional contribution (35), ABC
eliminates the volatility in its profit and loss (P&L) accounting originating from the pension plan
by completely removing balance sheet liabilities associated with pension obligations. On the
other hand, potential disadvantages of the transaction may emerge because of its timing. Buy-
outs are final agreements that cannot be modified, even if the originally determined exchange
price — such as the valuation of 120 in the previous example — turns out to be miscalculated due
to the change of future circumstances. For instance, the value of pension liabilities may increase

beyond previous expectations due to the rise in long-term interest rates and the resulting change
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in discount rates used for the original valuation (Blake et al., 2019). The structure of pension

buy-outs is presented in Figure 3.

Figure 3, Structure of pension buy-out transactions

Buy-out
Pension plan | | Employee
Assets and Up-front Benefit
liabilities premium payment

| (Re)insurer |

Source: Kiff (2022, p. 209)

2.2.1.2 Pension Buy- ins

In contrast to Pension Buy-outs, Pension Buy-ins utilize a different approach to neutralize
exposures arising from longevity risk. In case of Buy-ins, neither the assets nor the liabilities of
the pension plan change hands. Instead, the pension plan purchases financial instruments which
provide periodic payments, in sufficient amount to be able to cover its arising pension
obligations. Financial instruments with such properties include annuities for instance. Similarly
to Buy-outs, the pension plan pays compensation for the annuity provider in a form of initial up-
front premium (Kiff, 2022). The purpose of the purchased annuities is to serve as risk cover for
specific mortality characteristics, associated with a part of the pension plan’s liabilities. Although
these mortality characteristics are defined by the plan’s beneficiaries — such as their age, gender,
and paid pension amount — there are no annuity certificates issued for the individuals. Therefore,
the purchased annuities do not become assets of the individual members but rather assets of the
pension plan itself. Because there is no transaction in place which affects the pension plan
liabilities, those are not removed from the pension plan's balance sheet either. This stands in
contrast to Buy-outs, where balance sheet liabilities associated with pension obligations are
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completely removed. Despite this difference, buy-ins can be considered as a step towards a full
buy-out. Buy-ins inherently have a de-risking property from economic point of view which can
be leveraged if the bulk purchase of annuities happens in phases. By this the pension plan can
stabilize annuity rates over time and prevent a sudden increase in pricing when transitioning to a
full buy-out. Additionally, buy-ins provide the sponsor with the benefit of fully immunizing a
portion of the pension liabilities for a reduced initial cash payment compared to a full buy-out

(Blake et al., 2019). The structure of pension buy-in transactions is presented in Figure 4.

Figure 4, Structure of pension buy-in transactions

Buy-in
) Benefit R
Pension plan > Employee
payment
Up-front Benefit
premium payment

| (Re)insurer |

Source: Kiff (2022, p. 209)

2.2.1.3 Longevity Reinsurance (Insurance-Based Longevity Swaps)

In terms of transaction structure, Longevity Reinsurance demonstrates considerable
similarities to Pension Buy-ins. As Figure 5 represents, one of the main differences manifests in
the nature of transactions between the reinsurance buyer (Pension plan) and reinsurance provider
(Reinsurer). In case of Longevity Reinsurance, the up-front premium is replaced by periodic
premiums distributed throughout the duration of the contract (Kiff, 2022). The periodic
premiums are pre-fixed payments determined at the beginning of the contract, paid by the
reinsurance buyer. The basis for the calculation of the pre-fixed payments is the expected benefit
payment for the pension portfolio which reflects the expected longevity risk at the time of
signing the contract. In exchange, the reinsurance buyer receives payments based on the realised

mortality experience of the portfolio participating in the contract. The received benefit payments
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can then be used by the reinsurance buyer to cover its arising pension obligations (Blake et al.,
2019).

Figure 5, Structure of a Longevity Reinsurance contract

Benefit

Pension plan | > | Employee

payment

Periodic Periodic payments based on

premiums difference between actual

and expected benefit

| (Re)insurer |

Source: Kiff (2022, p. 209)

During a Longevity Reinsurance, no asset transfers take place, which allows the pension plan
trustees to maintain control over the asset portfolio. Therefore, the pension plan is able to remove
its longevity exposure via a highly customized, long-maturity hedging solution (Blake et al.,
2019).

As Blake et al. (2019) mention it in their comprehensive work, the first widely known Longevity
Reinsurance transaction took place in April 2007 and involved Swiss Re and UK life insurer
Friends’ Provident. The transaction was a pure longevity risk transfer and was based on
Provident’s £1.7bn book of 78,000 pension annuity contracts. By the swap, Swiss Re took on the

longevity risk in return for an undisclosed premium.
2.2.2 Longevity risk management - Capital Markets Solutions

The longevity risk management tools, introduced in the previous chapters, all belonged to
the group of Insurance-Based solution and shared the common feature of high customization. In
other words, these solutions offered full compensation to the hedger as they could be tailored to
cover their specific hedging needs (Michaelson & Mulholland, 2014). Unlike Insurance-Based
solutions, Capital Market Solution cannot be customized because the participating portfolio is
not the hedger’s own, but rather an independent one to which the solution is linked (Zhou & Li,
2017). In most of the cases, the independent portfolio is basically a cohort, for instance the

English and Welsh males aged 65 at the time of the contract. The payments of the capital market
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instruments are connected to the underlying cohort, and the survivor rate of the members
forming it. The main types of capital market-based longevity hedging instruments are longevity
bonds, longevity swaps, g-forwards and longevity options. Given that underlying cohorts exhibit
both mortality and survivor rates, there also exist inverse versions of the mentioned instruments
which are linked to mortality directly (Blake et al., 2019). Moreover, these longevity- and
mortality-linked securities have standard features, which would be typically expected of regular

bonds, swaps, forwards, and options (Blake et al., 2006).

Since the survivor rates used for the development of hedging instruments are widely accessible,
these instruments possess several features that make them more appealing to a broader audience.
Capital market participants may also express interest in the longevity asset class because of its
minimal correlation with other asset classes, providing great diversification opportunities.
Besides, the standardized nature of longevity assets promotes the development of liquidity while
removing potential information asymmetry. Information asymmetry is a typical concern of
Insurance-Based Hedging solutions as pension plans fundamentally possess better knowledge

about mortality outcomes within their own portfolio (Zhou & Li, 2017).

Of course, there is also an important downside of the standardized nature of the capital market
based hedging solutions. Given that standardized longevity assets do not offer a perfect solution,
residual risk remains in every case. The most prominent part of all the residual risk components
is basis risk, which reflects the difference arising from the mortality improvements of the
underlying portfolio and the hedger’s own portfolio (Zhou & Li, 2017). Before delving into the
detailed introduction of capital market based hedging solutions, the addressing of basis risk will

take place.
2.2.2.1 Concept of basis risk

Population basis risk is related to the fact that there is no capital market based hedging
solution, which does not involve the possibility of potential mismatch between the populations of
the underlying exposure and the hedge. This holds true for hedging instruments designed to
address longevity and mortality risks as well. By definition, population basis risk arises as a
hazard reflecting that the actual mortality/longevity outcomes of a population may easily differ

from the characteristics connecting to the population defined by the hedging instrument
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(Coughlan et al., 2007). For instance, such risk can originate from variations in socioeconomic

status, lifestyle choices, and geographic location, among other factors (Li & Hardy, 2011).

Considering the point of view of Village et al. (2017), three aspects can be regarded as the root
cause of basis risk. First of all, structuring risk of the payments occurs when, for example, the
hedging instrument has an annual payment structure while the entity hedges a service which
provides monthly payments. This scenario is easily imaginable for life annuity providers and
pension plans. Additionally, according to their interpretation population basis risk can be
subdivided into two components: sampling risk and demographic risk. Demographic risk is owed
to the emerging differences between the hedged and actual portfolios due to demographic and
socio-economic reasons. Therefore, this type of risk leads to divergent underlying rates both in
the present and future. On the other hand, sampling risk stands the closest to what was defined as
population basis risk by other authors. Sampling risk represents the disparity in mortality rates
observed between the index and the actual portfolios, resulting from the inherent fluctuations

regarding the individual lives within the portfolios.

Li and Hardy (2011) in their comprehensive work provide a thorough examination about models
measuring and modelling basis risk. The authors also highlight relevant considerations, such as
the insight formerly articulated by Coughlan et al. (2007), that the presence of basis risk does not
necessarily indicate inefficiency during the hedging process. In fact, it is crucial to strive for the
minimalization of basis risk. However high hedge efficiency is possible even in situations where
basis risk is not negligible.

2.2.2.2 Longevity Bonds

Before delving deeper into the concept of longevity bond, it is essential to clarify the
common understanding of the term ‘'bond'. However, it is important to highlight that the
comprehensive introduction of bonds is out of the scope of the current work. The same applies to
the other examined financial assets such as swaps, forwards, and options as the focus is on their

versions related to longevity.

According to Thau (2001), bonds can be viewed simply as loans. Entities have the opportunity to
express their need for additional capital by selling bonds, or in Wall Street terms, by issuing
them. When purchasing a bond, the buyer agrees to lend money to the bond issuer in a legal

framework which imposes payment obligation on the issuer. These payment obligations include
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the repayment of the original sum on a pre-agreed date and interest payments occurring
periodically until the stipulated date. In official terms, the original sum called “principal”, the
periodic interest payments called “coupons”, while the pre-agreed end date is referred to as
“maturity date”. Bonds can be issued by various entities such as corporations and governments
with various maturity dates ranging from a few days to 30 years. Following the example of the
USA, , Treasuries” are bonds issued by the U.S. Government while “Municipals” are bonds
issued by local and state governments. To bonds issued by corporations, the name “corporate
bonds” is used (Thau, 2001).

Let's consider the example provided by Thau (2001) as a simple illustration of bonds. Assume
that you invest $10.000 in a 30-year bond. If this bond has a semi-annual coupon payment of 7%,
then the received amount every 6 months would be $350. In case of holding the bond until
maturity, the total number of coupon payment would be 60, totalling $21,000 in payments.
Further assuming a “bullet bond” the $10.000 principal is also repaid on the maturity date (Thau,
2001 p.52).

Another great example is provided by Menoncin (2008), illustrated in Table 2. Assume a
longevity bond, with payments linked to an arbitrary reference cohort. Then the coupon
payments of this bond would be based on the cumulative survival rate, calculated as the product
of all previous survival rates (99% x 98.8% x 98.5% = 96.345). Therefore, the coupon payment
in year 2007 would be $963.45 on a principal value of $1000 (Menoncin, 2008, p.345).

Table 2, Coupon structure of a longevity bond

Year 2005 2006 2007
Mortality rate (%) 1 1.2 15
Survival rate (%) 99 98.8 98.5
Cumulative survival rate (%) 99 97.812 96.345
Coupon (on £1000) 990 978.12 963.45

Source: Azzoppardi (2005) in Menoncin (2008, p.345)

In general, longevity bonds are similar to traditional bonds. For instance, consider the first
classical longevity bond proposed by Blake and Burrows (2001). This longevity bond, also
called ,,survivor bond” has its coupon payments linked to the survival rate of a given population
cohort. If the reference cohort is a nation’s age group of 65 in 2002, then the coupon payment of
this longevity bond in 2020 would be directly connected to the proportion of people alive in 2020
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from the reference cohort. In other words, the coupon payment of the longevity bond would be

based on the number of 85-year-olds in 2020 compared to the number of 65-year-olds in 2002.

Given that longevity bonds are effective instruments for mitigating aggregate mortality risk, it is
not surprising that various versions have been developed over the past decades. Broadly
speaking, longevity bonds can be classified into two main categories: ,,principal-at-risk”
longevity bonds and “coupon based” longevity bonds. Regarding the former, the investor faces
the direct risk of losing parts (or all) of the principal in the event of an adverse mortality event.
On the other hand, coupon-based longevity bonds are characterized by the fact that their coupon
payment is mortality dependent. The nature of this dependency can be different and defined by
the kind of bond itself. Because coupon-based longevity bonds are designed for hedging
purposes, it is reasonable that these kinds of bonds lack principal repayment at the end. Actually,
most of these bonds have no predetermined maturity date either as their terms are connected to
survival rates. From another point of view, these bonds often provide coupon payments until the

last member of the cohort dies, whenever it occurs (Blake et al., 2006, p. 168).

The first real life transaction connected to longevity bonds occurred in 2002 and was specifically
a pure mortality bond release. The issuer was the Swiss Re, who linked the principal payment of
the bond to adverse mortality risk scenarios. Swiss Re issued the bond through a special purpose
vehicle (SPV) called Vita Capital I, with an issue size of $400 million. Although the floating
coupon payment was determined generously, the fact that the principal itself was in risk balanced
the generosity. Precisely, the floating coupon rate was set as U.S. LIBOR plus an additional 135
basis points. In comparison, the principal payment was linked to a mortality index calculated as
the aggregate average of mortality rates across five reference countries. The average was weight
by considering the participating countries: United States, UK, France, Italy, and Switzerland
(Dowd et al., 2006). The mortality index was referenced to the year 2002, and subsequent yearly
indexes were compared to it until the bond matured in 2005. The principal payment was
determined as follows: If the index did not exceed 1.3 times the 2002 base level in any of the
years, then the principal would be repaid in full. Alternatively, if the index exceeded 1.3, the
principal was reduced, and if it exceeded 1.5 times the base level, no repayment was made from
the principal at all. In 2005 the bond reached maturity as planned, with no loss of principal to the
investor (Chen & Cummnins, 2010). Bearing in mind the mortality improvements experienced at

the beginning of the 21st century, the probability of high mortality was already deemed to be
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low. Therefore, the bond could be regarded as a higher-than-average coupon rate investment

opportunity in return for potential exposure to some extreme mortality risk (Dowd et al., 2006).

A significant experiment in long-term longevity bonds was conducted through the instrument
issued by the European Investment Bank (EIB) in 2004. BNP Paribas arranged the release of the
bond, which amounted to £540 million and had a term of 25 years. The main target audience for
this bond included pension plans and annuity providers, as its structure was similar to survivor
bonds. (Chen & Cummnins, 2010). Investors of the bond were compensated with annual coupon
payments of £50 million multiplied by a realized survivor index. The survivor index was based
on data obtained from the UK Office for National Statistics regarding the population of English
and Welsh males aged 65 in 2002. Nevertheless, despite the effort and collaboration of EIB
(issuer), BNP Paribas (designer) and Partner Re (longevity reinsurer), the bond was not launched
due to insufficient demand and was subsequently withdrawn in late 2005 (Chen & Cummnins,
2010).

2.2.2.3 Longevity Swaps

Swaps, alongside with forwards and options, belong to the category of derivatives.
Derivatives are financial instruments whose value is derived from other assets, known as
underlying assets. Within the family of derivatives, swaps are contracts between two parties in
which they agree to exchange cash flows on regular dates. The cash flows involved in the
agreement are referred to as payment legs which have different calculation basis. The calculation
basis of the different legs is directly related to the underlying assets, which assets also determine
the type of the swap contact. If the underlying assets are stocks or stock market indexes (like the
S&P 500) on which the payment leg is based on, then we can talk about equity swaps. In other
cases, if one leg is connected to a physical commodity price (e.g., oil), then the swap in question
is a commodity swap; otherwise, if both legs are connected to interest rates, then the swap is an
interest rate swap (IRS). Swaps are widely used derivatives among financial market participants
as exposure management tools. Besides taking speculative trading positions, swaps are
appropriate to hedge against the fluctuations of interest rates, currency exchange rates, stock

prices, commodity prices, and loan defaults (Chisholm, 2010, p.59).
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To help the proper understanding of general swaps before introducing longevity swaps, consider
the example provided by Chisholm (2010, p. 61). Assume the most common version of an

interest rate swap (IFS) with contracting parties A and B.

e Fixed leg: “A” company agrees to pay annually to “B” company a fixed rate of 5% on a
notional amount of $100 million. This means a $5 million cash flow per year from “A” to
“B”.

e Floating leg: “B” company agrees to pay annually to “A” company the 12-month dollar

LIBOR rate on the same notional amount, $100 million.

The exchange of the notional principal ($100 million) is not part of the three-year contract,
starting at the moment of the agreement. LIBOR means the London Interbank Offered Rate,
serving as a benchmark rate in global bank transactions. Because of the contract’s three-year
duration, there will be three payments, made annually. The illustration of the swap’s payment

structure is presented in Figure 6.

Figure 6 Legs of the interest rate swap

5%

A 4

F 3

$ LIBOR
Source: Chisholm (2010, p. 62)

For considering the swap payment structure in the first year, let’s assume first that the LIBOR
rate is set at 4.5%. This means that “A” gives a $5 million to “B” and in return receives $4.5
million (4.5% of $100 million) as the floating leg rate. Therefore, in net, “B” receives $0.5
million from “A”. If the LIBOR rate is reset at 5.25% in the second year, then the net payment
direction changes and ,,A” receives $0.25 million ($5.25 million - $5 million) from ,,B”

(Chisholm, 2010, p. 62).

Longevity and mortality swaps have similarities with traditional swaps. In both cases, the
exchange of future cash flows depends on the outcome of at least one survivor index serving as
leg. However, mortality swaps specifically hedge against the risk of mortality rates being higher

than expected (Cox & Lin, 2007), while longevity swaps hedge against the risk of people living
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longer than expected (Blake et al., 2019). Therefore, despite their mutual aim of hedging

longevity risk, the two instruments reach their goals by different means.

By definition, survivor swaps are formal agreements on exchanging future cash flows based
upon the performance of at least one (typically random) survival index. Compared to survival
bonds, survival swaps have considerably lower transaction costs, complemented with a more
flexible and customizable structure (Dowd et al., 2006). Based on the analysis of Dowd et al.,
(2006, p.3) the mechanism of survival bonds can be illustrated the following way. In the most
standard case, assume a mortality swap with a fixed leg involving a single present payment and a
floating leg consisting of a single random payment depending on mortality development. In other
words, the swap consists of an initially set amount of K(t) and a random amount of S(t), where
,t” means a future time when the swap concludes. The two participating firms are “A” and “B”,
agreeing upon the exchange of only the net difference between the payment amounts. It means
that “A” pays “B” the amount of K(t) — S(t) if K(t) > S(t), and “B” pays “A” the amount of
S(t) —K(t) if K(t) < S(t). To be precise, the mortality dependent random amount (S(t)) is
calculated based on the number of people alive from the initially specified, underlying reference
portfolio. Such reference portfolio may consist of a portfolio of an annuity holder (Dowd et al.,
2006, p. 4).

Cox and Lin (2007, p.9) described a more complex example of mortality swaps, where both legs
are mortality-dependent, resulting in a swap of specific longevity risk for a different longevity
risk. Assume an annuity provider and a life insurer. For the annuity provider, the adverse
scenario is when the mortality rates decrease and, therefore, the people in its portfolio live longer
than anticipated, resulting in additional payments. For the life insurer, the adverse scenario
means the opposite: mortality rates increase and, therefore, more people die in its portfolio than
it was anticipated. As the annuity provider and the life insurer have hedging intentions with
opposite directions, it is logical if they enter into a mortality swap. In light of the example, the
annuity provider pays a floating cash flow based on the realised mortality in the life insurer’s
portfolio and in return, the life insurer pays a floating cash flow based on the number of people
surviving in the annuity provider’s portfolio. Therefore, if mortality increases, the life insurer
receives a net benefit payment from the annuity provider. This can be covered by the decreasing
obligations of the annuity provider, as it has to pay annuities for fewer people due to the higher-

than-anticipated death rates. Conversely, if mortality decreases, the annuity provider receives a
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net benefit, which is covered by the life insurer's funds. This is because the life insurer has fewer

people to pay life insurance to, due to the lower-than-anticipated death rates (Cox & Lin, 2007,
p.9).

Within the context of longevity swaps, a real-world example is emphasized as follows. The first
longevity swap occurred between J. P. Morgan and Canada Life in July 2008. The contact
consisted of a £500 million longevity swap with a 40-year maturity. Regarding the underlying
portfolio, it was characterised by 125,000-plus annuitants whose actual mortality experience
determined the swap. Despite being customized rather than index-based, the transaction is still
considered pioneering from a capital market perspective. Since the longevity risk was transferred
from Canada Life to J. P. Morgan and subsequently to investors, it was the first of its kind to

introduce capital market investors to the longevity market (Blake et al., 2019, p. 14).
2.2.2.4 g-Forwards

Forward contracts also belong to the category of derivatives, as their value is derived
from underlying assets, for instance, commodities like oil or different financial assets such as
shares. By definition, forward contracts are mutual agreements between two parties, with one
party agreeing to sell and the other agreeing to buy the underlying assets. The transaction takes
place on an initially fixed date on an initially fixed price. Another important feature of forward
agreements is that no cash flow or transaction occurs on the date of the contract; rather, they are
executed only on the initially specified future date. Forward agreements can be physically
delivered, or cash settled. In the case of cash-settled contracts, only the difference between the
prespecified fixed price and the actual market price of the underlying asset is paid on the
predetermined future date. While forwards are typically tailor-made agreements, there exists a
more standardized alternative as well. “Future” contracts are essentially the same as forward
contracts with the difference that these are organized through regulated exchanges instead of

direct negotiations between the two participating parties (Chisholm, 2010).

Consider the example of Chisholm (2010, p.19) to shed more light on the structure of forward
agreements. Assume an equity forward contract where trader ,,A” agrees with trader ,,B” on
purchasing a share exactly a year later at a fixed price of $100. This position, involving the
purchase of the share is called a long forward position. Based on the possible share values at

the point of delivery, there are multiple profit and loss (P&L) scenarios from the trader’s

22



perspective, which are illustrated in Figure 7. For example, if the share is worth $150 in a year,
then after the purchase for $100, the trader can sell it with a $50 profit. On the other hand, if the
share is valued at $50 in a year, then after the mandatory purchase the trader can pass it on with
$50 loss. From the perspective of the other trader, a short forward position was entered by
agreeing upon the obligatory sell of the share on the prefixed date. Assume that the selling
counterparty has no share in its possession and has to buy it on the prefixed date in order to sell it
to the trader in the long forward position. In case the share has lower valuation than $100, then
the selling trader will realize profit, while if the share costs more than $100, then the trader will
realize loss. For instance, if the share costs $150 on the delivery date, then realized loss of the
short position is $50 which equals with the realized gain of the long position. The P&L scenarios

of the selling trader in the short position are illustrated in Figure 8 (Chisholm, 2010, p. 17).

Figure 7, Profit and loss on long forward Figure 8, Profit and loss on short forward
position position
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Source: Chisholm (2010, p. 18) Source: Chisholm (2010, p. 18)

Longevity and mortality forwards represent the simplest type of derivatives of their kind,
similarly to the traditional forward contracts. The name ,,q-forward” for mortality forward rate
contracts originates form actuarial denotations. Precisely, the letter “q” symbolizes mortality
rates both in actuarial practice and denotation. Essentially, a gq-forward is a contract between two

parties agreeing to exchange amounts proportional to mortality rates. One of the amounts is
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linked to the realized mortality rate of a given population, while the other amount is proportional
to an initially fixed mortality rate. The exchange takes place on an initially set future date, called
maturity date of the contract. Following professional terms, q-forwards can be also described as
zero-coupon swaps, exchanging fixed mortality for realized mortality at the maturity date. This
interpretation is illustrated in Figure 9, which utilizes the fact that realized mortality rates are
usually linked to appropriate reference indexes such as the one published by LifeMetrics. Based
on the definition of Coughlan et al. (2007b, p. 6), LifeMetrics is a toolkit designed for measuring
and managing longevity and mortality risk, tailored for pension plans, their sponsors, insurers,

reinsurers, and investors. Figure 9 present the transaction on the maturity date of the contract.

Figure 9, Structure of g-forwards

Notional x 100 X fixed mortality rate

Counterparty A » Counterparty B

(fixed rate payer) S el ( fixed rate receiver)

Notional X 100 X realized mortality rate
Source: Coughlan et al. (2007, p. 2)

The importance of g-forwards is perfectly shown by their building block nature in the
construction of more complex life-related derivatives. As Carins et al. (2008, p. 108-109)
highlighted, a combination of g-forward contracts with various ages and maturities can be
utilized to hedge a longevity swap. Suppose a longevity swap contract consisting of a fixed cash
flow leg and a floating leg which has cash flow payment based on a realized survivor index.

Let’s denote the fixed cash flow with S(t) and the realized survivor index cash flow with S(t, x)
where “t” means the initially determined future time of payment exchange. In the current
example both legs can be hedged but in a different way. An alternative hedge of the fixed leg can
be achieved through the usage of zero-coupon fixed-income bonds. To hedge the floating leg a
more complex method should be used as described below. To achieve this, the survivor index is
approximated by expanding its cash flow. In particular, regarding the fixed legs of a series of g-
forwards and their resulting net payoffs, the following approximation is made for the survivor

index, presented in Equation 1, where:

e A(,x+1) =q(, x+1) — qr(0,i,x+1)
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e A(i,x + 1) is the net payoff on the g-forward per unit at time i + 1

e qr(0,i,x + i) = g-forward mortality rate at time ,,i”” for age group ,,x+i”, fixed at time 0

Equation 1, Approximation of a survivor index via a series of g-forwards - 1.

SEx) =(1-q0,x))%x (1-q(1,x) X.. X (1—qt—1Lx+t—1)) =

t_

=| [(1-qeC0i,x+1) = AGx+1) ~

I

Q

J(l—qF(01x+1))— 2A(1x+1) 1_[(1 qr(0,i,x +1))

T=0 i=0,j#i
Source: Carins et al. (2008, p. 108-109)

Continuing Equation 1, the floating leg S(t,x) can be produced by holding the portfolio

€C

presented in Equation 2, where “r” means a constant interest rate.

Equation 2, Approximation of a survivor index via a series of g-forwards - 2.

m £20,j#1(1 — qr(0,j,x + J)) units of the 1-year g-forward

(Hr)ﬁ 20,j21(1 — 47 (0, j, x + J)) units of the 2-year g-forward

[T1525,j1(1 — g¢(0,j, x + j)) units of the t-year g-forward

Source: Carins et al. (2008, p. 109)

During the calculation of the presented hedge quantities, it was implicitly assumed that, for
example, the payment of the 1-year g-forward at time 1 is reinvested or ,,rolled up” until time t at
the risk-free rate of interest. Therefore, all the payoffs are multiplied by an appropriate discount

factor in order to be able to calculate the present values. For instance, the discount factor element

for the 1-year g-forward is the (Carins et al., 2008).

)(t D

Due to the stochastic environment, the determination of the quanto derivative is also a relevant
step in Equation 2. Based on the definition of Cairns et al. (2008), quanto derivative is a
financial instrument that delivers a certain number, “N”, of a specified asset. The value of N is

determined by a reference index that is distinct from the asset being delivered. Considering
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Equation 1 and Equation 2, “N” equals —A(i, x + 1) [T;Zg;.i(1 — qr(0,j,x +j)), and N units of
fixed-interest zero-coupon bonds are delivered at time i + 1, maturing at time ,,t” with a price of

P(i+ 1,t) per unit at time i + 1 (Carins et al., 2008).

Further elaborating on the recent example, it is essential to recognize the potential consequences
of the lack of complete, real-world market regarding g-forward contracts. Because of the still
developing nature of this segment of the capital market, hedge alternatives should be constructed
from a narrower range of possible g-forward contracts. Such limitations may affect the range of
available reference ages and maturities (e.g. maximum 20 years). Even though the presented
example utilizes the assumption of a full market, it can still be used as a proper benchmark
(Blake et al., 2019).

After outlining the fundamental characteristics of g-forwards, the introduction is concluded with
a more readily understandable illustration, provided by Coughlan et al. (2007, p.2). Assume a 10-
year g-forward contract with a reference population aligned to 65-year-old males in England &
Wales. The participants of the contract are a pension plan (hedger) and a hedge provider. From
the perspective of payments, the hedge provider pays a fixed rate which is proportional to a fixed
mortality rate of 1.20%. On the other hand, the return payment from the pension plan is
determined based on the value of the LifeMetrics Index for the specific subpopulation of males
in England & Wales. The contract’s term sheet is presented in Table 3. Additionally, due to the
existing 10 months delay in the availability of LifeMetrics data, the reference year used at the

maturity of the contract is the index value in 2015.

Table 3, An illustrative term sheet for a single g-forward

Notional Amount GBP 50,000,000
Trade Date 31 Dec 2006
Effective Date 31 Dec 2006
Maturity Date 31 Dec 2016
Reference year 2015

Fixed Rate 1.20%

Fixed Amount Payer JPMorgan

Fixed Amount

Notional Amount x Fixed Rate x 100

Reference Rate

LifeMetrics graduated initial mortality rate for 65- year-old males
in the reference year for England & Wales national population

Floating Amount Payer

XYZ Pension

Floating Amount

Notional Amount x Reference Rate x 100

Settlement

Net settlement = Fixed amount - Floating amount

Source: Coughlan et al. (2007, p. 3)
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Considering the settlement calculation for the maturity of the contract, potential scenarios are
presented in Table 4. If the reference rate in the reference year is lower than the fixed rate, then
the net payment receiver is the pension plan, which is therefore able to compensate for its
additional obligations emerging from the lower-than-anticipated mortality rates. On the contrary,
if the reference rate in the reference year is higher than the fixed rate, then the pension plan is the
one making payments, which it may cover from the decrease in the value of its liabilities. In
Table 4 positive settlement indicates that the pension plan pays, while negative settlement
indicates that the pension plan receives payment (Coughlan et al., 2007).

Table 4, Possible settlement outcomes for the g-forward contract in Table 3

Reference Rate

(Realized rate) Fixed rate Notional Settlement
1.0000% 1.2000% 50,000,000 10,000,000
1.1000% 1.2000% 50,000,000 5,000,000
1.2000% 1.2000% 50,000,000 0
1.3000% 1.2000% 50,000,000 -5,000,000

Source: Coughlan et al. (2007, p. 3)

2.2.2.5 Longevity options

In the previous chapter, the essence of forward contracts was briefly presented: during a
forward contract, two parties agree on a transaction where both the delivery date and price are
initially fixed. The asset being delivered is called the underlying asset, which can vary from
commodities to shares. In the case of forward contracts, there are two possible transaction
positions: one party is selling (long), and the other party is buying (short). Both directions are
binding once the contract is entered; the seller must sell even if it's not favourable on the delivery
date, and the same applies to the buyer. Compared to forward contracts, options include the
possibility of withdrawing, but only for one of the contract participants. Therefore, in case of
options there are four possible positions for traders to take: right to purchase (Long Call),
obligation to sell (Short Call), right to sell (Long Put) and obligation to purchase (Short Put).
In both long call and long put options, the trader holds the right, but not the obligation, to
purchase or sell the underlying asset if market conditions are favourable. However, the
counterparty (short positions) in option contracts is obligated to fulfil its obligations regardless of

its preferences. As a result, the obligated party is compensated with an up-front payment called
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premium, which can be regarded from the perspective of the long position holder as the price of
the right to choose between buying or not buying (long call) and selling or not selling (long put)
on the delivery date of the option contract. The delivery date of the option contract is called
expiry date, which is an initially defined future date. In addition to expiry date, the specified
price at which the predetermined amount of the financial asset can be purchased is also
determined on the initiation of the contract. In formal terms, the predetermined amount called
underlying, and the specified price is called exercise or strike price. European-style options can
be exercised only on the date of expiry while American-style option can be exercised on the
expiry date or even before it. Traders who seek flexible exercising without bearing the full cost
of an American option have an alternative solution. Bermudan options allow for exercise on
predetermined dates until the option's expiration, typically every once in a month (Chisholm,
2010).

To promote better understanding, consider the examples provided by Chisholm (2010, p.84 and
88). A call option contract is presented in Table 5, while a put option contract is presented in

Table 6. Although the two tables are basically the same, they are presented separately to enhance

clarity.

Table 5, Call option contract Table 6, Put option contract
Type of option: American-style call Type of option: American-style put
Underlying share: XYZ Underlying share: XYZ
Number of shares: 100 Number of shares: 100
Exercise price: $100 per share Exercise price: $100 per share
Expiry date: One year from today Expiry date: One year from today
Current share price: $100 Current share price: $100
Option premium: $10 per share Option premium: $10 per share

Source: Chisholm (2010, p. 84) Source: Chisholm (2010, p. 88)

Furthermore, the expiry payoff profiles for all the four option positions are illustrated on Figure

10, Figure 11, Figure 12 and Figure 13 with additional explanations below the figures.
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Figure 10, Expiry payoff for a long call Figure 12, Expiry payoff for a long put
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Figure 11, Expiry payoff for short call Figure 13, Expiry payoff for a short put
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In order to keep things simple and straight forward, the current explanation is ignoring
transaction and funding costs. Similarly to the illustrations in Figure 10, Figure 11, Figure 12
and Figure 13, the profit and loss profiles of the contracts are evaluated in terms of per-share
basis on the expiry date. First consider the call contract. The holder of a long call option profits if
the underlying share's value increases, while the seller of a short call option profits if the contract
declared worthless and is not exercised. With respect to the profit and loss boundaries of the
contract, the maximum loss of the long call option holder is $10 per share. This amount of loss is
achieved if the underlying share’s price is under the strike price and, therefore, the contract is not
exercised. It basically means that the holder of the long call position only suffers the loss of the
initial premium paid to the counterparty. On the other hand, if the underlying share’s price
increases, the potential profit of the trader in the long call position is technically infinite.

Precisely, if the share’s price is above the strike price at the date of expiry, then the option is
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exercised and the profit of the long call position holder is the share’s actual price minus the strike
price ($100) and the initial premium paid to the counterparty, which is $10 per share. It is
important to mention that even if the contract is exercised it is not necessarily mean profit for the
long call position holder. In the current example, the break-even point is at $110, which means
that the trader only realizes profit if the share’s value is above 110. If the share’s value is between
$100 and $110 then the initial loss of $10 per share is mitigated. For example, if the share is
valued at $104 at the expiry date, then the contract is exercised, the shares are purchased at $100
(strike price) and then ,,immediately” sold for $104, seemingly realizing a profit of $4. However,
due to the initial cost of the contract, a loss of $6 per share is realized ($4 - $10 = - $6). On the
contrary, the maximum profit of the short call position holder is $10 if the contract expires
worthless. Nevertheless, if the call option is exercised, the profit may turn negative, resulting in a
loss for the short call position holder (Chisholm, 2010).

The calculation logic of a put options is similar to the call. Considering Figure 12 and Figure
13, in light of Table 6, the trader in the long put position has the right to sell XYZ shares at the
strike price of $100 each. Compared to the long call position, the long put position realizes profit
if the share price remains below the strike price. Assume that the trader in the long put position
does not own the shares but purchases them on the day of expiry when the option is exercised. In
this case, if the price is $80 at the expiry date, the shares are purchased for $80 and then sold to
the short put position holder at the strike price of $100. Therefore, the profit realized per share is
calculated as follows: $100 (strike price received from long put position) - $80 (market purchase
price) - $10 (initial premium) = $10. This also means that the profit is technically maximized for
the long put position which is reached if the share’s worth is $0. On the other hand, similarly to
the long call position, the maximum achievable loss is $10 in form of the initial premium paid
per share, if the option is not exercised. On the contrary, the maximum profit for the short put
position is $10 if not exercised and -$100 (due to purchasing the stock at the strike price) + $10

(premium received) = -$90 per share if exercised at the share price of $0 (Chisholm ,2010).

Alternatively, traders may simultaneously enter into various call and put options to establish
complex positions aimed at hedging specific risks (Chisholm ,2010). However, the introduction
of these complex strategies is beyond the scope of the current thesis and therefore will not be

explored in more detail.
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Before changing the point of view from traditional options to longevity associated ones, it is vital
to examine the motivation behind entering into option contracts. In contrast to contracts with
linear payoff structures like forward derivatives, option contracts have non-linear payoffs,
leading to significant differences. Generally, the non-linear payoff structure results from the
asymmetric nature of options, where the potential gains or losses are not directly proportional to
the underlying asset's price movement (Blake et al., 2006). Keeping in mind this feature of
options, such contracts may prove useful for hedgers seeking to hedge against downside risk
while leaving any upside potential at the same time. Besides, speculators may also take
advantage of options if their intention is to trade volatility rather than levels of mortality rates
(Carins et al., 2008). Broadly speaking, in finance history, the success of linear payoff derivatives
has consistently encouraged development of option-based products as well (Dawson et al.,
2009).

Following the description of Boyer and Stentoft (2013, p.38), the terminology of options
designed to hedge longevity exposure can be characterized similarly to traditional options. In the
simplest possible case, the strike price would be defined as the given price of a longevity risk
exposure while other characteristics such as the date of the transaction (maturity date) would be
defined identically to traditional options. Based on the authors’ suggestion, the strike price can be

defined as the expected survival rate (Boyer & Stentoft, 2013).

As options are complex derivatives with numerous potential applications, there are various
approaches regarding their longevity alternatives as well. Longevity caps and longevity floors
are both option-type longevity-linked derivatives which connect the buyer’s payment to the
survival rate of a reference portfolio. In case of caplets, the buyer receives the annual payment in
the given year if the survival rate within a reference population cohort is more than the strike
price established at the contract's inception. Conversely, the buyer receives payment from the
floorlet if the reference population cohort is less than the strike price established at the contract's
inception. Longevity caps can be decomposed into a series of sequentially maturing European
style call options known as “caplets”, which share a common underlying asset and a
predetermined strike price. Similarly, longevity floors can be divided into a series of sequentially
maturing European style put options known as 'floorlets," which share an identical underlying

asset and a prearranged strike price (Bravo & Nunes, 2021).
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For a clearer point of view, the following example is examined regarding caplets and floorlets. In
line with other longevity derivatives, the fundamental concept involves the usage of a survival
index S(t,x) as underlying asset. Denote the cap rate as s.(t) and the floor rate as s¢(t) for
exercise date “t”. In this case the payment of the cap can be determined as max{S(t,x) —
s.(t),0}, while the floor’s payment is based on max{sf(t) — S(t,x), 0}. By bundling together
caplets and floorlets with corresponding properties (i.e., caplets with caplets and floorlets with
floorlets), survivor caps and floors are created. Alternatively, survivor caps and floors are also

often called longevity caps and floors (Blake et al., 2006, p. 182).

Another type of options like longevity risk management contracts are the mortality swaptions.
Mortality swaptions are sophisticated contracts, involving a mortality swap as underlying
“asset”. This underlying mortality swap may vary by type and maturity, similarly to the
swaption itself, which might be American, European or Bermudan in nature. Essentially,
mortality swaptions provide the purchaser with the right to enter the swap from either position.
More precisely, in case of a payer swaption, the holder has the right, but not the obligation, to
enter as a fixed rate payer, while receiver swaption provide the right to enter as fixed-rate
receiver. A payer swaption can be also regarded as a put position on survivor rates, as its value
increases with a decline in survivor rates. From the perspective of a receiver swaption, its value
increase depends on the rise of survivor rates, and therefore, it can be regarded as a call position
on survivor rates. Although mortality swaptions are definitely useful from various risk
management aspects, the ongoing development of a proper liquid market complicates the
situation of such derivatives. Especially considering the valuation of these swaps on the exercise
date with regards to the lack of benchmarks (Blake et al., 2006).

2.3 Mortality Models

Although the remarkable surge in human life expectancy experienced in the past decades
enlarged the relevance of mortality models, models of such kind have central role for both
institutional entities and private actors for a long time. While the primarily aim of insurers and
reinsurers is to assess their capital requirements defined by economic or regulatory aspects,
pension plans similarly apply mortality models essentially to evaluate uncertainty in funding

levels. Additionally, subsequent to mortality rate improvements, stochastic mortality models
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have attained prominent position when comparing various solutions for managing longevity risk
as well (Blake et al., 2006; Blake et al., 2019).

According to Blake et al. (2019), extrapolative or in other words time series mortality models
can be classified as single-population or multi-population variants. Considering the first
category, Lee and Carter (1992) laid the fundamentals of single population modelling with their
groundbreaking methodology. As the present thesis extensively relies on the framework of the
Lee-Carter model, a comprehensive explanation of the methodology is provided in the following
sections. However, for the purpose of later comparisons it is important to emphasize that the
traditional Lee-Carter model focuses merely on one factor to analyse the time series
characteristics of longevity without making any assumptions regarding the degree of smoothness
in mortality rates across adjacent ages or years (Blake et al., 2019; Boyer et al., 2014). As an
extension of the original Lee-Carter framework, Cairns et al. (2006) introduced a more
sophisticated approach by suggesting a second factor which impacts mortality dynamics to a
greater extent at higher ages than in lower age groups. Taking into account that the original first
factor reflects upon mortality-rate dynamics among all age groups identically, the second factor
essentially helps differentiate among various age groups by utilizing an assumption of
smoothness considering mortality rates across neighbouring ages within the same year (Blake et
al., 2019; Boyer et al., 2014; Cairns et al., 2006). Besides the Lee-Carter and Cairns—Blake—
Dowd (CBD) class models, the single-population category also consists of the P-splines model
(Currie et al., 2004) and Age-Period-Cohort (APC) model (Osmond, 1985; Jacobsen et al., 2002)
in accordance with the summarization provided by Blake et al. (2019). However, these models

are not further elaborated upon in the present review.

In comparison with single population mortality models, multi population variants aim to enhance
forecast quality by relying on an additional base population (Blake et al., 2019). As Blake et al.,
(2019) concludes, models of this sort are crucial for any entity which strives for proper longevity
risk hedging via index-based instruments. The augmented common factor Lee Carter method was
first proposed by Li and Lee (2005) and can be regarded as a significant milestone for multi
population mortality models. The initial concept of the Li-Lee model seizes upon the inherent
potential of similarities found in the historical mortality experience of population groups, while
simultaneously recognizing their unique characteristics, including levels, age patterns, and trends

(Li & Lee, 2005). Although the mortality rates in two populations may differ progressively, the
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principle of coherence embraces the simple fact that the ratio of mortality rates should not
approach zero or infinity over time (Blake et al., 2019; Li & Lee, 2005). However, as both
Villegas et al. (2017) and Enchev et al. (2017) pointed out, the Li-Lee model lacks stability
regarding some actuarial applications, especially when stochastic evaluation of longevity risk
management aspects come into account like basis risk measurement. For instance, Enchev et al.
(2017) emphasizes that despite the sufficient fit of the Li-Lee model on different samples,
problems arose with respect to the robustness and pace of convergence. On the other hand,
Villegas et al. (2017) address issues regarding the length of historical data, specifically noting
that in the absence of at least 10-12 years of reliable book data and without minimum annual
exposure of 20,000-25,000 lives, the accuracy of two-population models becomes uncertain.
Besides the Lee-Carter model, the Cairns—Blake—-Dowd (CBD) model also got its multi-
population extension by Li et al. (2015), within a decade after its initial introduction. Bearing in
mind that Cairns et al. (2009) explored multiple potential adaptations of the original CBD model
in the context of single-population, Li et al. (2015) proposed two-population variants for all these
adaptations, facilitating a comprehensive comparison. Last but not least, multi-population
variants were also developed for the other aforementioned single-population time series methods.
While Cairns et al. (2011) and Dowd et al. (2011) provided the two-population version of the
Age-Period-Cohort (APC) model, Biatat and Currie (2010) defined the two-population P-spline

approach.
2.3.1 Lee-Carter model

In the present section, the previously briefly mentioned Lee-Carter (1992) method will be
explored in more detail. As it was emphasized, Lee and Carter introduced a novel statistical
procedure which revolutionised the way of modelling and forecasting mortality. The model

focuses on the proper forecast of age-specific death rates by utilizing the following equation:

Equation 3, Lee-Carter model
In(m€,;) = a,+ b, -k + &y,

Source: Lee & Carter (1992, p.661)

where based on Lee and Miller’s (2001) and Li and Hardy’s (2011) explanation,
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e m°€,, represent the central rate of death at age ,,x” in year ,,t” for the modelled population

e a, represents an age-specific parameter which explains the general age shape of the m, ,
values, or in other words, reflecting the average mortality rate within the population at
age ,,x”

e b, represents another age-specific parameter which illustrates how the mortality tendency
at age ,,x”” changes in response to fluctuations in the general level of mortality (k;), or in
other words, it explains the sensitivity of In(m¢, ) to k,

e k, represents a time-varying index of the general level of mortality which reflects the
overall pace of mortality improvements within the observed population

e &, represents the error term with 0 mean and o, variance which expresses age-specific

historical influences that are not accounted for by the model

Separately highlighting the b, parameter, it provides essential information about the pace of
decline of central death rates, particularly identifying those that decrease more rapidly and those
that decline more modestly. In principle, b, values may enter negative domains, suggesting that
mortality tends to increase at particular ages, while decreasing at others. However, this
phenomenon should diminish over the long run and b, values should acquire identical signs for
extended time intervals (Lee & Carter, 1992).

2.3.2 Forecasting with the Lee Carter model

Having introduced the model developed by Lee and Carter (1992), the next step is to
further elaborate on its forecasting features. Taking advantage of the fact that the mortality index
(k:) values constitute a time-series dataset with one data point corresponding to each observed
year, standard statistical approach can be employed to project this time-series (Lee & Miller,
2001). In fact, Lee and Carter (1992) came to the conclusion that the trajectory of the mortality
indexes can be regarded as an Autoregressive Integrated Moving Average (ARIMA) process and

was found to most closely resemble a Random Walk with Drift (RWD):

Equation 4, Lee — Carter model forecast, Random Walk with Drift
kt=kt_1+C+et'O' et“’N(O,l)

Source: Li et al. (2004, p. 22)
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where based on the notation and description, provided by Li et al. (2004, p. 22),

e c represents the drift term, reflecting the linear trend in the evolution of k;, which most of
the times takes values from the negative domain
e e,0 represents the deviation from the aforementioned linear change as random

fluctuation which contributes to the generation of uncertainty during simulation processes

Bearing in mind that the presented forecast framework will serve as one of the cornerstones of
the current thesis work, it is crucial to properly clarify the procedure and its associated
characteristics. Hereinafter, this procedure will be briefly outlined from the perspective of Li et
al. (2004, p.22). Taking into account that the differences of k; —k;_; presumed to be
independent and identically distributed variabless, the estimates of the mean (c) and standard

deviation (o) can be captured by the Equation 5 and 6 (Li et al., 2004).
Equation 5 and Equation 6, Estimates of the mean (c) and standard deviation (o)

A 1T kr-k
c= ;Zt=1(kt —ki1) = %

~ 1 ~
o= \/;ZZ=1(kt —k;_4 —©)?

Source: Li et al. (2004, p. 22)

while the standard error of the estimated mean (c) can be defined as presented in Equation 7:
Equation 7, Standard error of the estimated mean (c)
fa@= [T~
var(c) = —_ R —
T T
Source: Li et al. (2004, p. 22)

The characterization of the standard error of the estimated mean (c) is necessary since ¢ depicts a
sample value which may vary across unique samples. In other words, various realizations of
historical m€, , values result in different k; samples, leading to varying estimates of mean (¢)

values (Li et al., 2004). Considering that the e, component in the deviation from the linear
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change conforms to Gaussian distribution, ¢ can also be stated in the manner of Equation 8,

where 1 represents a standard-normal random variable.

Equation 8 Alternative form of the estimates of the mean (¢)

¢=c+ 4/var(é) 7

Source: Li et al. (2004, p. 22)

By utilizing the overview of forecasting characteristics so far, the path is clear to extrapolate the
general levels of mortality change (k). For this to happen, it is required to select a narrow range
of n based on the associated probability, along with a series of sample values of e, that are

independent of nj for s = (T + 1) to ,,t” (Li et al., 2004).

Equation 9, Lee — Carter forecast, an alternate to Equation 4.
k.= kg + (é — \Jvar(¢) -n) t—-T)+06 - Y ri16s
Source: Li et al. (2004, p. 23)

The general levels of mortality change (k;) can be expressed even despite the lack of knowledge
about the exact drift term (c), as the probability for ¢ spans any interval defined by Equation 8,
which crucial information is integrated into the outlined forecasting process (Equation 9) via the
simulation of n (Li et al., 2004). Mentioning the dependence of the simulated future levels of
mortality change (k;) is also relevant. According to Li et al. (2004), the particular trajectory
depends on three main aspects such as the estimated drift (¢), the randomly generated disparity

between the true mean (c) and the estimate () and last but not least on the random innovations.
2.3.3 Relationship between m, , and q,, values

As m, . values constitute a vital function in the model, it is deemed necessary to present
their way of calculation in more detail. Considering the explanations provided by Cairns et. al.

(2009) and Kim and Choi (2011), the Equation 10 illustrates the estimation process, where:

e D, , represents the number of deaths measured at age ,,x” during year ,,t”
e E, . represents the central exposure to risk which indicates the average population size

for age group ,,x” during calendar year of ,,t”
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Equation 10, Central rate of death estimation

D,
Ex,t

c —
m- .=

Source: Cairns et. al. (2009, p.2)

Following the approach of Carins et al. (2009), an estimate of the original population is

conventionally used to approximate the average population. The computation of the estimate is

2

based on the composition of individuals aged ,.x” as of their last birthday, occurring at the

midpoint of the calendar year. ly this way, the Authors define the underlying death rate (m€, )

which should be identical with the ratio of deaths and exposures (Carins et al., 2009).

Given that one of the most widely considered measure of mortality is the mortality rate (q,.), it
is essential to demonstrate its connection with the central rate of death values. The mortality rate
fundamentally captures the probability that an individual who has attained the age ,,x” at time ,,t”
will not survive to celebrate their subsequent birthday in ,,t+1” (Carins et al., 2009). As Vékas

(2016) illustrates, mortality rates can be expressed via the utilization of Equation 11:

Equation 11, Definition of mortality rates (q,)
q.=P(L<x+1|L>x) (x€ N)

Source: Vékés (2016, p.55)

where ,,L” represents a non-negative random variable measured in years, called “lifetime”.

The relationship between m¢,, and q,, values is described by Equation 12 (Carins et al.,

2009).

Equation 12, Relation between mortality rates and central death rates
Qxt = 1— e ™t

Source: Cairns et. al. (2009, p.3)
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3 Research question and hypotheses

After the overview of the theoretical background of longevity risk management, the aim of

the current section is to present the research question and related hypotheses.

The present thesis has several fairly related goals to explore. Its fundamental aim is to overview
the longevity phenomenon, with a strong emphasis on exploring insurance-based and capital
market-based risk management solutions. Beyond this goal, its research objective is to gain a
better understanding of the net return on Longevity Reinsurance transactions (chapter 2.2.1.3)
from the perspective of the reinsurer. Especially, considering the distribution of the reinsurance
contract’s return when comparing populations of different age groups via simulation. Therefore,

the main research question of the current thesis can be defined as follows:

What is the impact of demographic factors, such as age groups, on the return of Longevity

Reinsurance contracts from the perspective of reinsurers?
The hypotheses formulated to aid in addressing the research question:

H. Main: The distribution of the return of Longevity Reinsurance contract is significantly
dependent on the age composition of the reinsured portfolio.
o H1: The distribution of the return significantly differs depending on whether the
underlying portfolio consists of individuals aged 60-70, or individuals aged 70-80.
o H2: The distribution of the return significantly differs depending on whether the
underlying portfolio consists of individuals aged 60-70, or individuals aged 80-90.
o H3: The distribution of the return significantly differs depending on whether the
underlying portfolio consists of individuals aged 70-80, or individuals aged 80-90.
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4 Methodology

To address both the research question and hypotheses, several preparatory steps had to be
made. It is important to emphasize that all the preparatory and modelling tasks were executed

using R programming language (version 4.3.3).

As an initial step, a comprehensive data collection took place focusing on parameters required to

estimate central rate of death (m°, ,) for male, female, and unisex cases, as Equation 10

presents. This step was necessary because the built-in Lee-Carter modelling function (from the
demography package, Ica function) required this parameter, in addition to central exposures to
risk (E,.) values. While the raw data collected from Human Mortality Database (mortality.org,
2023) consisted of a wider age range and years, the age group under observation was limited to
0-100 years, and the year span was set as 1966-2020. Therefore, 55 years served as the basis for
the latter mortality rate forecasts which is in line with the original Lee-Carter (1992) article
where the authors used similar year span (1933-1987). Additionally, this approach also excluded
the temporary mortality rise due to the recent COVID-19 pandemic which otherwise could
potentially bias the long-term mortality forecasts. The data collection was carried out for 17
countries but for reasons such as completely missing years and data within the basis years span
(1966-2020), 6 countries were excluded. The countries appropriate for the pre-set year span
condition were Belgium, Canada, Czech Republic, France, Hungary, Japan, Norway, Sweden,
Switzerland, UK and USA. Although these countries were all suitable for the current research,
only Hungary was considered in the final setup because of capacity limitations. However, this

leaves room for further research.

After the determination of central rate of death values (mcx’t) with the ,,x” index ranging from 0
to 100 ages and the ,.t” index ranging from 1966 to 2020 years, Lee-Carter modelling was
applied. By utilizing the results, the forecasting of the time-varying index of mortality level (k,)
took place. As presented by the Lee-Carter model in Equation 3, this is the only time dependent
parameter which reflects the overall pace of mortality improvements within the observed
population. With the help of the forecasted k; parameter values, future mortality rates (qy.)

could be determined. This can be achieved by first calculating central rate of death (m®_ ) for

future years based on Equation 3, then by utilizing Equation 12 with the calculated m€,

40



values across the observed age span in the future years. The forecast took place for 3 + 40 years,
where the first 3 years was necessary to reach the hypothetical start year (current year — 2023) of
the Longevity Reinsurance contract, and 40 years to reach the predetermined boundary of the
observation period. Although a longer observation period might be feasible, the associated
increase in forecast uncertainty was deemed undesirable. Furthermore, the forecast was
implemented in two streams. Firstly, the best estimates for each gender case were determined by
utilizing the built-in “forecast” function from the demography package. Then an additional
10,000 trajectories were generated via a manually built function following the approach
presented in chapter 2.3.2.

The R script used during the simulation of trajectories is presented in Appendix 1 and Appendix
2. The main input objectives were two lists, containing the estimated central death rates and

exposure rates in data frame structure per country.

Both the best estimate and additional trajectories were utilized during the calculation of the
Longevity Reinsurance contract. After the generation of a reference populations, consisting of
1.000 people within the age spans predetermined during the hypotheses setting (e.g., 60-70 years
old), immediate life-time annuities were calculated based on one-time premiums. Then the best
estimate trajectories were used to determine the fixed leg of the reinsurance transaction
considering the 40-year observation period. Similarly, the 10.000 additional trajectories were
used to calculate 10.000 floating legs, thereby forming a payout distribution based on various
mortality scenarios. The relationship between the fixed leg and the floating leg distributions
proved to be a proper foundation, offering sufficient answers for both the research question and
hypotheses. The relations were also perceived in cases where the reinsurer applied 1% or 2%

margin on the fixed leg, to ensure the profitability of the transaction.

In the following subsections the forecasting and modelling steps will be presented in greater
detail.

4.1 Lee-Carter modelling in practice

The Lee-Carter modelling calculations were performed using the built-in function “lca”
from the “demography” package. However, before its application, support objects needed to be

created based on the central rate of death (m°_,) and the central exposures to risk (E ) values.
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This goal was accomplished using the “demogdata” function from the same “demography”

package. This intermediate step also left room for the visualization of the development of the

central rate of death values, as illustrated in Figure 14 (Male), Figure 15 (Unisex) and Figure 16

(Female).

Figure 14, Log central rate of death
development — Hungary (Male)

HU: male death rates (1966-2020)

Log death rate

Age

Source: Own calculations

Figure 15, Log central rate of death

development — Hungary (Unisex)

HU: total death rates (1966-2020)

100

Log death rate
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Source: Own calculations
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Figure 16, Log central rate of death
development — Hungary (Female)

HU: female death rates (1966-2020)

Log death rate
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Source: Own calculations

In Figure 14-16, each lines illustrate a given year, between 1966-2020. While the red and yellow

lines indicate closer years to the present, blue and purple lines indicate years in the 60's 70's.

Therefore, the mortality improvements described in chapter 2.1. can be clearly observed.
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By utilizing the support objects, the Lee Carter modelling could be accomplished for the
countries under observation. The evolution of the Lee-Carter parameters across ages (a, and b,.)
and years (k,) is illustrated on Figure 17 (Male), Figure 18 (Unisex) Figure 19 (Female). The

interpretation of each parameter can be found at the description of Equation 3.

Figure 17, Evolution of Lee-Carter model Figure 19, Evolution of Lee-Carter model
parameters — Hungary (Male) parameters — Hungary (Female)
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Figure 18, Evolution of Lee-Carter model

parameters — Hungary (Unisex)
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Despite the similarity in parameter evolution for the different gender cases, differences can be
observed in nearly every aspect. These discrepancies might seem minor, but they have significant
impact on the development of mortality rates, which effect was clearly observable during the

forecasting stage of the current research.

Besides the development of the central death rates and the evolution of Lee-Carter parameters,
the error of the model can also be presented, as illustrated in Figure 20. In Figure 20, only the

unisex case is showcased, but the same interpretation could apply to males and females as well.

Figure 20, Lee-Carter model errors across age groups and years — Hungary (Unisex)
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In case the error is positive, then the model underestimates mortality while overestimates it if the
error is negative. It is important to interpret the meaning of the emerging diagonals which always
represent a cohort of people. The significantly different mortality development observed in these
cohorts compared to others may be attributed to outstanding events, such as World War 1.
Researchers found that children who lived through this great tragedy had weaker immune
systems due to, for instance, malnutrition. This resulted in higher mortality rates within the age
cohort throughout the following decades (Allais et al., 2021; Elo & Preston, 1992).
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4.2 Lee-Carter forecasting in practice

Forecasting was conducted based on the calculated Lee Carter models, as anticipated in the
brief overview provided in chapter 4. The forecasting procedures aimed on the time-varying
index of mortality level (k;) parameter from Equation 3 which is the only time dependent
parameter, reflecting the overall pace of mortality improvements within the observed population.
The development of this parameter throughout the observed year span (1966-2020) for Hungary
is illustrated in Figure 17-19. The forecast spanned 43 years, with 3 years to reach the
hypothetical start year of the Longevity Reinsurance contract (current year — 2023) from 2020,
followed by a future observation period of 40 years. The forecast span was determined to be
neither too small, which could limit accuracy, nor too large, which could increase forecast

uncertainty significantly.

As a first step the Best Estimate trajectories were calculated for each gender cases by utilizing
the built-in forecast” function from the demography package. While other forecasting
approaches could also prove to be efficient, the built-in ,,forecast” function uses Random Walk
with Drift as proposed by Lee and Carter (1992), presented in Equation 4. The Best Estimate
trajectories were intended to represent the most likely outcome of k, parameter value
development over the forecasted 43 years. As an illustration, Figure 21 present the male, Figure
22 present the female and Figure 23 presents the unisex Best Estimate k;, trajectories with 95%
confidence intervals. It is relevant to mention that the used ,,forecast” function organizes the
historical k, parameter values in such way that the last observed parameter (ky) is set to 0. This
is achieved by subtracting the k; value from historical k, values. Although this adjustment does
not affect the forecast itself, it is the cause behind the slight visual differences between Figure
17-19 and Figure 21-23.
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Figure 21, Best Estimate k, forecast Figure 23 Best Estimate k, forecast
(Male) (Female)
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Figure 22 Best Estimate k, forecast
(Unisex)
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After determining the Best Estimate Trajectories, the next step before proceeding with the direct
Longevity Reinsurance preparations was to calculate additional trajectories. While the Best
Estimates were created for the fixed leg calculation, the purpose of the additional trajectories was
to serve as the basis for the floating leg calculations. To ensure greater accuracy, 10,000

trajectories were generated for each gender case using a manually built function following the
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approach presented in chapter 2.3.2. The results of the different parameter estimations required

for the forecasts are summarized in Table 7 by gender.

Table 7, Lee Carter forecast — manually built function parameter estimations (Hungary)

. Equation Value Value Value
Name Notation .
number (Male)  (Female) (Unisex)
Drift mean estimate (o Equation 5 -0.5976 -1.1189 -0.8507

Estimate of the standard deviation o Equation 56 5.1488 4.0391 4.2080
Standard error the drift mean estimate [var (&) Equation 7 0.6942 0.5446 0.5674

Source: Own calculations

As Table 7 presents, the estimates of the linear trend in the evolution of k, values are negative in
all gender cases. In the unisex case for instance, this means that the general level of mortality
decreases by an average of -0.8507 per year. This is also in line with chapter 2.1, where the
increasing life expectancy was elaborated upon from multiple aspects. While the rate of decline
was the highest among females (-1.1189), the estimate’s standard error stood out in case of males
(0.6942). Additionally, the standard deviation from the linear change in the general level of
mortality development was estimated to be the highest among males as well (5.1488). Based on
the parameter estimations, the extrapolation of the general levels of mortality change (k) could
be carried out via Equation 9. As illustration of the extrapolation, Figure 24 presents 1000 out
of the 10.000 additional male trajectories, while Figure 25 presents the development of 1000
female trajectories over the forecasted 40 years. Figure 24-25 are clearly consistent with the
trends presented in Table 7, particularly reflecting the greater decrease in the general level of
mortality among females. Moreover, the larger standard deviation is also evident in case of

males.
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Figure 24, Additional male trajectories — Figure 25, Additional female trajectories
Hungary (Manually built function) — Hungary (Manually built function)
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At this point, having both the Best Estimate trajectories and additional trajectories of the time-
varying index of the general level of mortality (k,), it was possible to proceed with the future
mortality rate (q,,) calculations. By utilizing the forecasted k, values, the central rate of death

(m°_,) values were calculated for the future years based on Equation 3. Following this, the

application of Equation 12 ensured that the future mortality rates (q,,) were available for the
Longevity Reinsurance leg calculations. However, prior to the subsequent steps, a brief check
took place. To confirm that the mortality rates sourced from the Best Estimate trajectory are
indeed the best estimates, the mortality rates sourced from the additional 10.000 simulations
were compared to them. In fact, if the best estimate trajectory is correct, then its values should
differ minimally from the averages of the additional trajectories. To inspect this connection, the
age group 65 and the future year of 2063 were chosen. The statistical measures of the distribution
formed from the values of the 10.000 simulations regarding age group 65 in year 2063 are
presented in Table 8. Considering Table 8, the relationship between the Best Estimate mortality
rates and the simulated mortality rates appears to be correct. The mean of the 10.000 trajectories
can be regarded as particularly similar, with only minor differences. Furthermore, nearly half of
the trajectories fall below and half fall above the Best Estimate trajectory, indicating that the Best

Estimate is indeed a proper estimate.

48



Table 8, Comparison of Best Estimate and simulated mortality rates (q,,.)

Hungary, Age group 65, year 2063

Unisex Male Female
Best Estimate mortality
0.0181352 0.0286392 0.0101693
rate value (BE)
Mean mortality rate of
0.0183698 0.028900 0.0104012
trajectories (10.000)
Maximum mortality rate
0.0307240 0.0489891 0.0218144
of trajectories (10.000)
Mini talit t
e mortally Tafe 0.0103939 0.0162228 0.0048109
of trajectories (10.000)
Number of higher than
) _ 5033 5050 5050
BE trajectories
Number of lower than BE
4967 4950 4950

trajectories

Source: Own calculations

4.3 Calculation of reference population parameters

Before delving into the specific Longevity Reinsurance calculations by utilizing both the
Best Estimate trajectories and additional trajectories, it was relevant to define a reference
population. Similarly to the consideration of the number of additionally simulated trajectories, a
reference population with 1000 individuals was defined for each relevant age categories. In the
case of the present research, it meant one population consisting of individuals with ages ranging
from 60 to 70, one population with age range of 70 to 80 and a last population with age range of
80-90. In this section, only the population with the age range of 60-70 is presented in more
detail. Nevertheless, the additional two populations followed the same characteristics and are

compared in chapter 5.
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During the reference population simulations three main aspects were determined for each
individual of the population: age, gender, and the one-time premium paid. Considering the age
and gender parameters, these were simulated based on uniform distribution. Therefore, the
number of simulated males was 489 and the number of simulated females was 511. The
distribution of the age groups is presented in Appendix 3. Besides age and gender, the one-time
premium paid was necessary to define the immediate life-time annuities ,,purchased” by the
population members. These life-time annuities play an essential role during the Longevity
Reinsurance modelling because these represent the reinsured obligations in 40 years' time. More
precisely, the valuation of the transaction legs is determined by calculating the sum product of
each population member's annual life annuity payout and their survival rates in the observed
years, which are then discounted to present value. If the survival rates are based on the Best
Estimate, then the fixed leg is calculated, while each additionally simulated trajectory results a

floating leg. This calculation is presented in more detail in chapter 4.4.

Following the approach of three analysed articles, it is observed that the income distribution of
the majority of populations typically closely resembles an exponential pattern especially for low-
and middle-income classes (Dragulescu & Yakovenko, 2001; Bogdan et al., 2017; Tao et. al.,
2019). Therefore, exponential distribution (4 ~ Exp) was used during the calculation of one-
time premiums paid. In the case of the exponential distribution, there is a strict connection
between its parameter and the distribution's first moment, or in other words, its expected value.

This connection is presented in Equation 13.

Equation 13 Mean of exponential distribution

1

Source: Michaletzky (2016, p. 155)

To calculate the A parameter for Hungary, the median of USA retirement saving account in 2022
($87.000) was used as a basis (Federal Reserves, 2023). Additionally, direct proportionality was
used to calculate the median of Hungarian retirement savings accounts in 2022 based on the
average annual wages (OECD, 2023). The brief calculation is presented in Appendix 4.
Considering a necessary lower boundary for the purchase of immediate life-time annuities, a

minimum one-time premium of $10,000 was established. This amount is equivalent to
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approximately 3,661,700 Ft (MNB, 2024), which was found to be sufficient amount for a modest

investment to supplement pension payments.

Drawing from the one-time premiums paid by each member of the reference population, the
immediate life-time annuities could be calculated. For this objective, actuarial estimation
concepts were utilized. However, prior to the actual calculations, it is essential establish some
actuarial foundations. Actuarial pricing calculations are derived from life tables consisting of
several parameters. The main parameters are the mortality rates (q, ) for each age group from 0
to 100. Mortality rates fundamentally captures the probability that an individual who has attained
age ,,x” at time ,,t” will not survive to celebrate their subsequent birthday in ,,t+1” (Carins et al.,
2009; Vékas, 2016). As a complement to mortality rates, survival rates can be easily estimated
using Equation 14, representing the probability of an individual surviving to age ,,x+1”, having

survived to age ,,x” (Banyar, 2021, p. 21).
Equation 14, Calculation of survival rates (p,,;)
Prt=1—qyx;
Source: Banyar (2021, p. 21)

Based on the mortality and survival rates, the number of survivors (I, ,) in each group can be
calculated. Starting as 100,000 people (Io; = 100.000), the number of survivors is calculated
using Equation 15. Similarly, Equation 16 sheds light on the calculation of the number of

deaths (d, ) at given ages.
Equation 15, Calculation of the number of survivors ()
Levit = Pt Lot
Source: Banyar (2021, p. 29)
Equation 16, Calculation of the number of deaths (d, ;)
Ay = Lot — Leraye
Source: Banyar (2021, p. 170)

By considering both the number of survivors and the number of deaths, commutation numbers

can be obtained. Commutation numbers are standard functions obtained from life tables,
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commonly used in actuarial science. Equation 17 and Equation 18 showcases the calculation of
the ,,discounted value” of living (D,,,) and death (C,.,).
Equation 17, Calculation if the discounted value of living
Dyy = Ly - v*
Source: Banyér (2021, p. 171)
Equation 18, Calculation if the discounted value of death
Cre = dyy - el
Source: Banyar (2021, p. 171)

where:

. 1
e .. v” represents the discount factor, calculated as v = o

.1
i

e ,.i” represents the technical interest rate

The technical interest (,,i”) rate during the Hungarian pricing process was determined based on
the December 2023 base rate of the Hungarian National Bank which was 10.75% (Statista,
2023). Utilizing the commutation numbers, the calculation of immediate life-time annuities with

1 Ft. annual annuity payment could be conducted, as demonstrated by Equation 19.

Equation 19, Calculation of immediate life-time annuities (1)

g = Nae
= —
Dy,

Source: Banyar (2021, p. 181)

where:

e N, represents the sum of the discounted value of living, calculated as
Nyt = Dyt + Dyi1e+ Dyypet o+ Dy,
e w represents the highest shown age level
e a, represents the one-time premium paid by the purchaser (single net premium)

o % is typically referred to as "annuity factor"
x,t
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Equation 19 can be rearranged to directly express the annual payouts, given that in our case, the
one-time premiums are predetermined parameter rather than estimated ones. Equation 20

presents the rearranged form of Equation 19.

Equation 20, Calculation of immediate life-time annuities (2)

Ny

SA =a,: D
x,t

Source: Banyér (2021, p. 181)

where:

e SArepresents the ,,sum assured”, which in the current case indicates the annual payout of

the life-time annuity.

During the calculation of the annual payments of the immediate life-time annuities, the Unisex
Best Estimate Trajectory was used in line with the Gender Directive, which forbids pricing
discrimination based on gender (European Union, 2004). The pricing process involved 101
mortality rates (q,.) ranging from age O to age 100. Although theoretically, the range could
have been extended to age 110, it had no impact on the results since D, , depends solely on the

annuity’s start age (entry age in our case) and N, values are negligible for ages 100 to 110.

4.4 Longevity Reinsurance in practice

The completion of the reference population calculations meant that the last pieces of the
Longevity Reinsurance preparatory steps have fallen into their places. Hence, the estimation of
the fixed and floating legs could take place. As it was briefly overviewed in chapter 4, the
mortality rates (q,.) sourced from the Best Estimate trajectories served as the basis for the fixed
leg calculations, while the additionally simulated 10.000 trajectories served as the basis for the
floating leg calculations. For further details regarding the concept of Longevity Reinsurance

alongside with the role of the transaction ,,legs”, please refer to chapters 2.1.1 and 2.2.1.3.

Although the used trajectories were different, the estimation steps were similar in the cases of
both the fixed and floating legs. As it was briefly mentioned in chapter 4.3, the valuation of the
transaction legs was determined by calculating the sum product of each population member's

annual life annuity payout and their survival rates in the observed years, which are then
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discounted to present value. To be precise, Equation 21 presents the calculation formula of

floating leg ,.,i”.

Equation 21, Calculation formula for Longevity Reinsurance transaction legs

1000 2063

v, = Z z szAj(x,t)-pj(x,t)-v(t)

j=1 t=2023
Source: Own calculations

where:

e V" represents the valuation of the i floating leg

e j” iterates over in the reference population of 1.000 individuals

e t”iterates over the forecasted years from 2023 to 2063

e X’ represents the age of the person ,,j” in year ,,t”

e SAj(x,t) represents the annual life annuity payout for person ,,j” aged ,x” at time ,,t”
(This amount remains constant for person ,,j”” across all ages ,,x” and times ,,t”)

e p;(x,t) represents the survival probability of person ,j” aged ,,x” at time ,,t”

e v(t) represents the discount factor for the year ,,t”, used to discount future cash flows to

their present value

Based on the simulated trajectories, index ,,i” runs from 1 to 10.000. As Equation 21 illustrates,
p;(x,t) is the equation part, which is affected by the development of the mortality, or in other
words, by the simulated trajectories. For instance, in case of the fixed leg, this is the part where
the Best Estimate trajectories are utilized. Equation part p;(x, t) is also gender dependent unlike
the mortality rates used during the pricing process for the calculation of the life table aspects
(Equation 14 - Equation 16) and commutation numbers (Equation 17 and Equation 18). The
reason behind is that males and females have significantly different mortality rates across ages.
Although it is forbidden to consider this difference during pricing, it is relevant to be considered
during the calculation of future obligations. Regarding the survival rate (p;(x,t)) selection for
individuals above age 100, the value used for person 'j' matches p;(100,t) in the age range 100
to 110, where ,t” represents the year of reaching age 100. For instance, if person ,,;” purchases

an immediate life annuity at age 65 in 2023, reaching age 100 occurs in 2058. Consequently, for
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the remaining observation period of 5 years, the survival rate utilized for person ,j”
is p;(100,2058). Additionally, for reference population cases aged 70-80 and 80-90 years old,
the survival probability was considered as 0 for ages above 110. These assumptions were
considered due to consistency reasons besides the lack of proper historical data in extreme age
ranges. It is also essential to mention that the risk-free interest rates provided by the European
Insurance and Occupational Pensions Authority (EIOPA) were used for the discount factor (v(t))

calculations, which were published in December 2023.

The results of the fixed leg and floating legs distribution achieved via Equation 21 are presented
in Figure 26, where the red line indicates the fixed leg. The return of the reinsurance contract in
different floating leg scenarios was defined as the difference of the fixed leg and the floating

legs. Figure 27 presents the return distribution from the perspective of the reinsurer.

Figure 26, Distribution of the floating legs for reference population 60-70 ages
(Hungary, without margin)
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Figure 27, Distribution of the expected return on the reinsurance contract for reference
population 60-70 ages (Hungary, without margin)

Expected net return of the reinsurance contract
from the perspective of the reinsurer (without margin)
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Upon closer examination of Figure 26 and Figure 27 it becomes evident that the reinsurer,
acting as the floating leg payer, realizes profit when the sum of expected payouts are below the

amount of the fixed leg.

Besides the net scenario, two additional scenarios were inspected. In the first scenario the
reinsurer added 1% extra margin, while in the second scenario 2% margin was added. The extra
margins were applied on the fixed leg by shocking the underlying male and female Best Estimate
mortality rate (q.) trajectories. As the fixed leg survivor rates (p;(x,t)) were determined
through Equation 14 based on the Best Estimate mortality rate trajectories (q,.), the
adjustments to the margins can be regarded as directly shocking the age and year specific
survivor rates in Equation 21. Given that the reinsurer pays the floating leg and receives the
fixed leg, it benefits from higher returns when mortality rates increase resulting in fewer
obligations to fulfil. Conversely, if the mortality rates decrease then the reinsurer faces more
obligations due to the fact that people live longer than anticipated. Therefore, during the margin
calculations, the mortality rates were decreased by a shock percentage. It is important to note that

the mortality rate was applied to the same extent to all the mortality rates across all ages.
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For 1% additional margin, a -10.03% shock was applied on the mortality rates. Similarly, 2%
additional margin was achieved through -20.06% shock to mortality rates. This meant that both
the original male and female Best Estimate trajectories changed to 89.97% in the former case and
to 79.94% in the latter case compared to their defaults. When considering the change in the sum
of expected payouts for the fixed leg, the net case (0% margin) yielded $75,663,572. With a 1%
margin, the expected fixed leg payout increased to $76,420,208, and with a 2% margin, it further
increased to $77,176,844. Figure 28 and Figure 29 illustrate the two additional scenarios with
respect to the margins.

Figure 28, Distribution of the floating legs for reference population 60-70 ages
(Hungary, with different margins)

Distribution of the sum of expected payouts in 40 years
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Figure 29, Distribution of the expected return on the reinsurance contract for reference
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Considering the hypotheses in question, the current chapter’s aim is to provide answer to

whether the age group of the population participating in the Longevity Reinsurance contract has
an impact on the distribution of the return. Particularly focusing on the age groups of 60-70 as a
benchmark compared to age groups 70-80 and 80-90. However, before presenting the direct

results, Table 9 emphasizes the features of the different age group cases. The exact age

distributions of the observed populations are presented in Appendix 5.

Table 9, Gender and premium features of the simulated populations (Hungary)

Sum of one-time

Initial benefit payment

Male number Female number oremiums in the first year
Population 60-70 489 511 $41,922,215 $5,400,855
Population 70-80 528 472 $41,292,907 $6,592,148
Population 80-90 507 493 $40,892,418 $9,678,596

Source: Own calculations
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As Table 9 illustrates, the sum of the one-time premiums was similar, consistent with the
identical underlying exponential distributions. On the other hand, the sum of the yearly payouts
differed significantly which is due to the change of annuity factor, presented in Equation 19 and
Equation 20. As for higher ages the value of the annuity factor decreases, and the payout value
therefore increases inversely per individual. Consequently, the initial sum of payout obligations
is higher for populations with older individuals. The detailed values per-age annuity factors are
presented in Appendix 6. It is important to highlight, as annuity factors decrease at a higher rate
than survival rates for older individuals, the sum of expected payout is also significantly higher
for reference populations with older individuals. For instance, in case of the fixed legs (Best
Estimate trajectories), the Population 60-70 had an expected payout amount of $75.663.572, the
Population 70-80 had $81.840.167, and the Population 80-90 had $92,541,850. It may seem
illogical if we consider that individuals in higher age groups have a greater probability of death,
which would logically lead to a decrease in expected payouts over a 40-year period for elder
reference populations. Furthermore, as presented in chapter 4.4, the survival probability was
assumed to be 0 for ages above 110 which means that reference populations with 70-80 and 80-
90 years olds have, on average, fewer years of payout obligations per individual compared to
Population 60-70. Nevertheless, the relationship between the annuity factors and survival
probabilities provides an adequate explanation for this outstanding effect. Specifically, the rate of
decrease in annuity factors for older ages exceeds the rate of increase associated with mortality,
consequently leading to greater expected payout amounts for elder reference populations.

For greater insight, the fixed leg values in cases of different margins are presented in Table 10,
along with their percentile values relative to the distributions of the corresponding floating legs.
The percentile percentage represents the proportion of floating legs which have sum of expected
payout values less than the fixed leg value. Upon examining the percentile values, it becomes
evident that even a relatively small percentage of margin pushes the fixed legs to the edge of the
distributions. This can be regarded as a limitation of the current work, which may originate from
the reference population sizes. As such, reference populations with more than 1,000 individuals
may result in higher variability in individual expected payouts and therefore wider distributions.
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Table 10, Fixed leg values in case of different margins for different reference populations

(Hungary)
Fixed leg — without margin Fixed leg — 1% margin Fixed leg — 2% margin
Value Floating legs Value Floating legs Value Floating legs
percentile percentile percentile

Population 60-70  $75,663,572 54.4197% $76,420,208 94.9657% $77,176,844 99.9650%

Population 70-80  $81,840,167 53.4877% $82,658,569 85.8303% $83,476,970 98.1137%

Population 80-90  $92,541,850 52.1017% $93,467,269 78.8295% $94,392,687 94.1343%

Source: Own calculations

Besides, Table 10 also indicates that the floating leg percentile is above 50% in case of each
population scenario if there is no additional margin applied. This discrepancy may be attributed
to some form of Jensen's inequality, as the Best Estimate calculation of mortality rates for the
fixed leg is performed before applying the main calculation formula, Equation 21. In contrast,
the mean of the floating legs (50% percentile) is determined after estimating the 10.000 mortality
rate trajectory simulation. However, this phenomenon is not examined in more detail and can
therefore be regarded as a direction for future research. Additional information regarding the
features of the floating legs distributions is presented in Appendix 11. Furthermore, detailed
figures illustrating the relationship between the fixed and floating legs are provided in Appendix
7 and Appendix 8 for Population 70-80, and in Appendix 9 and Appendix 10 for Population
80-90.

As demonstrated at the end of chapter 4.4, the various margin scenarios were achieved through
directs shocks to the mortality rates. Each margin scenario represents a constant change in
mortality rates, thereby resulting a direct shift in the position of the fixed leg to ensure greater
profitability for the reinsurer. The mortality shocks and the corresponding change in each level of
the male and female Best Estimate mortality rates, compared to their default states are presented
in Table 11, per reference population. The mortality shocks are defined as the necessary

collective mortality changes to achieve the desired margin level.
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Table 11, Margin shock to the male and female mortality rates per reference population

(Hungary)
Population 60-70 Population 70-80 Population 80-90
Margin 1% 2% 1% 2% 1% 2%
Mortality shock -10.03% -20.06% -5.38% -10.77% -3.01% -6.02%

Level of mortality rates
89.97% 79.94% 94.62% 89.23% 96.99% 93.98%
(q,,.) after the shock

Source: Own calculations

Both Table 10 and Table 11 indicates that the distributions of the floating legs are affected by the
underlying reference population. In case of Table 10, notable differences in the relationship
between floating legs and fixed legs can be observed across different age-group cases,
manifesting in the percentile position of the fixed legs. On the other hand, Table 11 sheds light
on the difference in the mortality shock required to achieve different margin levels, indicating
different distribution shapes. While both tables foreshadowed that the return distribution of the
Longevity Reinsurance contract is also dependent on the age composition of the reference
population, Kolmogorov — Smirnov Tests (KS Test) were utilized to properly compare the
distributions. The results of the KS Tests were identical, leading to the rejection of the null
hypothesis of significant similarity between the observed return distributions at all usual
confidence levels (1%, 5%, 10%). This conclusion remained the same across the different margin
scenarios. Therefore, the research hypotheses H1, H2 and H3 could be accepted, which means
that the return distribution of the Longevity Reinsurance contract is dependent on the age
composition of the reinsured portfolio. The test statistics of the KS Tests are in Appendix 12 for
the net cases, in Appendix 13 for the 1% margin cases and in Appendix 14 for the 2% margin

cases.

To provide visual support for the stated results, Figure 30 presents the net return distributions in
case of the different reference populations. Besides, Figure 31 presents the 1% margin cases

while Figure 32 presents the 2% margin cases.
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Figure 30, Distribution of the expected return in case of different reference populations
(Hungary — 0% margin)
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Figure 31, Distribution of the expected return in case of different reference populations
(Hungary — 1% margin)

Expected return of the reinsurance contract from the perspective of
the reinsurer in case of different reference populations (1% margin)
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Figure 32, Distribution of the expected return in case of different reference populations
(Hungary — 2% margin)

Expected return of the reinsurance contract from the perspective of
the reinsurer in case of different reference populations (2% margin)
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Additionally, Table 12-Table 14 present some of the relevant percentiles, derived form the return
distributions illustrated in Figure 30-Figure 32. As a specific example, 1% (1%) percentile in
Table 12 indicates that the return of the reinsurer is above -1.0582 (million USA$) 99% of the
time, assuming the underlying portfolio given into reinsurance consist of Hungarian individuals
aged 60-70 years. For a portfolio of individuals aged 70-80 years, this value is -1.8166 (million
USAS$), while for a portfolio of individuals aged 80-90 years it is -2.7898 (million USD). The
decrease in the percentile values for older portfolios is consistent with the finding that the
standard deviation of the return increased for underlying reference portfolios consisting of older
individuals. Therefore, there is greater risk associated with reinsuring portfolios that include
older individuals. As shown in Table 13 and Table 14, this effect remained consistent in cases

when additional margins were applied to ensure the profitability of the reinsurer.

63



Table 12, Percentiles of the return distributions presented in Figure 30 (0% margin case)

(million USA $)
1% 5% 10% 50%
Population 60-70 -1.0582 -0.7585 -0.5841 0.0594
Population 70-80 -1.8166 -1.2911 -0.9914 0.0739
Population 80-90 -2.7898 -1.9517 -1.5055 0.0589

Source: Own calculations

Table 13, Percentiles of the return distributions presented in Figure 31 (1% margin case)

(million USA $)
1% 5% 10% 50%
Population 60-70 -0.3016 -0.0018 0.1726 0.8160
Population 70-80 -0.9982 -0.4727 -0.1730 0.8923
Population 80-90 -1.8644 -1.0263 -0.5800 0.9843

Source: Own calculations

Table 14, Percentiles of the return distributions presented in Figure 32 (2% margin case)

(million USA $)
1% 5% 10% 50%
Population 60-70 0.4550 0.7548 0.9292 1.5726
Population 70-80 -0.1798 0.3456 0.6454 1.7107
Population 80-90 -0.9390 -0.1009 0.3453 1.9097

Source: Own calculations
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6 Conclusion

The aim of the present research was to provide a comprehensive overview of longevity risk
management, in addition to gain better understanding of the return on Longevity Reinsurance
contracts from the perspective of the reinsurer. In chapter 2.1 the theoretical background of
mortality improvements was examined, followed by the longevity risk management methods in
chapter 2.2. The overview of the theoretical background concluded with the presentation of
mortality models in chapter 2.3, with particular emphasis on the Lee Carter model. After
providing an overview of the theoretical background, chapter 3 outlined the research question
and hypotheses. These were subsequently explored in chapter 4, where the used methodology

was introduced, and in chapter 5, which presented the findings.

The main research question of the thesis explored the reinsurance contract’s return when
comparing populations of different age groups via simulation. Specifically, whether demographic
factors, such as age groups, have significant impact on the return of Longevity Reinsurance
contracts from the perspective of reinsurers. To investigate this question, one main and three sub-
hypotheses were constructed. In summary, all research hypotheses were supported which meant
that the distribution of the reinsurance contract was significantly dependent on the age
composition of the reinsured portfolio. Especially, when comparing underlying portfolios
consisting of individuals aged 60-70, 70-80, and 80-90, the return difference remained
significant. Furthermore, as Figure 30 illustrates, the return distributions were not only different,
but the standard deviation of the return increased for underlying reference portfolios consisting
of older individuals. In other words, there is greater risk associated with reinsuring portfolios
that include older individuals. This effect remained consistent in cases when additional margins

were applied to ensure the profitability of the reinsurer as Figure 31 and Figure 32 illustrate.

Considering the limitations of the current research it is important to mention the country
selection. Because the focus was on Hungary, the inclusion of further countries could broaden
the spectrum of the results. Therefore, this can be regarded as a future research direction.
Similarly, by checking different forecast ranges and utilizing different initial assumptions, the

reliability of the results can be greatly improved.
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8 Glossary

Annuity

Annuitas

Annuity factor

Annuitas faktor

Best estimate (BE)

Legjobb becslés

Central exposure to risk

Kozponti kitettség

Central rate of death

Kozponti haldlozasi rata

Cost-of-capital

T6kekoltség

Defined Benefit (DB) pension

Jaradék alapu nyugdijrendszer

Defined Contribution (DC) pension

Jarulék alapu nyugdijrendszer

Discount factor

Diszkont faktor

Discounted value of death

Halottak diszkontalt szama

Discounted value of living

ElGk diszkontalt szama

Distribution Eloszlas
Fixed leg Csereligylet el6re fixalt laba
Floating leg Csereligylet lebegd laba

Immediate life-time annuities

Azonnal indulé életjaradék

Insurance industry

Biztositasi iparag

Life expectancy

varhato élettartam

Longevity Bond

Hosszuélet kotvény
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Longevity Insurance

Hosszuélet viszontbiztositas

Longevity risk

Hosszuélet kockazat

Longevity Swaps

Hosszuélet csereligylet

Margin

Haszonrés (Marzs)

Mortality rates

Halalozasi rata

Number of deaths

Elhunytak szdma

One-time premium

Egyszeri befizetés/egyszeri dij

Pension fund

Nyugdij alap

Probability Valdszinlség
g-Forwards Hosszuélet hatdridds csereligylet

Random Walk with Drift

Eltoldsos véletlen bolyongas

Return

Megtériilés

Risk

Kockazat

Solvency Capital Requirement (SCR)

SzavatoldtSke-sziikséglet

Standard deviation

Széras

Sum assured (SA)

Biztositasi 6sszeg

Survival rate

Tulélési rata

Technical interest rate

Technikai kamatlab

Underlying portfolio

Porfélid, amire az ligylet vonatkozik
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9 Appendix

Appendix 1, R program script — Trajectories simulation

library(dplyr)

library(tidyr)

library(ggplot2)

library(demography)

library(MortalityLaws)

creation <- function(Country,CountryL.istPosition,
Ages,AgeMin,AgeMax,
Years,StartYear,EndYear,
CentralDeathRates,Exposures,

SimNum,SimYearNum,kt_adjust){

# Support variables
start_time <- Sys.time()

SupColNum <- SimNum*2 + 4
SupColINum1 <- SimNum + 4
SupColNum2 <- SupColNum1 + 1
SupCoINum4 <- SimNum + 2
SupColINum5 <- SimNum + 5
SupRowNum <- Ages * (SimYearNum + 1)
SupRowNum1 <- Ages *SimYearNum
SupRowsStart <- Ages + 1
SimYearNumPlusl <- SimYearNum + 1
SimEndYear <- EndYear+SimYearNum

SupEndYear <- EndYear + 1

# Initial data frame

MainList <- list()

MainList[["mxt_u"]] <- matrix(CentralDeathRates[[CountryListPosition]][,5], nrow = Ages, ncol = Years)

MainList[["mxt_m"]] <- matrix(CentralDeathRates[[CountryListPosition]][,4], nrow = Ages, ncol = Years)

MainList[["mxt_f"]] <- matrix(CentralDeathRates[[CountryListPosition]][,3], nrow = Ages, ncol = Years)

MainList[["Ext_u"]] <- matrix(Exposures[[CountryListPosition]]$Total, nrow = Ages, ncol = Years)

MainList[["Ext_m"]] <- matrix(Exposures[[CountryListPosition]]$Male, nrow = Ages, ncol = Years)

MainList[["Ext_f"]] <- matrix(Exposures[[CountryListPosition]]$Female, nrow = Ages, ncol = Years)

MainList[["support_u"]] <- demogdata(MainList$mxt_u, MainList$Ext_u, AgeMin:AgeMax,
StartYear:EndYear, "mortality”,Country, "Total")

MainList[["support_m"]] <- demogdata(MainList$mxt_m, MainList$Ext_m, AgeMin:AgeMax,

75



StartYear:EndYear, "mortality”,Country, "Male")
MainList[["support_f"]] <- demogdata(MainList$mxt_f, MainList$Ext_f, AgeMin:AgeMax,

StartYear:EndYear, "mortality”,Country, "Female")

# Initial modelling

MainList[["LC_u"]] <- Ica(data = MainList$support_u, max.age = AgeMax)
MainList[["LC_m"]] <- Ica(data = MainList$support_m, max.age = AgeMax)
MainList[["LC_f"]] <- Ica(data = MainList$support_f, max.age = AgeMax)

# Support Parameters

# Drift (c) estimation - Maxium Likelihod

MainList[["est_c_u"]] <- (MainList$LC_u$kt[Years]-MainList$LC_u$kt[1])/(Years)
MainList[["est_c_m"]] <- (MainList$LC_m$kt[Years]-MainList$LC_m$kt[1])/(Years)
MainList[["est_c_f"]] <- (MainList$LC_f$kt[Years]-MainList$LC_f$kt[1])/(Years)

# Standard error of deviation from linear change
standardError <- function(kt, drift){

support <- as.numeric()

sd <- as.numeric()

for(k in 2:length(kt)){

support[k-1] <- (kt[k]-kt[k-1]-drift)"2}

sd <- sgrt(sum(support)/length(kt))

return(sd)}
MainList[["est_se_u"]] <- standardError(MainList$LC_u$kt, MainList$est_c_u)
MainList[["est_se_m"]] <- standardError(MainList$LC_m$kt, MainList$est_c_m)
MainList[["est_se_f"]] <- standardError(MainList$LC_f$kt, MainList$est_c_f)
MainList[["est_c_sd_u"]] <- MainList$est_se_u/sqrt(Years)
MainList[["est_c_sd_m"]] <- MainList$est_se_m/sqrt(Years)
MainList[["est_c_sd_f"]] <- MainList$est_se_f/sqrt(Years)

# Simulation
kt_forecast <- function(sim_num,year_num,kT, est_c, est_c_sd, est_se){
row_num <-year_num +1
output <- data.frame(matrix(ncol=sim_num, nrow = row_num))
for(world in 1:sim_num){
distl <- rnorm(year_num, mean=0, sd =1)
dist2 <- rnorm(year_num, mean=0, sd =1)
output[1,world] <- kT
support <- dist2[1]

for(year in 2:row_num){
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output[year,world] <- output[1,world]+(est_c-est_c_sd*dist1[year-1])*(year-1)+est_se*support
support <- support+dist2[year]}}
return(output)}
MainList[["kT_u"]] <- MainList$LC_u$kt[Years]
MainList[["kT_m"]] <- MainList$LC_m$kt[Years]
MainList[["kT_f"]] <- MainList$LC_f$kt[Years]
MainList[["kt_future_u"]] <- kt_forecast(SimNum,SimYearNum,MainList$kT _u,
MainList$est_c_u,MainList$est_¢_sd_u,
MainList$est_se_u)
MainList[["kt_future_m"]] <- kt_forecast(SimNum,SimYearNum,MainList$kT_m,
MainList$est_c_m,MainList$est_c_sd_m,
MainList$est_se_m)
MainList[["kt_future_f"]] <- kt_forecast(SimNum,SimYearNum,MainList$kT_f,
MainList$est_c_f,MainList$est_c_sd_f,
MainList$est_se_f)
MainList[["kt_future_u"]]$year <- EndYear:SimEndYear
MainList[["kt_future_m"]]$year <- EndYear:SimEndYear
MainList[["kt_future_f"]]$year <- EndYear:SimEndYear

# Creating data frame
MainList[["mx_forecast_u']]<- data.frame(matrix(nrow = SupRowNum, ncol = SupColNum))
MainList[["mx_forecast_m"]]<- data.frame(matrix(nrow = SupRowNum, ncol = SupColNum))
MainList[["mx_forecast_f"]]<- data.frame(matrix(nrow = SupRowNum, ncol = SupColNum))
MainList[["mx_forecast_u"]] <- MainList[["mx_forecast_u"]] %>%
rename_at(vars(1:4), ~ c("Year", "Age", "ax", "bx"))
MainList[["mx_forecast_m"]] <- MainList[["mx_forecast_m"]] %>%
rename_at(vars(1:4), ~ c("Year", "Age", "ax", "bx"))
MainList[["mx_forecast_f""]] <- MainList[["mx_forecast_f"]] %>%
rename_at(vars(1:4), ~ c("Year", "Age", "ax", "bx"))
MainList[["mx_forecast_u"]] <- MainList[["mx_forecast_u"]] %>%
rename_at(vars(5:SupColNum1l), ~ paste("'kt_forecast"”, 1:SimNum, sep ="_"))
MainList[["mx_forecast_m"]] <- MainList[["mx_forecast_m"]] %>%
rename_at(vars(5:SupColNum1l), ~ paste("kt_forecast"”, 1:SimNum, sep =" _"))
MainList[["mx_forecast_f"]] <- MainList[["'mx_forecast_f"]] %>%
rename_at(vars(5:SupColNum1l), ~ paste("kt_forecast", 1:SimNum, sep =" _"))
MainList[["mx_forecast_u"]] <- MainList[["mx_forecast_u"]] %>%
rename_at(vars(SupColNum2:SupColNum ), ~ paste(""mx_forecast", 1:SimNum, sep ="_"))
MainList[["mx_forecast_m"]] <- MainList[["mx_forecast_m"]] %>%
rename_at(vars(SupColNum2:SupColNum ), ~ paste("mx_forecast", 1:SimNum, sep ="_"))

MainList[["mx_forecast_f""]] <- MainList[["mx_forecast_f"]] %>%
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rename_at(vars(SupColNum2:SupColNum ), ~ paste("mx_forecast", 1:SimNum, sep ="_"))

# year, age, ax, bx, kt

MainList$mx_forecast_u$Year <- rep(EndYear:SimEndYear, each = Ages)
MainListsmx_forecast_u$Age <- rep(AgeMin:AgeMax, times = SimYearNumPlus1)
MainList$mx_forecast_u$ax <- rep(MainList$LC_uS$ax, times = SimYearNumPlus1)
MainList$mx_forecast_u$bx <- rep(MainList$LC_u$bx, times = SimYearNumPlus1)
for(col in 5:SupColNum1)

{MainList$mx_forecast_u[,col] <- rep(MainList$kt_future_u[,col-4], each = Ages)}

MainList$mx_forecast_m$Year <- rep(EndYear:SimEndYear, each = Ages)
MainList$mx_forecast_m$Age <- rep(AgeMin:AgeMax, times = SimYearNumPlus1)
MainList$mx_forecast_m$ax <- rep(MainList$LC_m$ax, times = SimYearNumPlus1)
MainList$mx_forecast_m$bx <- rep(MainListSLC_m$bx, times = SimYearNumPlus1)
for(col in 5:SupColNum1)

{MainList$mx_forecast_m[,col] <- rep(MainList$kt_future_m[,col-4], each = Ages)}

MainList$mx_forecast_f$Year <- rep(EndYear:SimEndYear, each = Ages)
MainList$mx_forecast_f$Age <- rep(AgeMin:AgeMax, times = SimYearNumPlus1)
MainList$mx_forecast_f$ax <- rep(MainList$LC_f$ax, times = SimYearNumPlusl)
MainList$mx_forecast_f$bx <- rep(MainList$LC_f$bx, times = SimYearNumPlusl)
for(col in 5:SupColNum1)

{MainList$mx_forecast_f[,col] <- rep(MainList$kt_future_f[,col-4], each = Ages)}

# mx calculation
for(row in SupRowStart:SupRowNum){
for(col in SupColNum2:SupColNum){

MainList$mx_forecast_u[row,col] <- exp(MainList$mx_forecast_u$ax[row]+
MainList$mx_forecast_u$bx[row]*
MainList$mx_forecast_u[row,col-SimNum])

MainList$mx_forecast_m[row,col] <- exp(MainList$mx_forecast m$ax[row]+
MainList$mx_forecast_m$bx[row]*
MainList$mx_forecast_m[row,col-SimNum])

MainList$mx_forecast_f[row,col] <- exp(MainList$mx_forecast_f$ax[row]+
MainList$mx_forecast_f$bx[row]*
MainList$mx_forecast_f[row,col-SimNum])}}

MainList$mx_forecast_u <- MainList$mx_forecast_u[c(SupRowStart:SupRowNum),]
MainList$mx_forecast_m <- MainList$mx_forecast_m[c(SupRowStart:SupRowNum),]

MainList$mx_forecast_f <- MainList$mx_forecast_f[c(SupRowStart:SupRowNum),]
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# gx ML estimation
MainList[["gx_forecast_u"]]<- data.frame(matrix(nrow = SupRowNum1, ncol = SupColNum4))
MainList[["gx_forecast_m"]]<- data.frame(matrix(nrow = SupRowNum1, ncol = SupColNum4))
MainList[["qgx_forecast_f""]]<- data.frame(matrix(nrow = SupRowNum1, ncol = SupColNum4))
MainList[["qgx_forecast_u"]] <- MainList[["gx_forecast_u"]] %>%
rename_at(vars(1:2), ~ c("Year", "Age"))
MainList[["gx_forecast_m"]] <- MainList[["qgx_forecast_m"]] %>%
rename_at(vars(1:2), ~ c("Year", "Age"))
MainList[["gx_forecast_f"]] <- MainList[["gx_forecast_f""]] %>%
rename_at(vars(1:2), ~ c("Year", "Age"))
MainList[["gx_forecast_u"]] <- MainList[["gx_forecast_u"]] %>%
rename_at(vars(3:SupColNum4), ~ paste("'gx_forecast", 1:SimNum, sep ="_"))
MainList[["gx_forecast_m"]] <- MainList[["gx_forecast_m"]] %>%
rename_at(vars(3:SupColNum4), ~ paste("'gx_forecast", 1:SimNum, sep ="_"))
MainList[["gx_forecast_f"]] <- MainList[["gx_forecast_f"]] %>%
rename_at(vars(3:SupColNum4), ~ paste("gx_forecast", 1:SimNum, sep ="_"))
MainList$qgx_forecast_u$Year <- rep(SupEndYear:SimEndYear, each = Ages)
MainList$qx_forecast_m$Year <- rep(SupEndYear:SimEndYear, each = Ages)
MainList$qx_forecast_f$Year <- rep(SupEndYear:SimEndYear, each = Ages)
MainList$qgx_forecast_u$Age <- rep(AgeMin:AgeMax, times = SimYearNum)
MainList$qx_forecast_ m$Age <- rep(AgeMin:AgeMax, times = SimYearNum)
MainList$qgx_forecast_f$Age <- rep(AgeMin:AgeMax, times = SimYearNum)

# gx Calculation
for(row in 1:SupRowNum1){
for(col in SupColNum5:SupColNum ){
MainList$qgx_forecast_u[row,col-SupColNum4] <- 1-exp(-MainList$mx_forecast_u[row,col])
MainList$qgx_forecast_m[row,col-SupColNum4] <- 1-exp(-MainList$mx_forecast_m[row,col])

MainList$qgx_forecast_f[row,col-SupColNum4] <- 1-exp(-MainList$mx_forecast_f[row,col])}}

return(MainList)}

Example — Hungary
HU <- creation("HU",1,101,0,100,55,1966,2020,deathRates,exposures,1000,43,FALSE)
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Appendix 2, R program script — Best Estimate trajectories simulation (Hungary)

HU_BE <- list()

# Forecast - Best Estimate (BE)
HU_BE[["BE_future_u"]] <- forecast(HU$LC u, h =43)
HU_BE[["BE_future_m" ]] <- forecast(HU$LC_m, h =43 )
HU_BE[["BE_future_f"]] <- forecast(HU$LC f, h =43)

# Forecast of the rates
HU_BE[["BE_mxt_u" ]] <-HU_BES$BE_future_u$rate$Total
HU_BE[["BE_mxt_m"]] <-HU_BES$BE_future_m$rate$Male
HU_BE[["BE_mxt_f"]] <-HU_BE$BE_future_f$rate$Female
HU_BE[["BE_gx_u" ] <- 1-exp(-HU_BES$BE_mxt_u)
HU_BE[["BE_gx_m" ]] <- 1-exp(-HU_BE$BE_mxt_m)
HU_BE[["BE_gx_f" 1] <- 1-exp(-HU_BE$BE_mxt_f)

# Organising gx values to a data frame
HU_BE[["BE_gx_df_u"]] <- data.frame(matrix(nrow=(101*43),ncol = 3))
HU_BE[["BE_gx_df_m"]] <- data.frame(matrix(nrow=(101*43),ncol = 3))
HU_BE[["BE_gx_df_f"]] <- data.frame(matrix(nrow=(101*43),ncol = 3))
names(HU_BES$BE_qgx_df u) <- c("Years","Age","gx_BE")
names(HU_BES$BE_qgx_df _m) <- c("Years","Age","qx_BE")
names(HU_BES$BE_qgx_df_f) <- c("Years","Age","gx_BE")

HU_BES$BE_qgx_df_u$Years <- HU$qgx_forecast_u$Year
HU_BE$BE_gx_df u$Age <- HU$qx_forecast_u$Age
HU_BES$BE_qgx_df_u$gx_BE <- c(HU_BE$BE_gx_u)

HU_BE$BE_gx_df m$Years <- HU$qgx_forecast_m$Year
HU_BES$BE_gx_df m$Age <- HU$qx_forecast m$Age
HU_BE$BE_qgx_df m$gx_BE <- c(HU_BES$BE_gx_m)

HU_BES$BE_qgx_df_f$Years <- HU$qx_forecast_f$Year

HU_BE$BE_qgx_df f$Age <- HU$qgx_forecast f$Age
HU_BE$BE_gx_df f$qx_BE <- ¢(HU_BE$BE_gx_f)
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Age Count Proportion
60 42 4.2%
61 103 10.3%
62 92 9.2%
63 108 10.8%
64 98 9.8%
65 91 9.1%
66 124 12.4%
67 103 10.3%
68 96 9.6%
69 103 10.3%
70 40 4.0%

Source: Own calculations

Appendix 3, Age distribution of the simulated population of 60-70 years olds

Appendix 4, Calculation of Hungarian median retirement savings (2022)

Country Unit Average annual wage Ratio Retirement saving (4)
USA US Dollar, 2022 $ 77,463 100% $87,000
Hungary US Dollar, 2022 $ 28,475 37% $31,981

Source: Own calculations
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Appendix 5, The age distribution of observed populations (Hungary)

Population 60-70 Population 70-80 Population 80-90
Age  Person Proportion Age  Person Proportion Age Person Proportion
count count count

60 42 4.2% 70 46 4.6% 80 47 4.7%
61 103 10.3% 71 115 11.5% 81 96 9.6%
62 92 9.2% 72 99 9.9% 82 95 9.5%
63 108 10.8% 73 89 8.9% 83 95 9.5%
64 98 9.8% 74 102 10.2% 84 92 9.2%
65 91 9.1% 75 116 11.6% 85 95 9.5%
66 124 12.4% 76 98 9.8% 86 114 11.4%
67 103 10.3% 77 84 8.4% 87 112 11.2%
68 96 9.6% 78 105 10.5% 88 92 9.2%
69 103 10.3% 79 93 9.3% 89 112 11.2%
70 40 4.0% 80 53 5.3% 90 50 5.0%

Source: Own calculations
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Appendix 6, Pricing annuity factor (immediate life annuities) values for different ages

Population 60-70 Population 70-80 Population 80-90
Entry  Pricing Entry  Pricing Entry  Pricing
year annuity year annuity year annuity
60 8.31885 70 7.14769 80 5.30342
61 8.22505 71 6.99305 81 5.09959
62 8.12742 72 6.82976 82 4.89750
63 8.02534 73 6.66082 83 4.69477
64 7.91918 74 6.48326 84 4.49838
65 7.80923 75 6.29777 85 4.29896
66 7.69290 76 6.10795 86 4.10951
67 7.56774 77 5.91206 87 3.92503
68 7.43549 78 5.71228 88 3.74641
69 7.29564 79 5.50985 89 3.57070
70 7.14769 80 5.30342 90 3.39587

Source: Own calculations
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Appendix 7, Distribution of the floating legs for reference population 70-80 ages
(Hungary, with different margins)

Distribution of the sum of expected payouts in 40 years
with fixed legs
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Source: Own calculations

Appendix 8 , Distribution of the expected return on the reinsurance contract for reference
population 70-80 ages (Hungary, with different margins)

Expected return of the reinsurance contract
from the perspective of the reinsurer (with different margins)
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Source: Own calculations
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Appendix 9, Distribution of the floating legs for reference population 80-90 ages
(Hungary, with different margins)

Distribution of the sum of expected payouts in 40 years
with fixed legs
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Source: Own calculations

Appendix 10, Distribution of the expected return on the reinsurance contract for reference
population 80-90 ages (Hungary, with different margins)

Expected return of the reinsurance contract
from the perspective of the reinsurer (with different margins)
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Source: Own calculations
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Appendix 11, Features of the floating leg distributions per reference population (Hungary)

Minimum Q1 quartile Q2 quartile Q3 quartile Maximum

(Mean)
Population 60-70 $73,474,235 $75,245,575 $75,604,210 $75,953,562  $77,323,363
Population 70-80 $78,459,868 $81,127,033 $81,737,470 $82,346,763  $84,090,898
Population 80-90 $87,745,333 $91,596,345 $92,470,983 $93,340,101  $96,033,335

Source: Own calculations

Appendix 12, Test statistics of the Kolmogorov-Smirnov tests
(Different age groups case — without margin)

Without margin (0%o)

Population 60-70 Population 70-80 Population 80-90

Population 60-70

D =0.1273

Population 70-80
p-value < 0.0000000

D =0.2084 D =0.098

Population 80-90
p-value < 0.0000000 p-value < 0.0000000

Source: Own calculations
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Appendix 13, Test statistics of the Kolmogorov-Smirnov tests
(Different age groups case — 1% margin)

Without margin (1%0)

Population 60-70 Population 70-80 Population 80-90

Population 60-70

D =0.1504

Population 70-80
p-value < 0.0000000

D =0.2483 D =0.1164

Population 80-90
p-value < 0.0000000 p-value < 0.0000000

Source: Own calculations

Appendix 14, Test statistics of the Kolmogorov-Smirnov tests
(Different age groups case — 2% margin)

Without margin (2%o)

Population 60-70 Population 70-80 Population 80-90

Population 60-70

D =0.1752

Population 70-80
p-value < 0.0000000

D =0.2998 D =0.1423

Population 80-90
p-value < 0.0000000 p-value < 0.0000000

Source: Own calculations
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