
Hidy Gábor

Transferability metrics
and medical image segmentation

with neural networks

Master’s thesis

Supervisor:

András Lukács
Department of Computer Science

Eötvös Loránd University, Faculty of Science
Institute of Mathematics

Eötvös Loránd University
Faculty of Science

2024



Acknowledgments

This thesis is a culmination of work I have been doing mainly in the past three years
(although some of it has started even before that). As such, there have been many people
along the way who have helped nudge me forward. I appreciate every encouraging word,
every idea seed I have received. Here, I would like to take the opportunity to thank a few
people by name.

First and foremost, my supervisor, András Lukács, who introduced me to the world of
medical imaging, and without whose vast support none of my research or accomplishments
would have been possible. Bence Bakos comes at a close second. He has been my research
partner in multiple projects for several years now, and is also the co-author of the paper
that would publish the results in Chapter 4 of this thesis. In addition to Bence, Bálint
Csanády and Thomas Kolb also contributed to the code base used for the experiments
presented here. And, last but not least, I thank Vivien Mikes, my mother, for her help
with creating Figures 1.2–1.4.



Contents

Introduction 3

1 Medical image segmentation with neural networks 4
1.1 Architectures for segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 U-shaped networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Convolutional U-Net variants . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Swin U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Metrics and losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Pretraining models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Experiments 13
2.1 Model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Pretraining the encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Overview of the methods used . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Medical image datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Downstream experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Transferability metrics 27
3.1 Notion of transferability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Overview of transferability metrics in literature . . . . . . . . . . . . . . . 29

4 Robustness 32
4.1 Defining robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 40

2



Introduction

Within the field of computer vision and deep learning, medical image processing offers
some unique challenges, which in turn lead to unique solutions in terms of architectures,
loss functions, training methods, and evaluation metrics. One of these problems is a lack
of labeled training data. Medical image segmentation, in particular, suffers from this
problem, since labeling is time intensive, and requires medical experts. For this reason,
neural networks for medical image segmentation are often first pretrained on large datasets
containing natural images. However, this approach is not without its own challenges.

This work aims to explore the challenges arising when pretraining medical imaging
models on ImageNet, and to offer a possible solution. It will show that depending on the
model, no or a short ImageNet pretraining might be beneficial. How long a pretraining is
necessary can be predicted using a novel transferability metric, that estimates how well a
given pretrained model will transfer to another dataset.

The rest of this thesis is organized as follows. Chapter 1 provides an overview of some
of the most popular deep learning methods used in medical image segmentation. Chapter 2
presents a set of over three hundred experiments carried out using these methods. Chapter
3 introduces the notion of transferability metrics and provides a literature overview of
existing ones.

Chapter 4 introduces a novel transferability metric, and demonstrates its effectiveness
on the experiments introduced in Chapter 2. The contents of this chapter are based on a
research project I conducted with Bence Bakos, under the supervision of András Lukács.
Our findings also led to a paper that is, at the submission of this thesis, under review for
the 2024 European Conference on Computer Vision.

3



Chapter 1

Medical image segmentation with
neural networks

This chapter aims to provide an overview of the field of medical image segmentation. It
should be noted that the methods described here can be applied to any segmentation
task. However, most of them originate from, and are mostly used for medical imaging
problems.

We define the task of semantic segmentation as a task which aims to map an input
x ∈ RΛ×Cin to an output y ∈ [0, 1]Λ×Cout , where at every position κ, the entries of yκ sum
to 1. Λ can contain any number of leading dimensions, that must be present both in the
inputs and outputs. In image processing, Λ = H ×W , where H is the height, W is the
width of the image. The input channel size Cin in this case is usually either 1 (grayscale
images) or 3 (RGB images). Thus, image segmentation tasks ascribe a classification label
for each pixel. Common examples in medical imaging include localizing certain abnormal
(e.g., infected or cancerous) areas of the input, or segmenting different organs on an X-ray
or MRI image.

Figure 1.1. Example of an image, its corresponding segmentation mask (here denoting a can-
cerous region of a histopathology slide), the continuous output of a segmentation model, and its
hard predictions at different thresholds. Positive pixels are colored black.

4



Chapter 1: Medical image segmentation with neural networks

The ground truth label, or mask, y is a {0, 1}-tensor, where yκ,c = 1 if the pixel at
position κ belongs to class c. Predictions are provided as continuous distributions for each
pixel. The hard prediction is taken as the class with maximal probability. If there are
two classes (i.e., the problem is binary), the ground truth mask might be represented as
a {0, 1}Λ-tensor, and predictions might be given as [0, 1]Λ-tensors. In that case, positions
where the ground truth mask is 1 are referred to as positive, while the others as negative.
Hard prediction is calculated by counting each prediction above a certain threshold as
positive. Throughout this work, this threshold will always be 0.5.

1.1 Architectures for segmentation
Classical image processing networks were designed for classification, i.e., mapping a vari-
able sized input to a fix sized output. In contrast, segmentation requires the output size
to follow the input size, which necessitates modifications in the architecture.

The most naïve approach is to obtain the prediction for each pixel separately, using
a classification network in a sliding-window setup. Earliest deep segmentation networks
worked this way [3]. This method is computationally inefficient, since it requires running
a deep network repeatedly for each pixel.

Fully convolutional networks [6] address this problem by providing pixelwise predic-
tions for the whole image in one pass. Original FCNs converted a CNN for image clas-
sification – at the time of the original paper, the state-of-the-art models were AlexNet
[2], VGG16 [5], and GoogleNet [7] – to a segmentation model by adding a few additional
upsampling blocks, which could provide local predictions.

This approach allows for predictions for all pixels in just one call of the model, thus
providing a considerable improvement in time complexity compared to sliding-window
networks. However, it creates another problem: the data representation reaches a bot-
tleneck toward the middle of the architecture, which might cause problems since later
the model needs to be able to reconstruct local information to provide the segmentation
masks. The solution to this problem is “U-shaped” networks, that add new connections to
fully convolutional architectures, to provide local, position-sensitive information to later
layers.

1.1.1 U-shaped networks

U-Net [8] is a fully convolutional network, building on the original idea proposed in [6].
It is an encoder–decoder style structure, with additional connections introduced between
the two parts. Figure 1.2 provides an illustration for the U-Net architecture.

The encoder part is a traditional image processing backbone. It consists of several
levels, where the representation dimensions are constant within one level, and change in
between levels: spatial dimensions are halved, and the channel size is doubled. In the
original U-Net, each level consists of two 3 × 3 convolutions, with batch normalization
and ReLU layers in between. Downsampling is done by max pooling.

The decoder is symmetrical to the encoder, typically with the same structure, except
downsampling operations are replaced by upsampling. U-Net solves upsampling via up-
convolutions, which are a bilinear interpolation followed by a 2 × 2 convolution. The
input of each decoder level is not simply the output of the previous level, but also the
output of the corresponding encoder level, through a lateral skip connection. The
original implementation in [8] had the lateral skip connection slightly crop the output,

5



Chapter 1: Medical image segmentation with neural networks

to account for the fact that they did not use padding for the convolutional layers. Since
then, most implementations (including ours) pad their layers, thus the skip connections
are identical.

H k
×

W k
×
C

en
c

2

H k
×

W k
×
C

en
c

2

H k
×

W k
×
C

en
c

1
+

1 2

H k
×

W k
×
C

de
c

d
−
2

H k
×

W k
×
C

de
c

d
−
2

H k
×

W k
×
C

de
c

(d
−
2
)−

1 2

H

kd−1
× W

kd−1
× Cenc

d− 1
2

H

kd−1
× W

kd−1
× Cenc

d

H

kd−1
× W

kd−1
× Cenc

d

H k
d
−
2
×

W k
d
−
2
×
C

en
c

(d
−
2
)+

1 2

H k
d
−
2
×

W k
d
−
2
×
C

de
c

1 2

H k
d
−
2
×

W k
d
−
2
×
C

en
c

d
−
1

H k
d
−
2
×

W k
d
−
2
×
C

de
c

1

H k
d
−
2
×

W k
d
−
2
×
C

en
c

d
−
1

H k
d
−
2
×

W k
d
−
2
×
C

de
c

1

H
×
W

×
C

en
c

1

H
×
W

×
C

en
c

1

H
×
W

×
C

en
c

1

H
in
×
W

in
×
C

in

H
in
×
W

in
×
C

ou
t

H
×
W

×
C

de
c

d
−
1

H
×
W

×
C

de
c

d
−
1

H
×
W

×
C

de
c

(d
−
1
)−

1 2

stem
basic block

downsampling
upsampling
copy

mixing block
segmentation head

×(w − 2)×(w − 2)

×(d− 4) ×(d− 4)

×(w − 2)

×(w − 2)

×(w − 2) ×(w − 2)

×(w − 2)

Figure 1.2. High-level architecture of U-shaped models. In the case of U-Net, basic blocks are
3×3 convolutions, downsampling is done by max pooling, upsampling is done by up-convolution
blocks, and the mixing block concatenates the lateral signal to the upsampled signal.

1.1.2 Convolutional U-Net variants

As the leading model architecture for medical image segmentation, many variants of the
original U-Net have appeared. The basic block may be enhanced by residual connections
[21], or replacing them with an Inception [7] block [33]. The encoder part is often replaced
by a more specialized image processing network, such as a ResNet50 [12], or even a hybrid
CNN–transformer model [39].

Another direction in which the basic U-Net architecture can be modified is by replacing
lateral skip connections. Attention U-Net [25] does this with additive attention gates.

6



Chapter 1: Medical image segmentation with neural networks

Attention gate modules implement attention as

α(Q,K, V ) = σ̂
(
Ψ
(
ϕ(Q+K)

))
⊗ V, (1.1)

where σ̂ is a sigmoid operation followed by upsampling, Ψ is a linear projection (1 × 1
convolution), ϕ is the ReLU operation, and ⊗ is elementwise multiplication. (Biases are
omitted for the sake of simplicity.) In the case of Attention U-Net, V = x is the signal
propagated through the lateral connection, K is calculated from x via a 1×1 convolution
and downsampling, andQ is a linear transformation of the signal coming from the previous
up-block, as illustrated by Figure 1.3.

WQ

WK downs.

Ψφ σ̂

x

xup

Figure 1.3. The additive attention gate module used in Attention U-Net. x is the signal propa-
gated through the lateral connection, and xup is the signal coming from the previous up-block.
WQ, WK , and Ψ are 1× 1 convolutions.

1.1.3 Swin U-Net

In recent years, transformer [18] architectures started appearing in computer vision tasks
too. Vision Transformers [40] were the first to do so, which used a standard transformer
encoder, with a flattened image as its input. While ViT produced good results, it had the
downside of high computational complexity, since the attention modules have quadratic
complexity in the input length.

Swin Transformer [45] is an image transformer that builds on the ideas of ViT, but
introduces local attention to lower time complexity, and a hierarchical structure, like that
of convolutional networks, where the spatial size of the representation decreases, while
its feature size increases through consecutive levels of the model. This architecture lends
itself well as an encoder to a U-Net-like model. Swin U-Net [48] builds on this, adding a
decoder consisting of similar Swin Transformer blocks, and upsampling operations.

The rest of this subsection will go over the architectural details of Swin Transformer
and Swin U-Net. Figure 1.4 illustrates the basic Swin Transformer block, which is used
as the basic block in Swin U-Net.

Shifted window-based self attention

Instead of global self attention layers, Swin Transformer blocks use shifted window based
self attention. In the first attention module of the block, the input tensor is divided into
windows of size M × M , and then attention is only calculated within these windows.

7



Chapter 1: Medical image segmentation with neural networks

LN

LN

LN

LN

W-MSA

SW-MSA

MLP

MLP

Figure 1.4. A Swin Transformer block. “LN” stands for layer normalization [11], “MLP” is a mul-
tilayer perceptron, and “W-MSA” and “SW-MSA” stand for windowed multihead self attention
and shifted window multihead self attention respectively

This reduces the quadratic time complexity of global attention to a linear one. (If M is
constant.)

The second attention module is also replaced by a local one, which works similarly to
the first, but it is a shifted window attention, meaning the original window partition is
shifted by

⌊
M
2

⌋
×
⌊
M
2

⌋
. (The name Swin Transformer itself comes from the abbreviation

for shifted window.) This allows the information to mix between windows. Figure 1.5
illustrates window and shifted window partitions.

(a) Window partition (b) Shifted window partition

Figure 1.5. Window partitions for windowed and shifted window self attention, with a window
size of M = 7. Bold red lines indicate window borders. In the shifted window case, there appear
extra windows at the edge of the image that are less than M ×M in size.

Relative positional bias

Instead of absolute positional embedding, each attention module within the Swin Trans-
former adds a position-based bias term to the attention weights, calculating attention as

α(Q,K, V ) = σ

(
QK⊤
√
d

+B

)
V, (1.2)

where Q, K, and V are the query, key, and value matrices respectively, σ is the softmax
function, d is the query dimension, and B ∈ RM2×M2 is a matrix whose entries depend

8



Chapter 1: Medical image segmentation with neural networks

on the relative position of the key and query. The values of B are taken from a trainable
B̂ ∈ R(2M−1)×(2M−1) matrix, since the relative position of two patches within one window
always lies in the [−M + 1,M − 1] range for both axes.

Patch partition, patch merging, and patch expanding

Following ViT, Swin Transformer first partitions the input pixels into patches, then applies
a linear embedding to those patches.

Unlike ViT, Swin Transformer is hierarchical, therefore it needs downsampling layers.
It uses patch merging layers to achieve this, which first reshape an H ×W × C signal
to H

2
× W

2
×4C, then use a pointwise linear transformation to transform the feature space

to 2C dimensions. (This is equivalent to a 2 × 2 convolution of stride 2 applied to the
H ×W × C signal, with output channel size 2C.)

In the decoder part of Swin U-Net, upsampling is achieved by patch expanding
layers, which function as the inverse of patch merging. They take a signal of shape
H
2
× W

2
× 2C, apply a pointwise linear transformation to transform the feature space to

4C dimensions, then reshape the signal to H ×W × C. (This is equivalent to a 2 × 2
transposed convolution [19] of stride 2 applied to the H

2
× W

2
× 2C input, with output

channel size C.)

1.2 Metrics and losses
While metrics such as accuracy or area under the ROC curve can be used to evaluate the
performance of a segmentation model, they do not provide an accurate assessment in the
case of imbalanced data, which is common in medical image segmentation tasks. For this
reason, other metrics, better equipped for this type of data, are needed. This section will
list some of the most commonly used metrics. Note that each metric is defined for a binary
segmentation task. For multiclass segmentation, corresponding metrics are obtained by
first calculating the binary metric for each class separately (regarding pixels from all other
classes as negative), then taking their average (usually excluding the background).

Dice index, also known as Dice similarity coefficient or F1 score, is calculated as

2 · TP
2 · TP + FP + FN

, (1.3)

where TP, FP, and FN are the number of true positive, false positive, and false negative
predictions (pixels), in order. Since there is no term corresponding to the number of true
negative predictions, models with a large false negative rate will have low Dice index.

A similar metric is the Jaccard index, or IoU (intersection over union) score, calcu-
lated as

TP

TP + FP + FN
. (1.4)

Matthew’s correlation coefficient is another, less widely used metric based on the
confusion matrix. It is given by the formula

TP · TN− FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (1.5)

Mean average precision (mAP), the area under the precision–recall curve is sometimes
used as an imbalance-friendly alternative to the area under the ROC curve.

9



Chapter 1: Medical image segmentation with neural networks

So far, these metrics have all been classification metrics, that disregard the geometry
of image segmentation masks and predictions. Average Hausdorff distance, on the
other hand, is a metric defined between two sets in the plane – e.g.that of the positive
ground truth pixels and positive predictions. It is calculated as

dH(X, Y ) =
1

2

(
1

|X|
∑
x∈X

d(Y, x) +
1

|Y |
∑
y∈Y

d(X, y)

)
, (1.6)

where d(S, p) is the Hausdorff distance of set S and point p (infimum distance between
p and points of S). A commonly used variant is the modified Hausdorff distance,
abbreviated as HD95, where d(S, p) is not the distance between p and the point in S
closest to it, but rather the 5th percentile of the distances between p and S.

Note that the Dice and Jaccard indices can also be understood as similarity measures
between two sets. Specifically, the Dice index defined by Equation 1.3 is equivalent to

2|X ∩ Y |
|X|+ |Y | , (1.7)

and the Jaccard index defined by Equation 1.4 is equivalent to

|X ∩ Y |
|X ∪ Y | (1.8)

(hence the name intersection over union), where X is the set of positive pixels, and Y is
the set of pixels with positive prediction.

Despite their differing definitions, these metrics seem to measure the performance of
segmentation models equally well. Figure 1.6 shows the Spearman correlation of the men-
tioned metrics, as well as other metrics used mostly for (balanced) classification problems.
Datapoints come from training and evaluating several models over two datasets (see Sec-
tion 2.4 for details). Dice index, Jaccard index, and MCC show perfect correlation, while
mAP and HD95 (replaced in the figure by its inverse, so all metrics work by assigning a
higher score to better performing models) still stay within 95% correlation of them.

Another question is what loss function to use to deal with imbalanced data. Following
the idea of the Dice index, the Dice loss [17] is based on the soft version of the Dice
index. There are natural two ways to define the Dice index as a continuous function
of the (flattened) ground truth values y and predictions ŷ, in a way that when ŷ is a
{0, 1}-vector, the definition gives back the original Dice index.

One is based on Equation 1.3, where TP is substituted with yŷ, FP with (1 − y)ŷ,
and FN with y(1− ŷ), resulting in

D(y, ŷ) = 1− 2yŷ + ε

2yŷ + (1− y)ŷ + y(1− ŷ) + ε
. (1.9)

(ε is a small smoothing term to avoid dividing by 0.)
The other one is based on Equation 1.7, where we replace the intersection of two sets

with the scalar product of their incidence vectors, and the cardinality of a set with the
square of its length, giving us

D(y, ŷ) = 1− 2yŷ + ε

∥y∥22 + ∥ŷ∥22 + ε
. (1.10)

It is easy to see that the two definitions are not equivalent: Equation 1.9 would be
equivalent to using ∥ · ∥1 instead of ∥ · ∥22 in Equation 1.10.

10



Chapter 1: Medical image segmentation with neural networks

Dice
 in

de
x

Jac
car

d i
nd

ex

MCC
mAP HD95

ba
lan

ced
 ac

cur
acy

sen
siti

vit
y

AUROC
acc

ura
cy

spe
cifi

cit
y

Dice index

Jaccard index

MCC

mAP

HD95

balanced accuracy

sensitivity

AUROC

accuracy

specificity

1.00 1.00 1.00 0.99 0.96 0.94 0.91 0.33 0.57 0.65

1.00 1.00 1.00 0.99 0.96 0.94 0.91 0.33 0.57 0.65

1.00 1.00 1.00 0.99 0.96 0.93 0.90 0.32 0.57 0.64

0.99 0.99 0.99 1.00 0.96 0.91 0.88 0.31 0.56 0.62

0.96 0.96 0.96 0.96 1.00 0.87 0.85 0.22 0.56 0.61

0.94 0.94 0.93 0.91 0.87 1.00 0.99 0.39 0.69 0.79

0.91 0.91 0.90 0.88 0.85 0.99 1.00 0.35 0.72 0.82

0.33 0.33 0.32 0.31 0.22 0.39 0.35 1.00 0.10 0.01

0.57 0.57 0.57 0.56 0.56 0.69 0.72 0.10 1.00 0.96

0.65 0.65 0.64 0.62 0.61 0.79 0.82 0.01 0.96 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

Figure 1.6. Spearman’s rank correlation coefficients between frequently used segmentation met-
rics. (−HD95 indicates the inverse of the modified Hausdorff distance, which is used so that for
all metrics a bigger score indicates a better performance.)

1.3 Pretraining models
Medical image processing, especially semantic segmentation tasks, tend to suffer from
a lack of labeled training data. For this reason, pretraining on a large dataset is often
beneficiary.

Early fully convolutional networks often started from a classification backbone pre-
trained on a large dataset – most frequently ImageNet [10]. ImageNet, and models pre-
trained on ImageNet are easily accessible and widely known, therefore it is an attractive
dataset for pretraining. However, it has been shown that in several fields, including ob-
ject detection [29] and medical image segmentation [44], ImageNet pretraining offers no
real performance benefits. While it does tend to speed up convergence, that is only an
advantage if we do not count the pretraining as part of the training time. Otherwise,
any model pretrained on ImageNet is much slower to converge than a model trained from
scratch.

With U-shaped segmentation networks, ImageNet pretraining is only done on the
subset of the weights. The encoder is complemented with a dense head, and trained
for image classification on ImageNet. The decoder is then initialized from scratch for
the downstream task. During downstream training, encoder weights might be used as a
frozen feature extractor, or they might be further updated based on the downstream loss
function.

While it is clear that ImageNet pretraining is ineffective and unnecessary in certain

11



Chapter 1: Medical image segmentation with neural networks

contexts, it is still widely used, mostly due to its accessibility. Furthermore, in certain
contexts – see for example Table 2.10 and Subfigure 3.1a in later chapters – ImageNet
pretraining leads to better performance than no pretraining. Our work, explained in
Chapter 4, gives a solution that can prevent performance loss, or potentially even unnec-
essary pretraining time.

12



Chapter 2

Experiments

We have conducted six ImageNet trainings, and over 300 downstream segmentation exper-
iments. This chapter describes these experiments in detail. Everything was implemented
using PyTorch [50].∗ neptune.ai [49] was used for experiment tracking.

2.1 Model architectures
This section details the three architectures used in our segmentation experiments. Figure
1.2 provides a general architectural setup for U-shaped networks. Table 2.1 describes each
of the three models using that language. More detailed explanations for each architecture
are provided below.

basic U-Net R50 Atn. U-Net Swin U-Net
depth 5 5 4
width 2 2 2
Cenc

1 64 64 96
stem conv. 3× 3 conv. 7× 7 patch embedding
basic block conv. 3× 3 conv. 3× 3 Swin T. block
downsampling max pooling max pooling patch merging
upsamling up convolution up convolution patch expanding
head conv. 1× 1 conv. 1× 1 patch expanding
mixing block concatenation attention gate concatenation

Table 2.1. Architectures of the models used, as described via the blocks in Figure 1.2

Basic U-Net

Our implementation followed the original [8] closely. The first layer is a 3×3 convolutional
stem that transforms the input to 64 channels. Then five encoder and four decoder levels
follow, with two blocks each. One block consists of a 3 × 3 convolution, followed by a
batch normalization layer and ReLU. The channel size is doubled between each level by
the first block, so that the bottom level has 1024 channels. Padding is applied to all
convolutional layers, so the full model preserves the spatial size of its input. After each
∗Code is available at https://github.com/aielte-research/MedSegPretrainImageNet.

13

https://github.com/aielte-research/MedSegPretrainImageNet


Chapter 2: Experiments

level, a 2× 2 max pooling operation halves the spatial sizes. After the last decoder block,
a 1× 1 convolution provides the segmentation head.

ResNet50 Attention U-Net

For this model, the encoder and decoder were not symmetric. The decoder was a five-level
basic U-Net decoder, with levels of 256, 128, 64, 32, and 16 consisting of two blocks of
3× 3 convolutions, followed by batch norm and ReLU, with up-convolution between the
levels.

The encoder was a ResNet50 backbone, following the original architecture [12]. It
started with a 7×7 convolution, followed by batch normalization and ReLU, transforming
the input to 64 channels. Then a 3× 3 max pooling operation, with stride 2, was used to
downsample the input. After that, four levels followed, with channel sizes 256, 512, 1024,
and 2048, and widths 3, 4, 6, and 3 respectively. (Width here indicates the number of
residual blocks within a level.) Bias was omitted from its convolutional layers.

Lateral skip connections were applied after the output of each encoder level (except
for the last), including the 7× 7 convolution. Since that only accounted for four decoder
levels, the final decoder level did not receive a lateral skip connection. The mixing block
concatenated an attention gated signal – as illustrated in Figure 1.3 – to the output of
the up-convolution block.

Swin U-Net

Our implementation of Swin U-Net followed the original architecture [48] closely. The
first layer was a patch partition followed by linear embedding, downsampling the spatial
dimensions by 4, and transforming the channel size to 96. Then four levels followed,
each consisting of two Swin Transformer blocks – as illustrated by Figure 1.4 –, and a
patch merging operation. The decoder part also consisted of Swin Transformer blocks,
with patch expanding layers for upsampling. The final segmentation head was also a
patch expanding layer, upsampling by 4, and a linear projection (1 × 1 convolution) to
transform the input to Cout channels.

Weight initialization

The weights of U-Net and ResNet50 Attention U-Net were initialized in the same manner.
Weights of convolutional layers were initialized according to He’s initialization scheme [9],
that is, from N (0, σ2), where

σ =

√
γ

δ
, (2.1)

where δ is the number of input neurons, and γ = 2.
In the case of Swin U-Net, the patch embedding and final patch expanding layers were

initialized similarly, but with γ = 1
3
. The rest of the layers in this model were initialized

from a truncated normal distribution with 0 mean, 0.02 standard deviation, and values
not from [−2, 2] resampled.

Biases were initialized to 0, and the bias and variance parameters of normalization
layers were initialized to 0 and 1 respectively.

14



Chapter 2: Experiments

2.2 Pretraining the encoders

2.2.1 Overview of the methods used

Learning rate scheduling

In deep learning, the learning rate parameter of the optimization algorithm should usually
not be kept constant. Specifically, in most cases it should be annealed near the end of
the training, so once a local optimum has been found, the model weights do not change
drastically from there. Annealing is usually done by setting the learning rate at the ith
iteration ηi to some monotonically decreasing function of i. Commonly used examples are
the exponential decay

ηi = γiη0, (2.2)

and polynomial decay

ηi =

(
1− i

N

)γ

η0, (2.3)

where N is the total number of iterations. (γ in both cases is a chosen hyperparameter.)
Both of these drop from the initial learning rate η0 quite quickly. In contrast, cosine

annealing decay [16] anneals the learning rate according to the cosine curve

ηi =
η0
2

(
1 + cos

(
i

N
π

))
, (2.4)

which has a flat slope near the start of the training.
All of these methods start with a large initial learning rate. However, deeper models

can suffer from that, so it is common to use a linear warmup [22], where during the first
few epochs, the learning rate is linearly increased from near-0 to the base learning rate
η0.

Decoupled weight decay

The term weight decay is often used to refer to two distinct modes of regularization. In
its original sense, it describes taking an algorithm that calculates the model weights at
iteration i as

ϑi = ϑi−1 −mi, (2.5)

where mi is given by the optimization method (for example mi is the gradient of ϑi−1

scaled by the current learning rate ηi in the case of standard gradient descent), and
modifies it as

ϑi = (1− ληi)ϑi−1 −mi. (2.6)

However, instead of the weight decay described above, original deep learning models
often used L2 regularization, which modified the loss function L(y, ŷ) as

L̃(y, ŷ) = L(y, ŷ) + λ∥ϑi−1∥22. (2.7)

It is easy to see that in the case of standard stochastic gradient descent, Equations 2.6
and 2.7 are equivalent. However, in the optimizers used in practice, such as SGD with
momentum, or Adam [4], the two are distinct. Decoupled weight decay [26] refers to
using weight decay as per its original definition of Equation 2.6.

15



Chapter 2: Experiments

Stochastic depth

Training deep neural networks often proves a challenging task. Problems of exploding
or vanishing gradients can arise, and tuning so many parameters can be slow. Training
networks with stochastic depth [15] aims to circumvent this problem, by essentially
training a set of shallower networks, then using a deep network at inference time. This is
implemented by replacing their residual units of form x 7→ x+ f(x) to

x 7→ x+ δ
(
f(x)

)
, (2.8)

where δ(·) is 0 with probability p, and identical with probability 1−p. At inference, these
modules are replaced with

x 7→ x+ (1− p)f(x), (2.9)

which is the expected value of the module in Equation 2.8. This is essentially equivalent
to taking an ensemble of both possible values of δ, with weights following their probability.

The value of p is generally set to 0 for the first block, and linearly increases throughout
the network until it reaches some value p̄, referred to as the stochastic depth rate of
the network. With this setup, if there are n blocks, then during training only p̄ · n−1

2

of them will be used on average, and inference will be equivalent to taking the weighted
average of a 2n−1-large ensemble network.

Label smoothing

Deep neural networks trained for classification tend to be overconfident, i.e., they tend
to predict one class with close to 1 probability, and the rest close to 0, even when there
is a significant chance of error. (That error might be because the model is not accurate
enough, or because of noise in the training data.) Label smoothing, first introduced in
[14], solves this by forcing the model to produce less confident predictions. It replaces the
one-hot label with a new soft label, where the ground truth class has probability 1 − ε,
and all other classes have probability ε

n−1
, where n is the number of classes, and ε < 0.5

is the coefficient of label smoothing.

CutMix and mixup

In computer vision, various augmentation techniques are widely used to increase the
generalization power of models, and to prevent overfitting. For classification network,
most of these are transformations under which the label should remain invariant. However,
CutMix [31] and mixup [20] go further than that, by taking two independent sample
images, combining them, and changing the ground truth label to a linear combination of
the two labels as well.

CutMix works by cutting out a randomly sampled rectangular patch from the first
image and replacing it with the corresponding pixels of the second image. The weight of
the two classes in the label will then be the relative area of each source image. mixup,
on the other hand, takes a convex combination of the two images, and the label is also
a convex combination of the two labels (represented as one-hot vectors), with the same
coefficients. Figure 2.1 illustrates how the two techniques work.

16



Chapter 2: Experiments

lynx: 0.90
scuba diver: 0.10

Cu
tM

ix
lynx: 0.63

scuba diver: 0.37
lynx: 0.44

scuba diver: 0.56
lynx: 0.29

scuba diver: 0.71
lynx: 0.13

scuba diver: 0.87
m

ix
up

Figure 2.1. Examples of CutMix (top) and mixup (bottom) mixing of two images, with the
associated soft labels displayed at the top

RandAugment

Algorithm 2.1 RandAugment
Parameters: transforms, N (number of operations), M (magnitude)
Input: image

repeat N times
k ∼ U

(
[0, transforms.size − 1]

)
▷ choose integer uniformly

transform = transforms[k]
transform(image, M) ▷ apply transform to image with magnitude M

end

return image

RandAugment [35] performs a series of randomly chosen augmentations, described in
Algorithm 2.1. It applies each transformation with equal probability. Figure 2.2 shows
different instances of RandAugment applied to a sample image.

Figure 2.2. A sample image from ImageNet (leftmost), and four different transformations of it
with RandAugment (with N = 2 and M = 9)

The magnitude M is an integer between 0 and 30 that describes how drastically to
apply the transformation. Each transformation comes with its own magnitude range; if
that transformation is applied, M is linearly scaled to that range. Table 2.2 describes

17



Chapter 2: Experiments

each transformation used in RandAugment, with their respective magnitude ranges. If
the range is centered around 0, M is scaled to be between 0 and its maximum, and then
flipped with probably 1

2
.

operation description
magnitude

range
Identity no operation is performed
AutoContrast adjust contrast to maximal level
Equalize equalize image histogram
Solarize invert all pixels with intensity above m [0, 256]

Posterize discretize each pixel intensity to m bits [4, 8]

Rotate rotate the image by m degrees [−30, 30]

Color adjust the saturation of the image by a factor of 1 +m [−0.9, 0.9]

Contrast adjust the contrast of the image by a factor of 1 +m [−0.9, 0.9]

Brightness adjust the brightness of the image by a factor of 1 +m [−0.9, 0.9]

Sharpness adjust the sharpness of the image by a factor of 1 +m [−0.9, 0.9]

ShearX shear the image along the horizontal axis with rate m [−0.3, 0.3]

ShearY shear the image along the vertical axis with rate m [−0.3, 0.3]

TranslateX shift image along the horizontal axis by m pixels [−101, 101]

TranslateY shift image along the vertical axis by m pixels [−101, 101]

Table 2.2. Description of transformations for RandAugment, with their magnitude ranges [27].
The parameter m in the description is the scaled version of the magnitude parameter M . Where
a magnitude range is not present, the operation is magnitude-independent

2.2.2 Implementation details

We pretrained each encoder for 300 epochs, using Adam, and cosine annealing learning
rate scheduling with linear warmup. We used decoupled weight decay and label smoothing
for regularization, as well as stochastic depth for ResNet50 with a rate of 0.1, and the
Swin Transformer with a rate of 0.2. We trained each model twice, using two different
training setups, that we dubbed “simple” and “advanced”. Here we provide an overview of
each method. Table 2.3 provides an overview of the differences between the two schemes.

simple scheme advanced scheme

batch size 4096
4096 for convnets

1024 for Swin Transformer
base learning rate 0.004 0.001 · batch size

1024

warmup length
20 for U-Net

20
5 for other models

augmentation random flip
RandAugment, mixup,

CutMix, random erasing

Table 2.3. Hyperparameters used in the two pretraining schemes

18



Chapter 2: Experiments

Algorithm 2.2 Augmenting images for ImageNet pretrainig
Input: image, label

A ∼ U
(
[0.8, 1]

)
▷ sample uniform random number

crop rectangle from image with relative area A ▷ random crop
resize rectangle to 224× 224

ω ∼ U
(
{0, 1}

)
▷ sample uniform random bit

if ω then
apply horizontal flip

end if

if advanced pretraining then
RandAugment(image, N = 2, M = 9)

ξ ∼ U
(
[0, 1]

)
if ξ ≤ 0.9 then

sample an (image2, label2) pair uniformly from the whole dataset
apply random crop and RandAugment to image2

if ξ ≤ 0.5 then
CutMix(image, image2, label, label2)

else
mixup(image, image2, label, label2)

end if
end if

ψ ∼ U
(
[0, 1]

)
if ψ ≤ 0.25 then ▷ random erasing

S ∼ U
(
[0.02, 0.33]

)
r ∼ U

(
[0.3, 3.3]

)
h =

√
Sr, w =

√
S
r

randomly chosen area with relative size (h,w) is blackened out
end if

end if

return image, label

During ImageNet pretraining, the encoder architectures were extended with a classi-
fication head. The output of the encoder was pooled along the spatial axes, and then a
one-layer dense classification head with a softmax activation function was added to pre-
dict class probabilities. As for the loss function, the standard categorical cross entropy
was used, with a label smoothing coefficient of 0.1. The Adam optimizer was applied,
with hyperparameters β1 = 0.9, β2 = 0.999, and decoupled weight decay of 0.05.

For our simple pretraining, we used a five-epoch learning rate warmup for the U-Net
encoder, and twenty epochs for the other two models. We used a base learning rate of
0.004 and a batch size of 4096 for all models. We only used random resizing, crops, and

19



Chapter 2: Experiments

flips as augmentation during training.
Our advanced pretraining scheme is based on [42], following [45]. We followed the

1024 batch size for Swin Transformer, but we used a 4096 batch size for the convolutional
networks, following the training setup used for ConvNeXt [47]. We used a fixed batch size
to learning rate ratio, so we trained the Swin Transformer with a learning rate of 0.001,
and the convolutional models with 0.004. We used a twenty-epoch warmup for all models.
RandAugment, mixup, CutMix, and random erasing [34] were used for augmentation.
The pseudocode for the augmentation is described in Algorithm 2.2. Label smoothing is
applied after mixup or CutMix. For validation, images were resized so their shorter side
would be 224, and then center crop was applied.

model size accuracy

GFLOPs parameters
simple advanced
scheme scheme

U-Net encoder 14.9 19.9M 0.707 0.718
ResNet50 3.8 22.8M 0.739 0.748
Swin Transformer 3.1 21.2M 0.719 0.766

Table 2.4. Comparison of the model size and ImageNet classification performance of the three
architectures used

Table 2.4 shows the size and final validation performance of each model. Figure 2.3
shows the learning curves. The weights of each model were savd after the 1st, 5th, 20th,
50th, 100th, 150th, 200th, 250th, and 300th epoch. In downstream segmentation experi-
ments, detailed in Section 2.4, encoder weights were initialized from these checkpoints.

0 50 100 150 200 250 300
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

U-Net encoder
ResNet50
Swin Transformer
checkpoints

(a) Simple pretraining

0 50 100 150 200 250 300
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

U-Net encoder
ResNet50
Swin Transformer
checkpoints

(b) Advanced pretraining

Figure 2.3. Progression of validation accuracies on ImageNet during training

2.3 Medical image datasets
Three downstream segmentation datasets were used for training and evaluating segmen-
tation models. Each was chosen from a different domain – one containing cardiac MRI,
one chest X-ray, and one retina scan images –, the domains chosen to represent a large
portion of medical imaging tasks. Two of the datasets were used for binary, and one for
multiclass segmentation.

20



Chapter 2: Experiments

ACDC COVID-QU IDRiD
domain cardiac MRI chest X-ray retina scan
task type multiclass binary binary
color channels grayscale grayscale RGB
train set size 1902 2330 6426
test set size 1076 583 1350
size of preprocessed images 256× 256 256× 256 448× 448

Table 2.5. Short description of each dataset

Table 2.5 provides basic information about each of the three datasets. Figure 2.4
shows a sample image, and its corresponding segmentation mask, from each dataset. In
the rest of this section, a brief description of each dataset is provided.

ACDC

im
ag

e

COVID-QU IDRiD

m
as

k

background
RV cavity

myocardium
LV cavity

background
infected areas

background
microaneurysms

Figure 2.4. An example of a preprocessed image and its segmentation mask from each dataset

To the best of our knowledge, data in each dataset was collected and used responsibly.

ACDC

The ACDC (Automated Cardiac Diagnosis Challenge) dataset [24] contains cardiac MRI
images of a total of 150 patients. The processed dataset provides a 4D representation of
the interval of the cardiac cycle. From this, we only used the end-diastolic (ED) and the
end-systolic (ES) frames per case, since segmentation masks are only provided for these
3D frames. On these masks, the right and left ventricular cavities, and the myocardium
are annotated, resulting in a total of three classes (not counting the background). The
same train–test split was used as in the original challenge, with 100 train and 50 test
cases. The 3D frames were sliced along the z axis, providing on average twenty 2D slices,
resulting in 1902 train and 1076 test images. All images were grayscale, 256× 256 pixels.

21



Chapter 2: Experiments

COVID-QU

The COVID-QU-Ex dataset [46] consists of chest X-ray images from both healthy patients
and people infected with COVID-19, or viral or bacterial pneumonia. It contains a total
of 33 920 images, but only 2913 of those – all from people with COVID-19 – have masks
with pixel-level markings of the infected areas. Out of these, the official 583-image test
was used, which left us with 2 330 training images. All images were grayscale, 256× 256
pixels. Records from healthy patients were used neither for training nor for inference.

IDRiD

The Indian Diabetic Retinopathy Image Dataset [32], or IDRiD, is a dataset consisting
of retina scans, with labels related to diabetic retinopathy. It has around five hundred
images with classification labels, and 81 images with segmentation masks for four different
types of lesions – microaneurysms, hemorrhages, soft exudates, and hard exudates. For
our experiments, we chose the microaneurysm masks to define a binary segmentation
task. The images were divided into 54 train and 27 test sources, following the split of the
original challenge. Each image is 2848×4288 pixels, which was first resized to 1120×2240,
then the training and test slices were sampled from these. For testing, we simply partition
the original image into 50 equal-sized 224 × 224 slices, giving us 1350 test images. For
training, 119 slices were taken from the resized images by sliding a 448×448 window over
the image, with a stride of 112. This resulted in 6426 RGB images with 448×448 pixels.

2.4 Downstream experiments
Implementation details

Images from ACDC and COVID-QU were resized to 224×224 using bilinear interpolation.
For IDRiD, a randomly rotated 224× 224 square was selected from the original 448× 448
image. Grayscale images were converted to three channels by repeating their singular
color channel three times. Images were augmented using random rotations (with angle
sampled uniformly from [0, π]) and flips (with probability 1

2
). Images from IDRiD were

also augmented by randomly jittering the brightness, saturation, contrast, and hue values
of colored images, as described in Algorithm 2.3.

We trained for 150 epochs, using SGD with momentum 0.9 and weight decay 10−4. We
used polynomial learning rate decay, following Equation 2.3, with γ = 0.9. The learning
rate was updated after each optimizer step. The loss was calculated as

L(y, ŷ) = 1

Cout + 1

Cout∑
c=0

D(y·,c, ŷ·,c), (2.10)

where D(y·,c, ŷ·,c) is the binary Dice loss – as defined in Equation 1.10 – corresponding to
class c. The Dice loss is calculated along the batch axis as well.

For multiclass segmentation, ŷ is obtained by applying a pixelwise softmax to the
segmentation mask. For binary segmentation, a sigmoid activation function determines
ŷ·,1, and intensities for the background are calculated as ŷ·,0 = 1− ŷ·,1.

Each architecture was trained on each dataset, with the encoder initialized randomly,
and from each of the eighteen checkpoints explained in Section 1.3. Furthermore, for each
initialization, two different training setups were investigated: training the full model, and
training only the decoder. This resulted in 342 configurations.

22



Chapter 2: Experiments

Algorithm 2.3 ColorJitter
Input: x ∈ [0, 1]H×W×3 image

λb ∼ U
(
[0.9, 1.1]

)
▷ brightness jitter

x = λbx

w = (0.2989, 0.587, 0.114)
x̄ =

∑3
c=1wcx·,c ▷ convert x to grayscale; weighting channels by w

λc ∼ U
(
[0.95, 1.05]

)
▷ contrast jitter

µ = 1
HW

∑
h,w x̄h,w

x = λcx+ (1− λc)µ

λs ∼ U
(
[0.9, 1.1]

)
▷ saturation jitter

x = λsx+ (1− λs)x̄

x = HSV(x) ▷ transform from RGB to HSV (hue–saturation–value space)

λh ∼ U
(
[−0.05, 0.05]

)
▷ hue jitter

x·,1 = x·,1 + λh mod 1 ▷ first channel of HSV is hue

x = RGB(x) ▷ transform from HSV to RGB

return x

Results

Each of the 342 configurations was trained five times. In all the following tables, perfor-
mance was calculated by taking the average of these five runs. Tables 2.6–2.8 summa-
rize∗ the validation performance of each model on each dataset, comparing training from
scratch to initializing with a fully pretrained encoder. (Pretrained either with the simple
or advanced pretraining scheme.)

However, full training or no pretraining did not always provide the best performance.
Table 2.9 displays the Dice indices of the best performing of the 19 encoder initializations.
Compared with the previous tables, it shows that, for example, the ResNet50 Attention U-
Net and Swin U-Net models, with their encoders trained from scratch or pretrained fully
on ImageNet, performed comparably worse on IDRiD than if the encoder was initialized
from some intermediate weights.

This motivates the main goal of this thesis, which is to find a way to appropriately
select a set of weights, during pretraining, which would then lead to optimal downstream
performance. Table 2.10 is included here to help put these efforts into context later. It
displays the ratio of the performance of the worst and best training setups. Entries where
it is close to 1 correspond to training setups where the choice of initialization does not seem
to matter. Conversely, entries where it is low suggest that choosing a good checkpoint to
initialize the encoder from can lead to significant gain in downstream performance.

∗Our GitHub repository contains a detailed table, with more metrics displayed, and with the individual
results of each of the five runs. The table is available at https://github.com/aielte-research/
MedSegPretrainImageNet/blob/main/results/downstream_scores.csv.

23

https://github.com/aielte-research/MedSegPretrainImageNet/blob/main/results/downstream_scores.csv
https://github.com/aielte-research/MedSegPretrainImageNet/blob/main/results/downstream_scores.csv


Chapter 2: Experiments

model pretraining DSC IoU mAP −HD95 AUC acc.

basic U-Net
none 0.908 0.833 0.966 −3.199 0.998 0.995
simple 0.907 0.831 0.965 −3.190 0.998 0.995
advanced 0.904 0.826 0.963 −3.354 0.998 0.995

R50 Atn. U-Net
none 0.899 0.819 0.961 −3.673 0.998 0.994
simple 0.907 0.831 0.964 −3.161 0.997 0.995
advanced 0.907 0.832 0.965 −3.072 0.998 0.995

Swin U-Net
none 0.807 0.682 0.880 −6.099 0.997 0.989
simple 0.892 0.808 0.955 −3.492 0.999 0.994
advanced 0.893 0.809 0.955 −3.241 0.999 0.994

(a) Full training

model pretraining DSC IoU mAP −HD95 AUC acc.

basic U-Net
none 0.872 0.776 0.941 −5.219 0.998 0.993
simple 0.881 0.789 0.946 −4.236 0.997 0.993
advanced 0.887 0.799 0.952 −4.065 0.998 0.994

R50 Atn. U-Net
none 0.849 0.740 0.920 −5.728 0.997 0.991
simple 0.902 0.823 0.962 −3.581 0.998 0.995
advanced 0.902 0.823 0.963 −3.713 0.998 0.995

Swin U-Net
none 0.683 0.524 0.736 −12.45 0.991 0.980
simple 0.832 0.716 0.907 −5.668 0.998 0.990
advanced 0.831 0.714 0.906 −5.684 0.998 0.990

(b) Decoder only

Table 2.6. Validation performances on ACDC

model pretraining DSC IoU mAP −HD95 AUC acc.

basic U-Net
none 0.845 0.732 0.927 −22.84 0.987 0.959
simple 0.844 0.730 0.930 −23.14 0.987 0.959
advanced 0.846 0.732 0.930 −22.93 0.986 0.960

R50 Atn. U-Net
none 0.836 0.718 0.916 −24.68 0.985 0.956
simple 0.854 0.744 0.934 −22.20 0.988 0.961
advanced 0.853 0.744 0.934 −22.38 0.987 0.961

Swin U-Net
none 0.767 0.622 0.847 −31.01 0.971 0.936
simple 0.832 0.713 0.916 −23.80 0.985 0.955
advanced 0.819 0.694 0.902 −25.25 0.983 0.951

(a) Full training

24



Chapter 2: Experiments

model pretraining DSC IoU mAP −HD95 AUC acc.

basic U-Net
none 0.798 0.664 0.879 −30.08 0.977 0.944
simple 0.809 0.680 0.902 −26.59 0.981 0.951
advanced 0.807 0.677 0.899 −26.06 0.981 0.950

R50 Atn. U-Net
none 0.778 0.637 0.858 −33.91 0.974 0.937
simple 0.843 0.728 0.928 −23.46 0.987 0.960
advanced 0.843 0.729 0.929 −24.23 0.987 0.959

Swin U-Net
none 0.706 0.546 0.767 −34.39 0.951 0.919
simple 0.822 0.698 0.907 −24.81 0.983 0.952
advanced 0.826 0.703 0.916 −23.39 0.985 0.955

(b) Decoder only

Table 2.7. Validation performances on COVID-QU

model pretraining DSC IoU mAP −HD95 AUC acc.

basic U-Net
none 0.473 0.310 0.442 −60.00 0.982 0.999
simple 0.481 0.316 0.448 −59.22 0.983 0.999
advanced 0.475 0.312 0.447 −60.37 0.985 0.999

R50 Atn. U-Net
none 0.478 0.314 0.444 −60.99 0.980 0.999
simple 0.468 0.306 0.441 −62.75 0.979 0.999
advanced 0.477 0.313 0.451 −59.80 0.981 0.999

Swin U-Net
none 0.398 0.249 0.334 −76.32 0.975 0.999
simple 0.479 0.315 0.443 −62.82 0.992 0.999
advanced 0.482 0.317 0.444 −61.56 0.989 0.999

(a) Full training

model pretraining DSC IoU mAP −HD95 AUC acc.

basic U-Net
none 0.431 0.275 0.385 −70.99 0.982 0.999
simple 0.475 0.311 0.448 −64.18 0.987 0.999
advanced 0.471 0.308 0.446 −61.20 0.986 0.999

R50 Atn. U-Net
none 0.441 0.283 0.400 −68.49 0.982 0.999
simple 0.478 0.314 0.449 −59.47 0.983 0.999
advanced 0.476 0.313 0.445 −60.35 0.983 0.999

Swin U-Net
none 0.340 0.205 0.266 −84.00 0.952 0.999
simple 0.454 0.293 0.407 −67.91 0.989 0.999
advanced 0.446 0.287 0.398 −68.10 0.989 0.999

(b) Decoder only

Table 2.8. Validation performances on IDRiD

25



Chapter 2: Experiments

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ACDC 0.908 0.895 0.907 0.904 0.895 0.853
COVID-QU 0.846 0.829 0.853 0.844 0.835 0.827
IDRiD 0.486 0.483 0.494 0.488 0.494 0.464

Table 2.9. Validation performance (Dice index) of the best performing encoder initialization for
each model and each dataset

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ACDC 0.992 0.975 0.991 0.935 0.902 0.801
COVID-QU 0.987 0.962 0.979 0.922 0.915 0.854
IDRiD 0.932 0.906 0.924 0.924 0.824 0.740

Table 2.10. Ratio of the downstream scores (Dice indices) of the worst and best performing
encoder initialization for each model and each dataset

26



Chapter 3

Transferability metrics

Transfer learning concerns the practice of training a neural network on a large dataset,
in order to utilize the learned representation to enhance performance on a smaller down-
stream dataset. This is done by taking the learned weights of the pretrained network
and using them to initialize a model for the target task. The idea behind this process is
that the model can learn basic low-level features from the large pretraining dataset, that
are relevant for the downstream task as well. Transfer learning regularly leads to faster
convergence speed and improved performance on the target task.

Traditionally, pretraining is conducted until convergence in some metric regarding only
the pretraining task. However, overlong pretraining can lead to learning dataset- and task
specific features, which can compromise the generalization capabilities of the model. This
creates the need for a method to find the optimal amount of pretraining that does not
impair downstream performance.

In the field of medical image segmentation, the scarcity of high quality labeled train-
ing data is a well-known issue. Thus pretraining neural networks on large datasets like
ImageNet to then use them as a building block in the segmentation model is a common
practice. Pretraining is often helpful in this domain, but overtraining on the source data
is also a present danger. An example of two different configurations can be seen in Figure
3.1 for an example where full pretraining, and another one where less ImageNet training
provides optimal weights.

0 50 100 150 200 250 300
pretraining length (epoch)

0.875

0.880

0.885

0.890

0.895

0.900

0.905

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

(a) ResNet50 Attention U-Net

0 50 100 150 200 250 300
pretraining length (epoch)

0.875

0.880

0.885

0.890

0.895

0.900

0.905

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

(b) Basic U-Net

Figure 3.1. Two examples of ImageNet pretraining length influencing downstream performance.
Models were trained on the ACDC dataset, with the encoder weights frozen after pretraining on
ImageNet. At each encoder checkpoint, violin plots calculated from five downstream trainings
are shown

27



Chapter 3: Transferability metrics

An alternative approach would be to be able to tell at what point a set of encoder
weights is optimal as weight initialization for a segmentation network, that would then
be trained on a given downstream dataset. This leads to the more general field of trans-
ferability: given a set of pretrained models, which one would perform the best if further
trained on a downstream dataset. If those models are different weights of the same model,
obtained from different checkpoints during pretraining on ImageNet, a good transferabil-
ity metric is suitable for providing an optimal pretraining length a given model needs for
a specific downstream dataset.

Transferability and transferability metrics are a relatively new area of research. As a
consequence of this, no clear language has been developed for the subject. Section 3.1
provides the notation that will be used throughout the rest of this thesis. Section 3.2
provides a brief overview of existing metrics, using the language developed in Section 3.1.
As it will be seen, none of these methods are useful for the goal of measuring transferability
of ImageNet-pretrained models for a downstream task of semantic segmentation. This will
require a novel approach, which will be introduced in Chapter 4.

3.1 Notion of transferability
Here follows the notation regarding transferability used throughout this thesis. A task is
defined as a triplet X = (X,L, f ∗), where X is a dataset, L is the possible set of labels
for all datapoints, and f ∗ : X −→ L is the ground truth labeling function. A model for X
is a function f : X −→ L approximating f ∗. A metric mX on X is a function that maps
models to real numbers (scores). Metrics need to be bounded from above or below, with
mX (f ∗) being optimal. For notational simplicity, it will be assumed that all metrics are
bounded from above, and assume their maximum at f ∗.

Consider a source task S = (S, LS , f ∗
S), and a target (downstream) task T = (T, LT , f ∗

T )
with evaluation metric mT . We assume that obtaining a model with good performance
on S is straightforward, while doing so on T is harder. Furthermore, we also assume that
for each model f for S, we can derive a model f ′ for T . Therefore, we want to find a
model with good mT -performance by first obtaining a model f on S and then deriving
f ′ for T . In the case of this work, this will consist of pretraining a segmentation model
encoder on the source task to get f , using these weights to initialize the model, then fine
tuning on the segmentation task to get f ′.

When discussing transferability, we consider a family of models {fϑ}ϑ∈Θ for S, indexed
by elements of a finite set Θ. The goal is to find ϑ ∈ Θ such that the downstream
performance mT (f ′

ϑ) is optimal. For this we are looking for a transferability indicator
ϱS,T (fϑ), and define an associated transferability indicator score (TIS) of ϱS,T on Θ
as

TIS(ϱS,T ,Θ) =
mT (f ′

ϑ∗)

max
ϑ∈Θ

(
mT (f

′
ϑ)
) , (3.1)

where
ϑ∗ = argmax

ϑ∈Θ

(
ϱS,T (fϑ)

)
.

This score measures the relative downstream performance of the model chosen based on
ϱS,T to the best performing downstream model. It reaches 1 when ϱS,T predicts the
highest score for the model with the best mT -performance. (In the case of searching for
the optimal length of ImageNet-pretraining, Θ consists of model weights saved at different
times during pretraining.)

28



Chapter 3: Transferability metrics

3.2 Overview of transferability metrics in literature
Transferability metrics for task and domain shift in deep learning has been a popular
topic in recent years. This section provides an overview of existing transferability metrics
and measures. As we will show, none of the below methods – and, to the best of our
knowledge, no other existing methods – are fit for estimating transferability from the
ImageNet classification task to a medical image segmentation task.

Task transfer

In general literature, a common usage of transferability metrics is task transfer, where
the source task S = (S, LS , f ∗

S) and target task T = (T, LT , f ∗
T ) share the same data

(or at least they share the same modality, i.e., S and T have similar distributions), but
have differing labels. Examples include methods based on taskonomy [23] (tax taskonomy)
and DEPARAs [36] (deep attribution graphs), which predict transferability between tasks,
thus cutting down on total training time in the case there is a large set of tasks and models
are needed for all of them. However, these approaches do not work when the domains are
different, like in the case of natural versus medical images. Furthermore, both examples
require already trained models for each task to map it to a feature space, therefore they
are computationally costly.

If the sets of possible ground truth labels LS and LT are both finite (i.e. if both S
and T are classification tasks), then one can estimate the negative conditional entropy
[30] (NCE) of the target labels given the source labels

−H(LT |LS) =
∑
t∈LT

∑
s∈LS

P
(
f ∗
S(x) = s, f ∗

T (x) = t
)
logP

(
f ∗
T (x) = t

∣∣f ∗
S(x) = s

)
. (3.2)

This value can then be used as an approximation of transferability from S to T , in the
transfer learning scenario where a model f is trained on S, then its backbone is frozen,
replaced by another classification head, and trained on T .

NCE is a model agnostic approach. This solves the issue with taskonomy and DE-
PARAs where models need to be pretrained on all tasks, but it also means that it cannot
select the best S-pretraind model for T .

LEEP

If the sets of possible ground truth labels LS and LT are both finite (i.e. if both S and T
are classification tasks), then one can estimate transferability based on the LS-predictions
of an S-pretrained model on T , and the true labels. For this, given an S-pretrained model
f that predicts a distribution over LS , the joint distribution P

(
f(x) = s, f ∗

T (x) = t
)

(x ∈ T, s ∈ LS , t ∈ LT ) can be estimated as

p̂(s, t) =
1

|T |
∑

f∗
T (x)=t

f(x)s, (3.3)

where f(x)s is the probability model f assigns to class s. (In standard classification tasks,
f(x) will be an |LS | nonnegative long vector whose entries sum to 1, and f(x)s will be its
entry at coordinate s.)

Similarly, the marginal distribution P
(
f(x) = s

)
can be estimated as

p̂(s) =
1

|T |
∑
x∈T

f(x)s, (3.4)

29



Chapter 3: Transferability metrics

and from here the conditional distribudion P
(
f ∗
T (x) = t

∣∣f(x) = s
)

can be estimated as

p̂(t|s) = p̂(s, t)

p̂(s)
. (3.5)

From here we can define the expected empirical predictor (EEP) classifier, that,
for a given x ∈ T , first draws a “dummy” label from LS according to the distribution given
by f(x), then draws t ∈ LT from the distribution p̂(t|s). From this predictor, the average
log likelihood of the EEP (LEEP [37]) can be calculated as a transferability indicator,
formally described as

ϱS,T (f) =
1

|T |
∑
x∈T

log

(∑
s∈LS

p̂
(
f ∗
T (x)

∣∣s)f(x)s) . (3.6)

While LEEP is easy to compute and is proven to be effective both in theory and
practice, the fact that it only works on classification tasks is a serious drawback. NLEEP
[41] aims to solve this by replacing LS in Equation 3.6 by an abstract set of clusters V ,
and then fitting a Gaußian mixture model fN with |V | components on features extracted
from T by f . Then the probabilities f(x)s (s ∈ LS) in Equations 3.3–3.6 are replaced
with the probabilites fN (x)v (v ∈ V ).

NLEEP thus provides a solution for transferability estimation where S is not a clas-
sification task – e.g., if the models are pretrained in an unsupervised or self-supervised
fashion. However, it still requires a finite set of labels in LT . While in the case of seman-
tic segmentation this is theoretically true – a segmentation mask of C classes with size
H ×W has “only” CHW possible values –, the possible set of labels is large enough to
practically be regarded as infinite. Furthermore, the marginal distribution P

(
f ∗
T (x) = t

)
,

and therefore its derived joined and conditional distributions, can not be meaningfully
estimated, since most possible mask values t appear either one or zero times in the dataset
T .

(NLEEP offers a solution for this, which is to convert a segmentation – or object
detection – task to a classification task for the sake of Equations 3.3–3.6 by assigning to
an image each class that it contains. This is however still not a feasible method for binary
segmentation tasks, or datasets where most images contain most classes – like ACDC.)

LogME

Regression can be viewed as a generalization of classification, since classification tasks can
also be stated as regression tasks where the objectives are the one-hot ground truth labels.
Thus, a transferability indicator that works for regression tasks is in theory preferable to
one that only works on classification tasks.

LogME [43] (logarithmic maximum evidence) considers an S-pretrained model f , with
derived feature extractor f̄ : T → Rd. Then, given parameters α, β ∈ R, from y = f ∗

T (T )
and ŷ = f̄(T ), we get

ℓ(α, β) =
1

2
log

β

2π
+

d

2|T | log
α

2π
+

1

|T | log
∫
e−

α
2
w⊤w−β

2
∥ŷw−y∥22 dw. (3.7)

ℓ(α, β) can be calculated numerically, and from that an optimal (α∗, β∗) can be esti-
mated through numerical methods. The approximation of ℓ(α∗, β∗) is used as the transfer-
ability indicator dubbed LogME. In the case of multivariate regression problems (including

30



Chapter 3: Transferability metrics

multiclass classification, as discussed above), each variable is treated separately, with a
separate LogME score calculated, then the average is taken.

Note that while LogME offers transferability estimation from an arbitrary source task
to target tasks more general than classification, it does not solve the problem that LEEP
had when the target task is semantic segmentation.

31



Chapter 4

Robustness

This chapter defines the main contribution of this work, which is a novel transferability
indicator based on the robustness of the target data representation of a pretrained model.
Section 4.1 provides a robustness definition, based on contrastive learning. Based on this
definition, we evaluated the derived transferability indicator on the medical segmentation
experiments described in Section 2.4. Section 4.2 shows these results.

4.1 Defining robustness
Contrastive learning

Contrastive methods – first appearing in [1] – aim to train a model to represent the
structure inherent to a dataset, without comparing its output to a set of labels in a
supervised manner. Instead, the task is to distinguish between related and unrelated
pairs of datapoints. What constitutes as two related datapoints varies based on the data,
task, and information available. In the case of image processing, it can be differently
augmented versions of the same image, while in NLP they can be nearby text chunks in
next sentence prediction [28]. If classification data is available, two datapoints might be
considered related if they belong to the same class [38].

Due to its usefulness in self-supervised learning, this approach has grown popular in
recent years. A common contrastive learning method is to use a triplet loss function [13],
which takes triplets of queries, positive keys, and negative keys, denoted by q, k+, and
k− respectively. Similar representations of q and k+ are rewarded, as well as distinct
representations of q and k−. The triplet loss is defined as

Ltriplet

(
f(q), f(k+), f(k−)

)
= max

(
0, d
(
f(q), f(k+)

)
− d
(
f(q), f(k−)

)
+ ε
)
, (4.1)

where d is a distance measure, and ε > 0 is a margin parameter.

Robustness as a transferability metric

Further on, we restrict ourselves to the case where the source task S is classification on
ImageNet, and the target task T is a medical image segmentation problem, with the Dice
index as the evaluation metric mT . Our direct goal is to provide a transferability indicator
for the encoder weights at different steps during pretraining, thus avoiding overtraining,
and potentially decreasing pretraining time.

Therefore we define Θ as a set of checkpoints, where fϑ is a model pretrained on
ImageNet for ϑ epochs. From a pretrained encoder fϑ, we obtain f ′

ϑ by initializing the

32



Chapter 4: Robustness

encoder weights of the segmentation model with the pretrained encoder backbone and
then fine-tuning it on T .

The choice of ϑ can have a significant effect on downstream preformance mT , as seen
in Subfigure 3.1a. However, using the accuracy on ImageNet as a transferability indicator
is also ill-advised, as evidenced by Subfigure 3.1b.

Instead, we propose to use a contrastive learning inspired indicator ϱS,T , based on
Equation 4.1. For each qi target datapoint we obtain k+i by applying a set of random
augmentations for qi, and let k−i be a randomly chosen and augmented other target
datapoint. We define the robustness of the representation of model fϑ as

ϱS,T (fϑ) = 1− 1

|T |
∑
xi∈T

max
(
0, d
(
f̂ϑ(q̃i), f̂ϑ(k

+
i )
)
− d
(
f̂ϑ(q̃i), f̂ϑ(k

−
i )
)
+ ε
)
, (4.2)

where T is the target dataset, d is a distance measure, q̃ is an augmented version of q,
and f̂ϑ obtains a representation by extracting it from an inner layer of fϑ. The precise
choice of these parameters is discussed in Section 4.2.

We present two applications of the robustness defined above as a transferability indi-
cator. Our first approach is to measure robustness at regular intervals during pretraining,
and in the end use the weights corresponding to the highest score to transfer to the tar-
get task. This is an offline method, since best weights can still only be obtained after
a full pretraining. We also suggest an online method, where the robustness score acts
as an early stopping condition for pretraining. This approach potentially only finds lo-
cal optima, thus providing less improvement in performance than the offline version, but
prevents unnecessary pretraining steps.

0 100 200 300
pretraining length (epoch)

0.40

0.42

0.44

0.46

0.48

0.50

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

0.650
0.725
0.800
0.875
0.950

   
ro

bu
st

ne
ss

(a) Basic U-Net

0 100 200 300
pretraining length (epoch)

0.40

0.42

0.44

0.46

0.48

0.50

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

0.5
0.6
0.7
0.8
0.9

  r
ob

us
tn

es
s

(b) ResNet50 Attention U-Net

0 100 200 300
pretraining length (epoch)

0.40

0.42

0.44

0.46

0.48

0.50

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

0.700
0.775
0.850
0.925
1.000

   
  r

ob
us

tn
es

s

(c) Swin U-Net

0 100 200 300
pretraining length (epoch)

0.70

0.75

0.80

0.85

0.90

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

0.500
0.505
0.510
0.515

   
 ro

bu
st

ne
ss

(d) Basic U-Net

0 100 200 300
pretraining length (epoch)

0.70

0.75

0.80

0.85

0.90

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

0.500
0.505
0.510
0.515

   
  r

ob
us

tn
es

s

(e) ResNet50 Attention U-Net

0 100 200 300
pretraining length (epoch)

0.70

0.75

0.80

0.85

0.90

do
wn

st
re

am
 p

er
fo

rm
an

ce
(D

ice
 sc

or
e)

0.49
0.52
0.55
0.58

   
  r

ob
us

tn
es

s

(f) Swin U-Net

Figure 4.1. Robustness compared to performance on a downstream segmentation dataset. A
larger and darker dot indicates higher robustness. Under each graph, the exact robustness scores
are indicated by dashed gray lines. All encoders were pretrained using the “advanced” scheme.
Subfigures (a)–(c) are fully trained on IDRiD. Subfigures (d)–(f) are trained on ACDC, with the
encoder weights frozen during training.

33



Chapter 4: Robustness

4.2 Results
During our research, we experimented with different choices of d, ε, and f̂ϑ in Equation
4.2. The highest scores resulted from using the cosine distance

d(q, k) = 1− qk

∥q∥∥k∥ (4.3)

for the distance metric when calculating the robustness, with a margin of ε = 0.5. We
obtained q̃, k+, and k− by applying random jittering to the hue, saturation, brightness,
and contrast values, as described in Algorithm 2.3. The representation f̂ϑ(·) was taken
from the second-to-last level of the encoder. When we were only planning to train the
decoder, a pooled representation was taken; for full training, we did not pool.

We report the transferability indicator (or relative accuracy) scores – see Equation
3.1 – using the Dice index as the downstream evaluation metric. (As can be seen in
Figure 1.6, choosing another reasonable metric would not have influenced our results
significantly.) We compare the TIS of our robustness indicator to the two common-practice
baselines: no pretraining, and performing a full pretraining on ImageNet. (The latter can
also be understood as using the ImageNet accuracy as a transferability indicator.) As
discussed in Section 3.2, apart from these naïve methods, to the best of our knowledge,
no other method to choose the best-transferring model, can be utilized for transferring
from ImageNet to a medical image segmentation task.

ACDC COVID-QU IDRiD
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
robustness (offline) 0.989 0.999 0.996 0.986 0.991 0.984
robustness (online) 0.984 0.955 0.982 0.956 0.959 0.948
ImageNet accuracy 0.982 0.950 0.982 0.953 0.963 0.930
no pretraining 0.973 0.909 0.967 0.921 0.945 0.866

(a) Average transferability indicator scores on each dataset

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
robustness (offline) 0.996 0.986 0.990 0.996 0.990 0.987
robustness (online) 0.978 0.985 0.989 0.953 0.958 0.921
ImageNet accuracy 0.998 0.969 0.989 0.963 0.940 0.900
no pretraining 0.994 0.958 0.990 0.929 0.901 0.809

(b) Average transferability indicator scores of each model

Table 4.1. Comparison of the TIS of our robustness scores, ImageNet accuracy, and training
from scratch, averaged across pretraining schemes, and three models (a) or three datasets (b)

Across all our setups, our robustness score produced a TIS of over 98% on average
calculated offline, and over 97% calculated online. We report a worst-case performance
of over 95% offline, and 91% online. As a comparison, both no pretraining and ImageNet

34



Chapter 4: Robustness

pretraining can provide under 75% TIS. Even at its worst, our offline method shows
a 0.006 absolute decrease in Dice index, or a 1.3% relative decrease, compared to full
ImageNet pretraining.

Figure 4.1 shows examples of training setups with downstream performances and ro-
bustness indicated for each checkpoint. Note that offline robustness provides good predic-
tions in various circumstances, including ones where downstream performance monoton-
ically increases with pretraining time up to epoch 250 (Subfigure 4.1c), and ones where
the clear optimum is at a much shorter, 100 epoch long pretraining (Subfigure 4.1f).

Table 4.1 shows our results, compared to full pretraining and no pretraining. For
each model, we had three datasets and two pretraining schemes; we averaged these scores
out over the model and pretraining scheme axis in Subtable 4.1a, and the dataset and
pretraining schemes in Subtable 4.1b.

We note that randomly initialized encoders often provide really high robustness scores,
even when that does not correlate with a higher downstream performance. For this
reason, we calculated online scores by disregarding the randomly initialized model, and
only starting to calculate robustness after the first epoch. We find that using robustness
as an online predictor provides similar results to always using a fully pretrained network
– with only a fraction of the pretraining time –, and is almost always better than no
pretraining.

Figure 4.2 shows how many times each epoch index was predicted as best in an online
manner. Out of the 18 configurations (six ImageNet pretraining, each evaluated for three
datasets), no online method would have trained for longer than 150 epochs (as opposed to
the full ImageNet pretraining, which is 300 epochs), and most would have stopped after
only one epoch – while still providing better initial weights than random initialization.

1 5 20 50 100 150
early stop (epoch)

0

2

4

6

8

co
un

t

9

4

2 2
1

0

(a) Pooled representation

1 5 20 50 100 150
early stop (epoch)

0

2

4

6

8

co
un

t

8

5

3

0
1 1

(b) Unpooled representation

Figure 4.2. Counts of predicted best epoch indices, when using an online method – i.e., the first
local maxima of the robustness score, disregarding that of the randomly initialized model

Certain dataset–model configurations tend to provide the same performance, regard-
less of encoder weights. With these setups, no major improvement is needed over training
from scratch. In contrast, experiments run on IDRiD (which is the hardest dataset – see
Table 2.9), or using Swin U-Net (which is the model where pretraining tends to have the
largest impact – see Table 2.10) show that both a from-scratch initialization and a full
pretraining can result in a significantly worse downstream performance than what could
be achieved with the encoder weights initialized from the right checkpoint.

Table 4.4 shows only results on IDRiD, with the encoders pretrained using the ad-
vanced scheme. In that example, using full or no pretraining for Swin U-Net provides

35



Chapter 4: Robustness

under 90% relative accuracy for the full training, and around 75% relative accuracy when
only the encoder is trained; compared to that, robustness leads to an over 99% relative
accuracy in both cases.

Investigating other parameters

Besides the cosine distance, we investigated other distance metrics for d – namely the
(inverse of the) L2 distance and the Pearson correlation coefficient (PCC). We found
that the cosine distance works consistently best across all examined datasets. The other
two metrics also provided better transferability indicator scores than either the ImageNet
accuracy or training from scratch.

We find that the margin parameter ε does not influence performance for the most
part. Switching from 0.5 to 0.25 has practically no effect. Going above 0.5 leads to a
slight average decrease, and rarely to a more significant decrease.

When using an encoder module as a feature extractor, it is natural to make use of
the whole model – that is, use the output of the last layer as the input’s embedding.
However, we found that using the last level instead of the second to last one leads to
worse performance on average. We theorize this is because the last level learns dataset-
specific features, which do not transform well to the downstream task.

Another question is whether or not to apply pooling over the spatial dimensions of
the embedded image. We found that when the full model was trained on the downstream
task, no pooling was slightly better, but when only the encoder was trained, it did not help
the average performance. In this case, we reported our results with the use of pooling, as
that would be preferable in practice, due to a lowered computational cost.

Tables 4.2–4.4 list the detailed results for each configuration.∗ When a parameter
(encoder level, pooling, distance metric, or margin) is not indicated, it was set as described
in Section 4.2. The figures of the final method – that of cosine distance with a margin of
0.5 – are outlined with a black frame.

Limitations

Naturally, our work is not without its limitations. Mainly, the robustness of a randomly
initialized encoder is often bigger than that of a model pretrained for a few epochs, which
presents a challenge when using robustness as an early stopping condition. In this work,
we elected to disregard randomly initialized weights, which leads to good average perfor-
mance, but it also means that whenever no pretraining would lead to optimal downstream
performance – which can happen –, our online method fails to recognize that. We note
that this phenomenon can be counteracted by also training a segmentation network from
scratch, but this would require additional training time.

The online method is also generally worse than the offline method, indicating that it
is prone to find local maxima. More generally, the Spearman correlation of robustness
and downstream performance is relatively low, even if their optima coincide.

We also note that generally robustness is a better indicator when the encoder weights
are not modified during training for the downstream task, but this setup also results in
worse performance on average, and is therefore less widely used in practice.

∗Individual robustness scores for all combinations of investigated values of d, ε, and f̂ϑ can
be found at https://github.com/aielte-research/MedSegPretrainImageNet/blob/main/results/
robustness_scores.csv.

36

https://github.com/aielte-research/MedSegPretrainImageNet/blob/main/results/robustness_scores.csv
https://github.com/aielte-research/MedSegPretrainImageNet/blob/main/results/robustness_scores.csv


Chapter 4: Robustness

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ImageNet accuracy 0.999 0.987 1.000 0.998 1.000 0.997
no pretraining 1.000 0.978 0.992 0.939 0.905 0.818
level pooled

last
yes 0.994 1.000 0.999 1.000 0.905 0.818
no 0.997 0.995 0.999 1.000 0.998 1.000

second to last
yes 0.992 0.998 0.999 1.000 0.998 0.997
no 0.996 0.990 0.999 1.000 0.998 1.000

metric margin
PCC

0.50
0.996 0.998 0.992 0.936 0.998 0.818

L2 distance 0.992 0.981 0.995 0.971 0.956 0.948

cosine distance

0.25 0.996 0.998 0.999 1.000 0.998 0.967
0.50 0.996 0.998 0.999 1.000 0.998 0.997
0.75 0.996 0.998 0.999 1.000 0.998 0.997
1.00 0.996 0.998 0.999 1.000 0.998 0.997

(a) Simple pretraining

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ImageNet accuracy 1.000 0.975 0.992 0.940 0.902 0.801
no pretraining 0.996 0.977 0.992 0.936 0.952 0.808
level pooled

last
yes 0.996 0.977 1.000 0.999 0.998 0.987
no 0.996 0.977 1.000 0.999 1.000 0.980

second to last
yes 0.996 1.000 1.000 0.999 0.999 1.000
no 0.996 0.994 0.992 0.975 0.952 0.808

metric margin
PCC

0.50
0.996 1.000 0.992 0.999 0.952 0.980

L2 distance 0.997 0.998 0.996 0.997 0.952 0.989

cosine distance

0.25 0.996 1.000 0.992 0.999 1.000 1.000
0.50 0.996 1.000 0.992 0.999 0.952 1.000
0.75 0.996 1.000 0.992 0.999 0.952 1.000
1.00 0.996 1.000 0.992 0.999 0.952 1.000

(b) Advanced pretraining

Table 4.2. Detailed results on ACDC

37



Chapter 4: Robustness

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ImageNet accuracy 0.998 0.976 1.000 0.999 0.998 1.000
no pretraining 1.000 0.962 0.980 0.923 0.920 0.859
level pooled

last
yes 0.990 0.973 0.993 1.000 0.975 0.943
no 0.990 0.973 0.993 1.000 0.975 0.943

second to last
yes 0.997 0.979 1.000 0.999 0.988 0.970
no 0.998 0.976 0.993 0.995 1.000 0.998

metric margin
PCC

0.50
1.000 0.985 0.993 0.928 1.000 0.943

L2 distance 1.000 0.990 0.989 0.928 0.975 0.925

cosine distance

0.25 1.000 0.985 0.993 0.997 1.000 0.988
0.50 1.000 0.985 0.993 0.995 1.000 0.988
0.75 1.000 0.985 0.993 0.995 1.000 0.988
1.00 1.000 0.985 0.993 0.995 1.000 0.988

(a) Simple pretraining

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ImageNet accuracy 0.999 0.968 0.980 0.922 0.919 0.854
no pretraining 1.000 0.984 0.980 0.927 0.919 0.872
level pooled

last
yes 0.997 0.985 0.995 0.996 0.990 1.000
no 1.000 0.980 0.996 0.995 1.000 0.985

second to last
yes 1.000 0.980 0.995 0.996 0.989 0.993
no 0.999 0.968 0.996 0.995 0.990 1.000

metric margin
PCC

0.50
0.999 0.985 0.980 0.955 0.990 0.993

L2 distance 0.993 0.999 0.992 0.955 0.993 0.980

cosine distance

0.25 0.999 0.985 0.980 0.996 0.990 0.993
0.50 0.999 0.980 0.996 0.996 0.990 0.993
0.75 0.999 0.997 0.980 0.996 0.919 0.993
1.00 0.999 0.997 0.980 0.996 0.919 0.993

(b) Advanced pretraining

Table 4.3. Detailed results on COVID-QU

38



Chapter 4: Robustness

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ImageNet accuracy 1.000 0.997 0.973 0.999 1.000 1.000
no pretraining 0.981 0.906 0.994 0.925 0.830 0.740
level pooled

last
yes 0.941 0.969 0.949 0.988 0.830 0.740
no 0.999 1.000 0.994 0.925 0.830 0.740

second to last
yes 0.941 0.969 0.935 1.000 0.994 0.970
no 0.999 1.000 0.960 0.972 1.000 0.998

metric margin
PCC

0.50
0.981 0.947 0.960 0.925 1.000 0.938

L2 distance 0.963 0.967 0.978 0.932 0.830 0.909

cosine distance

0.25 0.981 0.995 0.994 0.925 0.830 0.938
0.50 0.999 0.969 0.960 1.000 1.000 0.970
0.75 0.981 0.995 0.927 0.925 1.000 0.745
1.00 0.981 0.995 0.927 0.925 1.000 0.745

(a) Simple pretraining

basic U-Net R50 Atn. U-Net Swin U-Net
full

training
decoder

only
full

training
decoder

only
full

training
decoder

only
ImageNet accuracy 0.992 0.910 0.991 0.924 0.824 0.748
no pretraining 0.986 0.941 1.000 0.926 0.877 0.758
level pooled

last
yes 0.984 0.991 1.000 0.926 0.993 0.993
no 0.986 0.941 1.000 0.926 0.999 0.990

second to last
yes 0.984 0.991 0.938 0.983 0.993 0.993
no 0.986 0.941 1.000 0.926 0.999 0.990

metric margin
PCC

0.50
0.986 0.969 0.941 0.983 0.999 0.929

L2 distance 0.943 0.977 0.938 0.953 0.965 0.975

cosine distance

0.25 0.986 1.000 1.000 0.983 0.965 0.993
0.50 0.986 0.991 1.000 0.983 0.999 0.993
0.75 0.986 1.000 0.938 0.983 0.999 0.993
1.00 0.986 1.000 0.938 0.983 0.999 0.993

(b) Advanced pretraining

Table 4.4. Detailed results on IDRiD

39



Bibliography

[1] Chopra, S., Hadsell, R. & LeCun, Y. Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) 1 (San Diego, California,
United States of America, June 2005), pp. 539–546. doi:10.1109/CVPR.2005.202.

[2] Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep
convolutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems 1 (Lake Tahoe, Nevada, United States
of America, December 2012), pp. 1097–1105.

[3] Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Deep neural net-
works segment neuronal membranes in electron microscopy images. In: Proceedings
of the 25th International Conference on Neural Information Processing Systems 2
(Lake Tahoe, Nevada, United States of America, December 2012), pp. 2843–2851.

[4] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In: 3rd In-
ternational Conference on Learning Representations (San Diego, California, United
States of America, May 2015).

[5] Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations
(San Diego, California, United States of America, May 2015).

[6] Shelhamer, E., Long, J. & Darrell, T. Fully convolutional networks for semantic
segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (Boston, Massachusetts, United States of America, June 2015), pp.
640–651. doi:10.1109/CVPR.2015.7298965.

[7] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V. & Rabinovich, A. Going deeper with convolutions. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (Boston, Massachusetts,
United States of America, June 2015), pp. 1–9. doi:10.1109/CVPR.2015.7298594.

[8] Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted In-
tervention – MICCAI 2015 3 (Munich, Germany, November 2015), pp. 234–241.
doi:10.1007/978-3-319-24574-4_28.

[9] He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV) (Santiago, Chile, December 2015), pp. 1026–1034.
doi:10.1109/ICCV.2015.123.

40

https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ICCV.2015.123


Bibliography

[10] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C. & Fei-Fei, L. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision 115,
pp. 211–252. doi:10.1007/s11263-015-0816-y (December 2015).

[11] Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. June 2016. arXiv:
1607.06450v1 [stat.ML].

[12] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Las Vegas, Nevada, United States of America, June 2016), pp. 770–778. doi:10.
1109/CVPR.2016.90.

[13] Oh Song, H., Xiang, Y., Jegelka, S. & Savarese, S. Deep metric learning via lifted
structured feature embedding. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Las Vegas, Nevada, United States of America, June
2016), pp. 4004–4012. doi:10.1109/CVPR.2016.434.

[14] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Incep-
tion architecture for computer vision. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Las Vegas, Nevada, United States of America,
June 2016), pp. 2818–2826. doi:10.1109/CVPR.2016.308.

[15] Huang, G., Sun, Y., Liu, Z., Sedra, D. & Weinberger, K. Q. Deep networks with
stochastic depth. In: Computer Vision – ECCV 2016 4 (Amsterdam, The Nether-
lands, October 2016), pp. 646–661. doi:10.1007/978-3-319-46493-0_39.

[16] Loshchilov, I. & Hutter, F. SGDR: Stochastic gradient descent with warm restarts.
In: 5th International Conference on Learning Representations 1 (Toulon, France,
April 2017), pp. 1769–1784.

[17] Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Jorge Cardoso, M. Generalised
Dice overlap as a deep learning loss function for highly unbalanced segmentations.
In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support (Québec City, Quebec, Canada, September 2017), pp. 240–248.
doi:10.1007/978-3-319-67558-9_28.

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł. & Polosukhin, I. Attention is all you need. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems (Long Beach, Califor-
nia, United States of America, December 2017), pp. 6000–6010.

[19] Dumoulin, V. & Visin, F. A guide to convolution arithmetic for deep learning.
January 2018. arXiv: 1603.07285v2 [stat.ML].

[20] Zhang, H., Cisse, M., Dauphin, Y. N. & Lopez-Paz, D. mixup: Beyond empirical
risk minimization. In: 6th International Conference on Learning Representations
(Vancouver, British Columbia, Canada, May 2018).

[21] Zhang, Z., Liu, Q. & Wang, Y. Road extraction by deep residual U-Net. IEEE
Geoscience and Remote Sensing Letters 15, pp. 749–753. doi:10 . 1109 / LGRS .
2018.2802944 (May 2018).

[22] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y. & He, K. Accurate, large minibatch SGD: Training ImageNet in 1
hour. June 2018. arXiv: 1706.02677v2 [cs.CV].

41

https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1607.06450v1
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.434
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-67558-9_28
https://arxiv.org/abs/1603.07285v2
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1109/LGRS.2018.2802944
https://arxiv.org/abs/1706.02677v2


Bibliography

[23] Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J. & Savarese, S. Taskonomy:
Disentangling task transfer learning. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (Salt Lake City, Utah, United States of America,
June 2018), pp. 3712–3722. doi:10.1109/CVPR.2018.00391.

[24] Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.-A., Cetin,
I., Lekadir, K., Camara, O., Ballester, M. A. G., et al. Deep learning techniques for
automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem
solved? IEEE Transactions on Medical Imaging 37, pp. 2514–2525. doi:10.1109/
TMI.2018.2837502 (November 2018).

[25] Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B. & Rueck-
ert, D. Attention gated networks: Learning to leverage salient regions in medical im-
ages. Medical Image Analysis 53, pp. 197–207. doi:10.1016/j.media.2019.01.012
(April 2019).

[26] Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In: 7th Inter-
national Conference on Learning Representations (New Orleans, Louisiana, United
States of America, May 2019).

[27] Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V. & Le, Q. V. AutoAugment:
Learning augmentation strategies from data. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (Long Beach, California, United
States of America, June 2019), pp. 113–123. doi:10.1109/CVPR.2019.00020.

[28] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies 1 (Minneapolis, Minnesota, United States
of America, June 2019), pp. 4171–4186. doi:10.18653/v1/N19-1423.

[29] He, K., Girshick, R. & Dollár, P. Rethinking ImageNet pre-training. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV) (Seoul,
South Korea, October 2019), pp. 4918–4927. doi:10.1109/ICCV.2019.00502.

[30] Tran, A. T., Nguyen, C. V. & Hassner, T. Transferability and hardness of super-
vised classification tasks. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV) (Seoul, South Korea, October 2019), pp. 1395–
1405. doi:10.1109/ICCV.2019.00148.

[31] Yun, S., Han, D., Chun, S., Oh, S. J., Yoo, Y. & Choe, J. CutMix: Regularization
strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) (Seoul, South Korea, October
2019), pp. 6022–6031. doi:10.1109/ICCV.2019.00612.

[32] Porwal, P., Pachade, S., Kokare, M., Deshmukh, G., Son, J., Bae, W., Liu, L.,
Wang, J., Liu, X., Gao, L., Wu, T., Xiao, J., Wang, F., Yin, B., Wang, Y., Danala,
G., He, L., Choi, Y. H., Lee, Y. C., Jung, S.-H., Li, Z., Sui, X., Wu, J., Li, X.,
Zhou, T., Toth, J., Baran, A., Kori, A., Chennamsetty, S. S., Safwan, M., Alex,
V., Lyu, X., Cheng, L., Chu, Q., Li, P., Ji, X., Zhang, S., Shen, Y., Dai, L., Saha,
O., Sathish, R., Melo, T., Araújo, T., Harangi, B., Sheng, B., Fang, R., Sheet,
D., Hajdu, A., Zheng, Y., Mendonça, A. M., Zhang, S., Campilho, A., Zheng, B.,
Shen, D., Giancardo, L., Quellec, G. & Mériaudeau, F. IDRiD: Diabetic retinopathy
– Segmentation and grading challenge. Medical Image Analysis 59, pp. 101561.
doi:10.1016/j.media.2019.101561 (January 2020).

42

https://doi.org/10.1109/CVPR.2018.00391
https://doi.org/10.1109/TMI.2018.2837502
https://doi.org/10.1109/TMI.2018.2837502
https://doi.org/10.1016/j.media.2019.01.012
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/ICCV.2019.00148
https://doi.org/10.1109/ICCV.2019.00612
https://doi.org/10.1016/j.media.2019.101561


Bibliography

[33] Punn, N. S. & Agarwal, S. Inception U-Net architecture for semantic segmentation
to identify nuclei in microscopy cell images. ACM Transactions on Multimedia Com-
puting, Communications, and Applications 16, pp. 1–15. doi:10.1145/3376922
(February 2020).

[34] Zhong, Z., Zheng, L., Kang, G., Li, S. & Yang, Y. Random erasing data aug-
mentation. In: Proceedings of the AAAI Conference on Artificial Intelligence 34
(New York, New York, United States of America, February 2020), pp. 13001–13008.
doi:10.1609/aaai.v34i07.7000.

[35] Cubuk, E. D., Zoph, B., Shlens, J. & Le, Q. V. RandAugment: Practical auto-
mated data augmentation with a reduced search space. In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW) (Seattle,
Washington, United States of America, June 2020), pp. 3008–3017. doi:10.1109/
CVPRW50498.2020.00359.

[36] Song, J., Chen, Y., Ye, J., Wang, X., Shen, C., Mao, F. & Song, M. DEPARA: Deep
attribution graph for deep knowledge transferability. In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (Seattle, Washington,
United States of America, June 2020), pp. 3922–3930. doi:10.1109/CVPR42600.
2020.00398.

[37] Nguyen, C., Hassner, T., Seeger, M. & Archambeau, C. LEEP: A new measure
to evaluate transferability of learned representations. In: Proceedings of the 37th

International Conference on Machine Learning (July 2020), pp. 7294–7305.

[38] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A.,
Liu, C. & Krishnan, D. Supervised contrastive learning. In: Proceedings of the
34th International Conference on Neural Information Processing Systems (December
2020), pp. 18661–18673.

[39] Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L. & Zhou,
Y. TransUNet: Transformers make strong encoders for medical image segmentation.
February 2021. arXiv: 2102.04306v1 [cs.CV].

[40] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. & Houlsby, N.
An image is worth 16 × 16 words: Transformers for image recognition at scale. In:
9th International Conference on Learning Representations (Vienna, Austria, May
2021).

[41] Li, Y., Jia, X., Sang, R., Zhu, Y., Green, B., Wang, L. & Gong, B. Ranking neu-
ral checkpoints. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (Nashville, Tennessee, United States of America, June 2021),
pp. 2662–2672. doi:10.1109/CVPR46437.2021.00269.

[42] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. & Jegou, H. Training
data-efficient image transformers & distillation through attention. In: Proceedings
of the 38th International Conference on Machine Learning (July 2021), pp. 10347–
10357.

[43] You, K., Liu, Y., Wang, J. & Long, M. LogME: Practical assessment of pre-trained
models for transfer learning. In: Proceedings of the 38th International Conference
on Machine Learning (July 2021), pp. 12133–12143.

43

https://doi.org/10.1145/3376922
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1109/CVPRW50498.2020.00359
https://doi.org/10.1109/CVPRW50498.2020.00359
https://doi.org/10.1109/CVPR42600.2020.00398
https://doi.org/10.1109/CVPR42600.2020.00398
https://arxiv.org/abs/2102.04306v1
https://doi.org/10.1109/CVPR46437.2021.00269


Bibliography

[44] Wen, Y., Chen, L., Deng, Y. & Zhou, C. Rethinking pre-training on medical imag-
ing. Journal of Visual Communication and Image Representation 78, pp. 103145.
doi:10.1016/j.jvcir.2021.103145 (July 2021).

[45] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. & Guo, B. Swin Trans-
former: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF
International Conference on Computer Vision (ICCV) (Montreal, Quebec, Canada,
October 2021), pp. 9992–10002. doi:10.1109/ICCV48922.2021.00986.

[46] Tahir, A. M., Chowdhury, M. E. H., Khandakar, A., Rahman, T., Qiblawey, Y.,
Khurshid, U., Kiranyaz, S., Ibtehaz, N., Rahman, M. S., Al-Maadeed, S., Mahmud,
S., Ezeddin, M., Hameed, K. & Hamid, T. COVID-19 infection localization and
severity grading from chest X-ray images. Computers in Biology and Medicine 139,
pp. 105002. doi:10.1016/j.compbiomed.2021.105002 (December 2021).

[47] Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T. & Xie, S. A ConvNet for
the 2020s. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (New Orleans, Louisiana, United States of America, June 2022), pp.
11976–11986. doi:10.1109/CVPR52688.2022.01167.

[48] Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q. & Wang, M. Swin-
Unet: Unet-like pure transformer for medical image segmentation. In: Computer
Vision – ECCV 2022 Workshops 3 (Tel Aviv, Israel, October 2023), pp. 205–218.
doi:10.1007/978-3-031-25066-8_9.

[49] neptune.ai: experiment tracker. Available at https://docs.neptune.ai. 2024.

[50] Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao, B.,
Bell, P., Berard, D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Des-
maison, A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind, M., Hirsh, B.,
Huang, S., Kalambarkar, K., Kirsch, L., Lazos, M., Lezcano, M., Liang, Y., Liang,
J., Lu, Y., Luk, C., Maher, B., Pan, Y., Puhrsch, C., Reso, M., Saroufim, M., Sir-
aichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang, E., Wang, X., Wen, W., Zhang,
S., Zhao, X., Zhou, K., Zou, R., Mathews, A., Chanan, G., Wu, P. & Chintala,
S. PyTorch 2: Faster machine learning through dynamic Python bytecode trans-
formation and graph compilation. In: Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems 2 (La Jolla, California, United States of America, April 2024), pp. 929–947.
doi:10.1145/3620665.3640366.

44

https://doi.org/10.1016/j.jvcir.2021.103145
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1016/j.compbiomed.2021.105002
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1007/978-3-031-25066-8_9
https://docs.neptune.ai
https://doi.org/10.1145/3620665.3640366

	Introduction
	Medical image segmentation with neural networks
	Architectures for segmentation
	U-shaped networks
	Convolutional U-Net variants
	Swin U-Net

	Metrics and losses
	Pretraining models

	Experiments
	Model architectures
	Pretraining the encoders
	Overview of the methods used
	Implementation details

	Medical image datasets
	Downstream experiments

	Transferability metrics
	Notion of transferability
	Overview of transferability metrics in literature

	Robustness
	Defining robustness
	Results

	Bibliography

