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Introduction

Representation learning is an intensely studied field within machine learning, which aims
to extract useful representations from data. Learning valuable representations is a key task in
machine learning since it is necessary for designing efficient algorithms. Moreover, they can be
examined for interpretability purposes as well as it is assumed that they encode many explanatory
factors [2].

Nowadays, deep learning is one of the most popular areas in machine learning due to its
powerful models which have unprecedented performance across a wide range of applications and
tasks. Hence it comes as no surprise that more attention is directed towards them in representation
learning as well. These algorithms possess desirable properties such as successfully dealing with
non-linear, complex relationships in the data, expressivity and scalability to large datasets. An
important family of models in deep learning widely applied for learning valuable features
are generative models, especially Variational Autoencoders (VAE). In this thesis the centre of
attention is the Importance Weighted Variational Autoencoder (IWAE), which is examined in an
extended, hierarchical form. Instead of a single stochastic latent layer, a hierarchy of two layers
is learned, and a key point in this work is to investigate the representational properties of this
extended model.

The starting point of this thesis are the works from Csikor et al. [9], [8], which have the
purpose of building hierarchical VAEs that can appropriately model the early visual cortex of
mammals. The main objective of their work was to utilize deep generative networks to create a
model of the first and second primary visual cortices, V1 and V2, analyze the representations
learnt by this model and compare them to the responses found in the visual cortices of mammals,
particularly of monkeys. The TDVAE network is amongst the proposed models, which is a two-
latent hierarchical VAE featuring a top-down recognition model, enhanced with components
inspired by neuroscience.

The present work sets the goal to extend the TDVAE model by incorporating the importance
weighted scheme introduced by the IWAE. Furthermore, to carry out an analysis of the emerged
representation in both of the models and compare the results. Building on the appealing properties
of IWAE, such as enriching the learnt representation and learning a more flexible and exotic
variational posterior, our expectations are that the TDVAE model enhanced with importance
weighting (TD-IWAE) will result in both more accurate and expressive features regarding the
learnt posterior than the one learnt by TDVAE.

Although, the topic of the present work lies in the intersection of two extensive fields of
deep generative learning and neuroscience, it will mainly focus on the background theory and
construction of the presented models along with the analysis of the experiments performed on
the learned representations.
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The structure of this thesis is the following. In Chapter 1, a brief overview is presented
about topics essential in the present work. An outline about VAE models, the role of generative
modelling in neuroscience and importance sampling is discussed. Chapter 2 details the main
topic of the thesis, the Importance Weighted Autoencoders. Chapter 3 presents an introduction
to hierarchical VAE models, and then the TDVAE model is described. In Chapter 4, the TDVAE
model extended with the IWAE scheme is proposed. From now on, we will refer to this model
as TD-IWAE. The experimental results are presented in Chapter 5, concerning the training
of the implemented models, and the analysis performed on the learned representations. The
IWAE was implemented both for the standard single latent layer VAE, and for its extended,
hierarchical version. The natural images trained non-hierarchical IWAE is point of interest on its
own but I chose to focus on my main contribution, the extension of this model to the hierarchical
version. Lastly, Chapter 6 contains a summary of the present work with possible future research
directions.
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Chapter 1

Background

1.1 Variational Autoencoder, a brief introduction

In this section we will review the topics fundamental in the present work, crucial to have
an insight in order to understand the further chapters: the VAE and variational inference. The
section is written based on the works [17], [18], [6], [3].

Probabilistic models have a central role in machine learning and they are used in numerous
applications. Their purpose is to provide an unsupervised framework for learning about data.
Let X = {x1, x2, ..., x𝑁 } be our dataset, containing iid data points, and for the sake of simplicity
suppose that x denotes one single data point from this dataset. It is assumed that there is an
unknown process 𝑝∗(x) generating our data and we wish to learn the parameters 𝜽 of a model
𝑝𝜃 (x) approximating this process.

A wide-spread and effective approach to learn the distribution of the data 𝑝(x) is to involve
unobservable variables, called latent variables into the learning process. These can be interpreted
as factors corresponding to essential information inferred from the observable variables. The
models utilizing latent variables are called Latent Variable Models and they seek to learn the joint
distribution of the latent z and observed x. Here we are interested in continuous latents. Since
we are looking for 𝑝𝜃 (x), we have to marginalize out the latent factor: 𝑝𝜃 (x) =

∫
𝑧
𝑝𝜃 (x, z) 𝑑z.

Maximum likelihood estimation is a common method to fit probabilistic models, where
the goal is to find the optimal parameters 𝜃 which maximizes the log-likelihood log 𝑝𝜃 (x). In
other words, we are looking for a model that best explains our data. Since our dataset consists
of iid data points, the marginal log-likelihood breaks down to a sum of single data points:
log 𝑝𝜃 (x1, ..., x𝑁 ) =

∑𝑁
𝑖=1 log 𝑝𝜃 (x𝑖). For clarity of the overview, from now on let’s only consider

the log-likelihood of one data point x.

To complete the model, the formulation of the joint requires the specification of the likelihood
function as well as the prior distribution. Here, we assume that the latent variables are generated
according to the predetermined prior 𝑝𝜃 (z). Taking into consideration the prior of the latent as
well, the joint can be decomposed as the product of the posterior and prior distribution. This
factorization has the advantage that it relies on more easily computable distributions than the
joint posterior. Hence, the marginal log-likelihood is in the form of

log 𝑝𝜃 (x) = log
∫
𝑧

𝑝𝜃 (x, z) 𝑑z = log
∫
𝑧

𝑝𝜃 (x|z)𝑝𝜃 (z) 𝑑z

7



This factorization assumes sampling the prior, and describes a generative process of x given
the corresponding z: As the first step, draw a sample from the prior z ∼ 𝑝𝜃 (z), and then use the
generated z to obtain a sample x ∼ 𝑝𝜃 (x|z). In addition, note that the factorization reflects the
mathematical formulation of the associated directed graphical model.

A problem arises when the above integral
∫
𝑧
𝑝𝜃 (x, z) 𝑑z is intractable and we are not able

to evaluate it analytically. This could happen owing to the high dimensionality of the latent
space or the complex, non-linear relationship between the latent variables and the observed ones
defined by the likelihood. As a consequence, the posterior 𝑝𝜃 (z|x) is also intractable, due to its
relationship with the marginal likelihood given by Bayes’ theorem:

𝑝𝜃 (z|x) =
𝑝𝜃 (x|z)𝑝𝜃 (z)

𝑝𝜃 (x)
(1.1)

The lack of feasible evaluation of the marginal likelihood leads us back to apply approximation
schemes in such scenarios. The approximation method called variational inference is a state-of-
the-art approach in the context of latent variable models, and it is gaining more popularity thanks
to its application in deep learning. The basis of variational inference lies on Bayesian inference,
and its aim is to search for a tractable distribution which can be used as an approximation
for 𝑝𝜃 (z|x). The best known deep latent variable model is the Variational Autoencoder (VAE)
originally proposed by Kingma et al. [17]. Also, it was a parallel discovery by Rezende et al.
[28]. The task, just as in the VAE model, is formulated as an optimization problem, where we
wish to find the variational distribution 𝑞𝜙 (z|x) which is the closest to the true posterior in terms
of Kullback-Leibler divergence (KL-divergence). The VAE performs variational inference by
calculating the approximate posterior 𝑞(z|x) with deep neural networks for the continuous latent
z.

Due to the intractability, in the VAE the optimization is not directly performed on the marginal
log-likelihood, instead the Evidence Lower Bound is used. As the name suggests, it is a lower
bound on log 𝑝𝜃 (x), derived for one single data point as follows:

log 𝑝𝜃 (x) = E𝑞𝜙 (z|x)
[
log 𝑝𝜃 (x)

]
= E𝑞𝜙 (z|x)

[
log

𝑝𝜃 (x, z)
𝑝𝜃 (z|x)

]
= E𝑞𝜙 (z|x)

[
log

𝑝𝜃 (x, z)
𝑞𝜙 (z|x)

·
𝑞𝜙 (z|x)
𝑝𝜃 (z|x)

]
= E𝑞𝜙 (z|x)

[
log

𝑝𝜃 (x, z)
𝑞𝜙 (z|x)

]
+ E𝑞𝜙 (z|x)

[
log

𝑞𝜙 (z|x)
𝑝𝜃 (z|x)

]
= L𝑉𝐴𝐸 (x) + 𝐾𝐿 [𝑞𝜙 (z|x) | |𝑝𝜃 (z|x)]

(1.2)

What we get is the sum of the KL-divergence between the variational and the true posterior
and another term which will be used as the optimization objective for the model. It would be
straightforward to minimize the KL-divergence of the variational distribution however we are
not able to evaluate 𝑝𝜃 (z|x). Fortunately, the KL-divergence is always non-negative, therefore
simply omitting it from the above equation we can arrive to a lower bound on log 𝑝𝜃 (x) which is
called the Evidence Lower Bound (ELBO). The great thing is that by maximizing the ELBO we
can achieve two of our goals: first, maximizing log 𝑝𝜃 (x) and second, improving the tightness
of the bound, we can decrease the KL-divergence between the variational and true posterior.
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The ELBO can also be derived by applying Jensen’s inequality. This way is less illustrative
but shows an important trick to arrive to the ELBO [6]:

log 𝑝𝜃 (x) = log
∫
𝑧

𝑝𝜃 (x|z)𝑝𝜃 (z) 𝑑z

= log
∫
𝑧

𝑝𝜃 (x|z)𝑝𝜃 (z)
𝑞𝜙 (z|x)
𝑞𝜙 (z|x)

𝑑z

= logE𝑞𝜙 (z|x)
[
𝑝𝜃 (x|z)𝑝𝜃 (z)
𝑞𝜙 (z|x)

]
≥ E𝑞𝜙 (z|x)

[
log

𝑝𝜃 (x|z)𝑝𝜃 (z)
𝑞𝜙 (z|x)

]
= L𝑉𝐴𝐸 (x)

(1.3)

In order to see from what components the ELBO is built, we have to further alter its form:

E𝑞𝜙 (z|x)

[
log

𝑝𝜃 (x|z)𝑝𝜃 (z)
𝑞𝜙 (z|x)

]
= E𝑞𝜙 (z|x)

[
log 𝑝𝜃 (x|z)

]
− 𝐾𝐿 [𝑞𝜙 (z|x) | |𝑝𝜃 (z)] (1.4)

The first term is the reconstruction term, indicating how well x is decoded from its latent z, and
the second term is the KL-divergence between the variational posterior and the prior which can
be seen as a regularizer for 𝝓.

The Variational Autoencoder as mentioned before, is a latent variable model which performes
variational inference with deep neural networks. It is comprised of a recognition and a generative
network. The recognition model is a probabilistic encoder as it returns a probability distribution
for a given x, namely the approximate posterior 𝑞𝜙 (z|x). Similarly the generative part is a
stochastic decoder, and for a given z it outputs the distribution for 𝑝𝜃 (x|z). An illustration of
VAE can be observed in Figure 1.1.

An important property of VAE that it performs amortized inference, which means that the
variational parameters 𝝓 are shared between the observations. Instead of optimizing the model
for each of the individual data points with a different group of parameters, it learns one collection
of 𝝓 and make use of them to output a posterior distribution for each x.

Figure 1.1: The architecture of VAE

The recognition and generative networks are jointly optimized with respect to 𝜽 and 𝝓.
Calculating the gradients of the ELBO for the optimization procedure is a bit tricky since it
contains an expectation corresponded with the sampling from 𝑞𝜙 (z|x). There is no problem
of computing the gradients with respect to 𝜽 , as the differentiation and the expectation is
commutative. The case of the variational parameters 𝝓 is more complicated, therefore the
reparametrization trick was introduced in Kingma et al. [17].

The strategy is to introduce a random noise variable 𝝐 which is independent both of x and
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𝝓, then express z as a deterministic, differentiable function of 𝝐 : z = 𝑔(𝝐 , 𝝓, x). It follows that
from now on the expectation is performed over the sampling 𝝐 ∼ 𝑝(𝝐) and the differentiation
operation with respect to 𝝓 can be moved inside the expectation. As the last step, in both cases
the expectation is approximated with Monte Carlo estimation. The detailed derivation can be
found in the original paper [17]. The optimization procedure can be performed with stochastic
optimization algorithms as it is traditional in deep learning.

Conventionally in the VAE framework the distribution for 𝑝𝜽 (x|z) is assumed to be Normal
or Bernoulli, the posterior 𝑝𝜽 (z|x) is parameterized as a Normal with diagonal covariance
matrix, and the prior is chosen to follow a standard Gauss distribution. In this scenario, the
KL-divergence can be calculated with a simple analytical expression. The approximation for
𝑝𝜽 (z|x) is performed by MLPs.

1.2 Neuroscience and generative modelling

To provide a an overview of generative modelling and its role in neuroscience, the sources
[14], [18], [8] [9], [34] were used.

When considering biological vision, machine learning models of natural images can be
used to investigate the properties of the visual processes. For this, machine learning offers
two major classes of models, which are generative modelling and discriminative modelling.

Disciriminative models are trained in a supervised manner to solve a specific task, for instance
to differentiate between data points, using the observations as input and their corresponding
targets. In contrast, generative models aim to understand how the data is generated and to
approximate the underlying distribution from where the data is coming from. It solves a more
general task by estimating a joint probability distribution of the variables instead of learning
a conditional probability of the targets given the observations. Note that generative models
which learn 𝑝(x, z) can also be used to predict 𝑝(z|x) by applying Bayes-rule. Other appealing
properties of generative models are that they can be used to improve prediction tasks by utilizing
them as feature extractors. In addition, since they are trained unsupervised and can be used
to generate data, one can make use of them to produce more labelled data or to augment the
underlying training set with new data points.

In neuroscience it is a common practice to utilize unsupervised generative modelling of natural
images to understand visual perception [9]. This approach is motivated by multiple factors. First,
the unsupervised training paradigm better for a biological learning scenario as training labels
are unfeasible to assume. Second, the latent variable generative modelling framework permits a
richer representation to be learned. Models that are trained to solve predetermined tasks learn
features that are specific to the underlying task. In contrast, with utilizing generative models
task general representations can be studied. Third, probabilistic representations are essential to
face the natural challenges of humans and other animals, hence a computational framework that
accommodates such probabilistic computations are biologically important to examine.

As deep learning tools have come into focus, considerable amount of work has been put on
investigating deep models as well. Their ability to express complex, non-linear relationships
make them a favorable tool in modelling. The VAE is popular tool used in deep unsupervised
representation learning, therefore it is does not come as a surprise that they were utilized in
modelling the visual system as well, like in [12]. In fact, several reasons stands for why these
networks can be used to arrive to a genuine model of the neuronal processes in the visual system.
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First of all, since generative models are trained to learn the underlying distribution from
where the data is generated from, they are required to capture intricate information patterns.
This property allows them to be effectively trained on natural images that are known to possess a
complicated structure, and also to create useful representations of the observations. In contrast,
models trained in a task-specific way may not flexible enough to capture the required complex
patterns.

Secondly, VAEs can easily architectually adapt to model the computations and anatomy of
the visual pathway in mammals, as it will be further detailed in later chapters. For instance, a
key feature of the visual cortex is that it possess a hierarchical structure in terms of processing
the input signal. The two main studies on which this present work is based [9], [8] exploited the
properties of VAE models that they can be generalized to a hierarchical structure, providing a
match with the biological visual pathway. From an interpretability perspective, parallels can be
drawn between these models and the anatomy of the visual cortex.For instance, the stochastic
layers from different hierarchy levels can be associated with the hierarchical layers of the visual
cortex, or the activity of model neurons can be interpreted as the responses of cortical neurons
to visual stimuli.

In relation with the previous argument, top-down connections, which is a crucial property
of the visual hierarchy, can also be modelled by utilizing hierarchical VAEs. The cortical
hierarchy, along with the feed-forward computations, also holds top-down interactions, meaning
that information flows from higher cortical areas to lower layers as well, providing contextual
knowledge to the first layers. One would ask why this could be useful? During perception
inferences are made about features at different levels of the hierarchy, and this inference is
distorted by sensory noise and occlusion. As it was stated in [34], performing basic visual tasks
is hard, meaning that the interpretation of visual information at this level could be uncertain.
However, high levels might help this inference by providing the lower layers with learned
information. For instance the orientation of an edge that is represented in a lower level corrupted
area might not be established with high certainty, but higher layers could transfer information
about co-occurrences of edges, forming the representation of the edge by others in its surrounding
visual fields. Based on this, one can think of the top-down path in the visual system that the high-
level signals can assist the processing of lower layers in the hierarchy. Therefore it is essential
to incorporate top-down connections in the model of the visual pathway, as it is in the case of
TDVAE which is in the centre of this thesis.

1.3 Importance Sampling

This section briefly outlines the key concepts present in this thesis, such as Monte Carlo
estimation and Importance Sampling, using the works of [24], [3], [30].

In many applications we can face with the problem of evaluating an expected value. Given
the expression 𝜇 = E𝑝(x) [ 𝑓 (x)] =

∫
𝑝(x) 𝑓 (x)𝑑x where 𝑓 is an integrable function and the

expectation is taken under the distribution 𝑝, its possible that the integral cannot be exactly
calculated (for example the distribution is complex or the dimension of x is high). In these cases,
one can apply Monte Carlo method to approximate the above integral. Drawing 𝑁 idependent
samples from 𝑝(x), the Monte Carlo estimator is in the form:
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�̂�𝑁 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖) x𝑖 ∼ 𝑝(x)

From the Law of Large Numbers, the estimator is unbiased, E𝑝(x) [�̂�𝑁 ] = 𝜇, and its variance is
𝑉𝑎𝑟 [�̂�𝑁 ] = 𝜎2

𝑁
where 𝜎2 = 𝑉𝑎𝑟𝑝(x) [ 𝑓 (x)].

Importance Sampling is a Monte Carlo method which serves as a technique for the above
problem, namely to estimate the expected value under the distribution 𝑝(x), in the case when
𝑝(x) is too complicated and it is not straightforward to sample from it.

We assume that it is easy to evaluate the target distribution 𝑝(x) in a given point x. The
trick consists of choosing a different distribution 𝑞(x), from which we can easily sample from,
obtain samples from 𝑞(x) instead from 𝑝(x) and then make corrections in the result as one
would sampled from 𝑝(x). The correction is required since for example the samples drawn from
regions where 𝑞(x) assigns greater probability than 𝑝(x) would do, will be over-represented. The
correction terms will be considered as importance weights. To put it precisely, our expression
can be rewritten as:

E𝑝(x) [ 𝑓 (x)] =
∫

𝑓 (x)𝑝(x)𝑑x =

∫
𝑓 (x) 𝑝(x)

𝑞(x) 𝑞(x)𝑑x = E𝑞(x)

[
𝑓 (x) 𝑝(x)

𝑞(x)

]
Recalling that we can approximate the integral by drawing independent samples from 𝑞(x)

and taking the average:

E𝑞(x)

[
𝑓 (x) 𝑝(x)

𝑞(x)

]
≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖)
𝑝(x𝑖)
𝑞(x𝑖)

x𝑖 ∼ 𝑞(x)

The terms 𝑝(x𝑖)
𝑞(x𝑖) are the importance weights, the correction quantities counting for the fact that

we did not sample from the target distribution. Note that since the expectation is taken with
respect to 𝑞(x) it is also an unbiased estimator of 𝜇. As intuition suggests, the result of the
estimator highly depends on how much 𝑞(x) is similar to the target 𝑝(x). A key prerequisite
regarding the distribution 𝑞(x) is that it shouldn’t be zero for all locations where the target
𝑝(x) is non-zero, meaning that we should able to draw samples for all x to which 𝑝(x) assigns
non-zero probability.

Importance Sampling is a technique to calculate an expected value under some distribution,
but does not give a method to generate samples from the underlying distribution. Fortunately,
the algorithm Sampling-Importance-Resampling (SIR) [30] provides us a way to obtain samples
from the target distribution 𝑝(x). As before, assume we have a proposal distribution 𝑞(x). The
procedure consists of two steps:

1. Generate an independent random sample X = {𝑋1, ..., 𝑋𝑛} from 𝑞(x). Calculate the
weights 𝑤𝑖 = 𝑝(x𝑖)

𝑞(x𝑖) for every 𝑖, 𝑖 = 1, .., 𝑛 and normalize them.
2. Resample from the obtained sample X = {𝑋1, ..., 𝑋𝑛} with replacement according to the

normalized weights. The resulted sample X̂ = {�̂�1, ..., �̂�𝑚} is usually smaller than X.

As 𝑛 → ∞ the resulted sample X̂ approximately can be seen as we have sampled from the
underlying distribution 𝑝(x).
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Chapter 2

Importance Weighted Autoencoders

2.1 Overview and detailed properties of IWAEs

The optimization objective of the standard VAE is the Evidence Lower Bound on the data log-
likelihood. The authors of [4] introduced a different approach to train a VAE, and demonstrated
that the proposal has several advantages compared to the baseline VAE. The new model is called
the Importance Weighted Autoencoder (IWAE). As opposed to a single sample drawn from the
variational posterior, the IWAE objective builds on possible arbitrary number of samples. The
goal of this section is to summarize the proposed IWAE model based on its original paper [4].

The main incentive for using a different objective is that the baseline VAE ELBO restricts
the expressivity of the network. This limitation is caused by the assumption that the variational
posterior is characterized by a simplified parametric form, which presumption may be too
strict regarding the shape of the posterior. In addition, typically one sample is drawn from the
recognition model during training hence the objective strictly penalizes the posterior samples
which cannot explain the observed data properly. This phenomenon can happen if the majority
of the samples are drawn from low probability regions of the variational posterior. The objective
severly penalizes the samples which are not drawn from high probability locations, nevertheless
its possible that the recognition network can capture these high probability regions and perform
proper inference.

The authors of [4] proposed to overcome these drawbacks by using multiple, independently
drawn samples from the distribution 𝑞𝝓 (z|x). Utilizing more samples during traning leads to a
more efficient use of samples. The IWAE objective is a variant of the vanilla ELBO, and defined
as follows:

L𝑘
𝐼𝑊𝐴𝐸 (x) = Ez1,z2,...,z𝑘∼𝑞𝝓 (z|x)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

]
(2.1)

The IWAE model shares the same architecture with the traditional VAE, but uses L𝑘
𝐼𝑊𝐴𝐸

instead of the standard baseline ELBO L𝑉𝐴𝐸 . In the above expression the term
𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

= 𝑤𝑖

is called the unnormalized importance weight of the sample z𝑖.

In the work of Burda et al.[4] several properties of the IWAE ELBO are proven. First, one can
observe that the modified ELBO is also a lower bound on log 𝑝𝜽 (x). This follows from Jensen’s
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inequality and the fact that the unnormalized importance weights are an unbiased estimator of
𝑝𝜽 (x):
Theorem 2.1.1. log 𝑝𝜽 (x) ≥ L𝑘

𝐼𝑊𝐴𝐸
(x)

Proof. Observe that E𝑞𝝓 (z|x) [𝑤] = E𝑞𝝓 (z|x)
[
𝑝𝜽 (x, z)
𝑞𝝓 (z|x)

]
=

∫
z𝑖
𝑞𝝓 (z𝑖 |x)

𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

𝑑z𝑖 = 𝑝𝜽 (x)

Then, by applying Jensen’s inequality:

L𝑘
𝐼𝑊𝐴𝐸 (x) = Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
log

(
1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖

)]
≤ log

(
Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖

] )
=

= log
(
1
𝑘

𝑘∑︁
𝑖=1
Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
𝑤𝑖
] )

= log 𝑝𝜽 (x)

□

The main advantage ofL𝑘
𝐼𝑊𝐴𝐸

that it is a strictly tighter lower bound on the log-likelihood than
the conventional ELBO objective. Moreover, the more samples are drawn from the approximate
posterior, the tighter the bound is:

log 𝑝𝜽 (x) ≥ L𝑘+1
𝐼𝑊𝐴𝐸 (x) ≥ L𝑘

𝐼𝑊𝐴𝐸 (x)

Theorem 2.1.2.

1. L𝑘
𝐼𝑊𝐴𝐸

≥ L𝑚
𝐼𝑊𝐴𝐸

for 𝑘 ≥ 𝑚

2. If
𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

is bounded, then lim𝑘→∞ L𝑘
𝐼𝑊𝐴𝐸

(x) = log 𝑝𝜽 (x)

Proof.

1. The proof builds on Jensen’s inequality and on the observation that given a sequence of
𝑘 numbers 𝑎1, ..., 𝑎𝑘 , choosing uniformly at random 𝑚 ≤ 𝑘 distinct elements 𝑎𝑖1 , ..., 𝑎𝑖𝑚

from them, then the following holds: E𝑎𝑖1 ,...,𝑎𝑖𝑚

[∑𝑚
𝑗=1 𝑎𝑖 𝑗

𝑚

]
=

∑𝑘
𝑖=1 𝑎𝑖

𝑘
. The equality is true

due to the linearity of expectation and the fact that each elements are chosen with equal
probability, which implies that E[𝑎𝑖 𝑗 ] =

∑𝑘
𝑖=1 𝑎𝑖 · 1

𝑘
. Applying the above we can derive that

L𝑘
𝐼𝑊𝐴𝐸 (x) = Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

]
= Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
logEz𝑖1 ,...,z𝑖𝑚∼𝑞𝝓 (z|x)

[
1
𝑚

𝑚∑︁
𝑗=1

𝑝𝜽 (x, z𝑖 𝑗 )
𝑞𝝓 (z𝑖 𝑗 |x)

] ]
≥ Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
Ez𝑖1 ,...,z𝑖𝑚∼𝑞𝝓 (z|x)

[
log

1
𝑚

𝑚∑︁
𝑗=1

𝑝𝜽 (x, z𝑖 𝑗 )
𝑞𝝓 (z𝑖 𝑗 |x)

] ]
= Ez1,...,z𝑚∼𝑞𝝓 (z|x)

[
log

1
𝑚

𝑚∑︁
𝑖=1

𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

]
= L𝑚

𝐼𝑊𝐴𝐸 (x).

(2.2)
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2. Consider the iid samples z1, ..., z𝑘 ∼ 𝑞𝝓 (z|x) and the random variables 𝑌𝑖 =
𝑝𝜽 (x, z𝑖)
𝑞𝝓 (z𝑖 |x)

.

These variables are also iid and if 𝑌𝑖 is bounded for all 𝑖, then its expectation is finite

and in our case Ez1,...,z𝑘∼𝑞𝝓 (z|x)

[
𝑝𝜽 (x,z𝑖)
𝑞𝝓 (z𝑖 |x)

]
= 𝑝𝜽 (x). Consider the random variable 𝑀𝑘 =

1
𝑘

∑𝑘
𝑖=1

𝑝𝜽 (x,z𝑖)
𝑞𝝓 (z𝑖 |x) . It follows from the Strong Law of Large Numbers that the average converges

to the expected value with probability one: 𝑃(𝑀𝑘 → 𝑝𝜽 (x)) = 1. Since the logarithm is
a continuous function, log𝑀𝑘 → log 𝑝𝜽 (x) almost surely. This implies convergence in
distribution, hence E𝑞𝝓 (z|x)

[
log𝑀𝑘

]
→ E𝑞𝝓 (z|x)

[
log 𝑝𝜽 (x)

]
= log 𝑝𝜽 (x).

□

It directly follows that using 𝑘 > 1 posterior samples gives us a tighter lower bound since
the IWAE formulation contains the standard ELBO as a special case. Drawing 𝑘 = 1 sample
simplifies back to the VAE ELBO:

log 𝑝𝜽 (x) ≥ L𝑘+1
𝐼𝑊𝐴𝐸 (x) ≥ ... ≥ L1

𝐼𝑊𝐴𝐸 (x) = L𝑉𝐴𝐸 (x)

It was also observed in the original work of Burda et al. that the strictly tighter lower bound
results in improved test likelihood estimation and consequently a generative performance of
higher quality. In addition, drawing multiple samples provides more flexibility to the network
hence allows it to capture the posterior more accurately. The fact that the model can explore more
complex distributions to approximate the true posterior implies that the factorial assumption is
reduced and more dependencies in the latent space can be captured.

Examining Equation 2.1, it is noticeable that in contrast to the standard ELBO, in the IWAE
ELBO we can not formulate a KL-divergence term due to the fact that the averaging is performed
inside the logarithm. This would imply updates with higher variances, but according to the
authors in their experiments there was no significant difference between the standard VAE
updates and the IWAE updates with 𝑘 = 1.

The difference between the standard VAE and IWAE methods can be understood more deeply
if one takes a closer look at the gradients of the networks. The differentiation is performed for
the generative parameters 𝜽 and variational parameters 𝝓, in the latter case the reparametrization
trick can be applied, similar to the standard VAE gradient derivation.

The gradients of IWAE ELBO with respect to 𝜽 can be obtained in a straightforward manner
by employing the chain rule and the linearity of the operator ∇𝜽 :
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∇𝜽L𝑘
𝐼𝑊𝐴𝐸 (x) = ∇𝜽E𝑞𝝓 (z|x)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= E𝑞𝝓 (z|x)

[
∇𝜽 log

1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= E𝑞𝝓 (z|x)

[
∇𝜽 log

1
𝑘
+ ∇𝜽 log

𝑘∑︁
𝑖=1

𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= E𝑞𝝓 (z|x)

[
1∑𝑘

𝑖=1 𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
·
𝑘∑︁
𝑖=1

∇𝜽𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= E𝑞𝝓 (z|x)

[
𝑘∑︁
𝑖=1

1∑𝑘
𝑖=1 𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)

∇𝜽𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= E𝑞𝝓 (z|x)

[
𝑘∑︁
𝑖=1

𝑤𝑖∑𝑘
𝑖=1 𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)

∇𝜽 log𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= E𝑞𝝓 (z|x)

[
𝑘∑︁
𝑖=1

�̃�𝑖∇𝜽 log𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

(2.3)

where in order to arrive to the form similar to the gradient of the VAE ELBO, we substituted
∇𝜽𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓) with the expression 𝑤𝑖 · ∇𝜽 log𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓). This equality comes from the
rearrangement of ∇𝜽 log𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓) = 1

𝑤𝑖
· ∇𝜽𝑤𝑖. The terms �̃�𝑖 = 𝑤𝑖∑𝑘

𝑖=1 𝑤𝑖

are the normalized
importance weights.

The gradients with respect to 𝝓 are calculated by using the reparametrization trick. The steps
of the above derivations are similar, after we introduced the random variable 𝝐 ∼ 𝑝(𝝐) and
expressed z𝑖 as a deterministic function of 𝝐 𝑖. Usually, 𝝐1, ..., 𝝐 𝑘 are sampled from a standard
Gaussian distribution.

∇𝝓L𝑘
𝐼𝑊𝐴𝐸 (x) = ∇𝝓E𝑞𝝓 (z|x)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖 (x, z𝑖, 𝜽 , 𝝓)
]

= ∇𝝓E𝑝(𝝐)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖 (x, 𝑔(𝝐 , 𝝓, x), 𝜽)
]

= E𝑝(𝝐)

[
∇𝝓 log

1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖 (x, 𝑔(𝝐 , 𝝓, x), 𝜽)
]

= E𝑝(𝝐)

[
𝑘∑︁
𝑖=1

�̃�𝑖∇𝝓 log𝑤𝑖 (x, 𝑔(𝝐 , 𝝓, x), 𝜽)
]

(2.4)

Analogously to the VAE gradient calculation, the expectation is approximated with Monte
Carlo estimation:

∇𝜃,𝜙L𝑘
𝐼𝑊𝐴𝐸 (x) =

𝑘∑︁
𝑖=1

�̃�𝑖∇𝜃,𝜙 log𝑤𝑖 (x, 𝑔(𝝐 , 𝝓, x), 𝜽)

16



For comparison, recall that the Monte Carlo estimate of the gradient of the standard VAE
objective is in the form:

∇𝜃,𝜙L𝑉𝐴𝐸 (x) = E𝑝(𝝐)
[
∇𝜃,𝜙 log𝑤𝑖 (x, 𝑔(𝝐 , 𝝓, x), 𝜽)

]
=

𝑘∑︁
𝑖=1

1
𝑘
∇𝜃,𝜙 log𝑤𝑖 (x, 𝑔(𝝐 , 𝝓, x), 𝜽)

One can see that while in the VAE model the samples are equally weighted, the IWAE utilizes
weights proportional to the importance weights.

2.2 Reinterpretation of IWAE

A related work from Cremer et al. [7] provides another essential perspective of the IWAE
model which is crucial for understanding what is really happening in the IWAE framework. It
states that despite the general interpretation of IWAE ELBO such that it comes up with a tighter
lower bound, one should look at it as the standard VAE ELBO which utilizes a more complex
variational distribution. The discussion in this part is based on the works of Cremer [7], [6].

The IWAE ELBO incorporates importance weighting, giving each sample a relative im-
portance weight during the loss calculation. This method alters the sampling procedure and
modifies the distribution we are actually sampling from given the importance weights. Cremer
et al. [7] formulates the implicit distribution which the IWAE model uses to approximate the
true posterior. The unnormalized implicit variational posterior 𝑞𝐼𝑊 is defined as

𝑞𝐼𝑊 (z|x, z2, .., z𝑘 ) =

𝑝𝜽 (x, z)
𝑞𝝓 (z|x)

1
𝑘

𝑘∑︁
𝑗=1

𝑝𝜽 (x, z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

𝑞𝝓 (z|x) =
𝑝𝜽 (x, z)

1
𝑘

(
𝑝𝜽 (x, z)
𝑞𝝓 (z|x)

+
𝑘∑︁
𝑗=2

𝑝𝜽 (x, z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

) (2.5)

where z, z2, ..., z𝑘 ∼ 𝑞(z|x) and z could be denoted as z1 as well but for notational purposes
it was left as z since it is the latent point where the distribution is evaluated in. The distribution
depends on the drawn samples, as it is indicated in the conditioning.

One can easily see that if 𝑘 = 1 then 𝑞𝐼𝑊 (z|x, z2, .., z𝑘 ) is equivalent with 𝑞𝝓 (z|x). A major
observation regarding the proposed distribution is that plugging it in the VAE ELBO instead of
𝑞𝝓 (z|x), in expectation it is equivalent with the IWAE ELBO taking its samples from 𝑞𝝓 (z|x).
We will not delve into the details of the proof, which can be found in the original paper, but note
that it serves as a base for the proof in a later chapter for the model TD-IWAE.

Theorem 2.2.1. Ez2,...,z𝑘∼𝑞𝜙 (z|x)
[
L𝑉𝐴𝐸 [𝑞𝐼𝑊 ]

]
= L𝐼𝑊𝐴𝐸 [𝑞𝝓]

Furthermore, another important property of 𝑞𝐼𝑊 is that it converges to the true posterior
𝑝𝜽 (z|x) as 𝑘 → ∞.

Theorem 2.2.2. 𝑞𝐼𝑊 (z|x, z2, .., z𝑘 ) → 𝑝𝜽 (z|x) as 𝑘 → ∞.
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Proof. To see this, lets rewrite 𝑞𝐼𝑊 in order to reveal the true posterior in the expression:

𝑞𝐼𝑊 (z|x, z2, .., z𝑘 ) =
𝑝𝜽 (x, z)

1
𝑘

( 𝑘∑︁
𝑗=1

𝑝𝜽 (x, z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

) =
𝑝𝜽 (x)

1
𝑘

( 𝑘∑︁
𝑗=1

𝑝𝜽 (x, z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

) 𝑝𝜽 (z|x)
As it was already mentioned, the average of the importance weights are an unbiased estimator

of 𝑝𝜽 (x) and their expected value can be approximated such as:

𝑝𝜽 (x) = E𝑞𝝓 (z|x)
[
𝑝𝜽 (x, z)
𝑞𝝓 (z|x)

]
≈ 1
𝑘

𝑘∑︁
𝑗=1

𝑝𝜽 (x, z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

If 𝑞𝝓 (z|x) is non-zero for all x where 𝑝𝜽 (z|x) is non-zero, the Strong Law of Large Numbers
implies that the average approaches 𝑝𝜽 (x) as 𝑘 → ∞ with probability 1. Since it is the denomi-
nator in the previous expression, then 𝑞𝐼𝑊 (z|x, z2, .., z𝑘 ) converges to 𝑝𝜽 (z|x) with probability
1. □

The proposed 𝑞𝐼𝑊 distribution is unnormalized, but Cremer also introduces a normalized
distribution, 𝑞𝐸𝑊 , which is defined as the expectation of 𝑞𝐼𝑊 over the samples z2, ..., z𝑘 . A proof
for showing that it is normalized is given in the works of Cremer et al. [7], [6].

𝑞𝐸𝑊 (z|x) = Ez2,...,z𝑘
[
𝑞𝐼𝑊 (z|x, z2, .., z𝑘 )

]
(2.6)

The new distribution 𝑞𝐸𝑊 , in contrast to 𝑞𝐼𝑊 , is not dependent on the samples z2, ..., z𝑘 since
the expectation can be seen as a marginalization over these variables. A question intuitively arises
regarding 𝑞𝐸𝑊 : If the VAE ELBO with 𝑞𝐼𝑊 equals to the IWAE ELBO in expectation, then what
happens if 𝑞𝐸𝑊 is used in the vanilla ELBO? Calculating 𝑞𝐸𝑊 is intractable [6], but according
to the authors, it would yield an upper bound for the IWAE ELBO: L𝑉𝐴𝐸 [𝑞𝐸𝑊 ] ≥ L𝐼𝑊𝐴𝐸 [𝑞].
For proof, refer to [7].

As the IWAE is trained in a way that the objective weights the samples drawn from the
variational posterior, one have to take care of performing the sampling procedure during model
evaluation. Resampling is required during prediction in order to correctly sample from the learnt
implicit distribution. The appropriate algorithm doing this is equivalent with the Sampling
Importance Resampling method already discussed in this work. The algorithm is as follows
(taken from Cremer et al. [7]):

2.3 IWAE ELBO and Importance Sampling

The connection between the IWAE and the importance sampling Monte Carlo method can
be acknowledged by the work from Bachman and Precup [1]. It states that the IWAE ELBO is
equivalent to variational inference where the variational posterior is adjusted towards the true
posterior using normalized importance sampling.

The scenario in context of the VAE is that it would be desirable to draw samples from the
true posterior 𝑝𝜽 (z|x), but due to its intractability, it is not applicable. Recall that in Sampling-
Importance-Resampling a proposal distribution 𝑞𝝓 (z|x) is used as the sampling distribution
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Algorithm 1 Sampling 𝑞𝐸𝑊 (z|x)
1: Input: 𝑘: number of samples drawn
2: for 𝑖 = 1, ..., 𝑘 do
3: Sample z𝑖 ∼ 𝑞(z|x)
4: Calculate 𝑤𝑖 = 𝑝(x,z𝑖)

𝑞(z𝑖 |x)
5: end for
6: Normalization: �̃�𝑖 =

𝑤𝑖∑𝑘
𝑖=1 𝑤𝑖

for ∀𝑖

7: Resample according to the obtained normalized weights w̃𝑖: 𝑗 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (w̃𝑖)
8: Return: z 𝑗

instead of the underlying complex distribution, then the normalized importance weights are
used to perform a second sampling. In the IWAE ELBO we would like to apply exactly this

technique. In this case the importance weights are 𝑤𝑖 =
𝑝𝜽 (z𝑖 |x)
𝑞𝝓 (z𝑖 |x)

. Their normalized form is

�̂�𝑖 =

𝑝𝜽 (z𝑖 |x)
𝑞𝝓 (z𝑖 |x)∑𝑘
𝑗=1

𝑝𝜽 (z 𝑗 |x)
𝑞𝝓 (z 𝑗 |x)

=

𝑝𝜽 (x,z𝑖)
𝑞𝝓 (z𝑖 |x)∑𝑘
𝑗=1

𝑝𝜽 (x,z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

=

𝑝𝜽 (x|z𝑖)𝑝𝜽 (z𝑖)
𝑞𝝓 (z𝑖 |x)∑𝑘

𝑗=1
𝑝𝜽 (x|z 𝑗 )𝑝𝜽 (z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

The samples drawn according to the above weights can be considered as that they were
approximately drawn from 𝑝𝜽 (z|x) as 𝑘 → ∞. Since during training the number of samples can
be drawn is restricted by the available computational resources, therefore it is not really common
to draw that many samples. Consequently, the distribution from which the samples are coming
after the resampling step is still considered as an approximation of the true posterior. Let this
approximate distribution be 𝑞𝑘 (z|x). A sample obtained from 𝑞𝑘 (z|x) is highly dependent on its
associated importance weight as well. According to Bachman and Precup, the original ELBO
utilizing 𝑞𝑘 (z|x) can be expressed as

log 𝑝𝜽 (x) ≥ E(z𝑖 ,�̂�𝑖)∼𝑞𝑘 (z|x)

[
log

𝑝𝜽 (x|z𝑖)𝑝𝜽 (z𝑖)
�̂�𝑖𝑞𝝓 (z𝑖 |x)

]
(2.7)

The importance weights �̂�𝑖 depend on the other z 𝑗 , 𝑗 ≠ 𝑖 samples, but we can marginalize
over the resampling step. This transforms the expectation to be only based on the firstly drawn 𝑘
samples and to not depend on the weights anymore. The summation over all possible resampling
outcome ensures that the result reflects the behavior of the resampling. The above expression
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then is altered as

log 𝑝𝜽 (x) ≥ Ez1,z2,..,z𝑘∼𝑞𝝓 (z|x)

[ 𝑘∑︁
𝑖=1

�̂�𝑖 log
𝑝𝜽 (x|z𝑖)𝑝𝜽 (z𝑖)
�̂�𝑖𝑞𝝓 (z𝑖 |x)

]
= Ez1,z2,..,z𝑘∼𝑞𝝓 (z|x)

[ 𝑘∑︁
𝑖=1

�̂�𝑖 log
𝑝𝜽 (x|z𝑖)𝑝𝜽 (z𝑖)( 𝑝𝜽 (x |z𝑖 ) 𝑝𝜽 (z𝑖 )
𝑞𝝓 (z𝑖 |x)∑𝑘

𝑗=1
𝑝𝜽 (x |z 𝑗 ) 𝑝𝜽 (z 𝑗 )

𝑞𝝓 (z 𝑗 |x)

)
𝑞𝝓 (z𝑖 |x)

]

= Ez1,z2,..,z𝑘∼𝑞𝝓 (z|x)

[ 𝑘∑︁
𝑖=1

�̂�𝑖 log
𝑘∑︁
𝑗=1

𝑝𝜽 (x|z 𝑗 )𝑝𝜽 (z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

]
= Ez1,z2,..,z𝑘∼𝑞𝝓 (z|x)

[
log

𝑘∑︁
𝑗=1

𝑝𝜽 (x|z 𝑗 )𝑝𝜽 (z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

]
= L𝑘

𝐼𝑊𝐴𝐸 (x)

using that
∑𝑘
𝑖=1 �̂�𝑖 = 1. The last term, as indicated, is exactly the ELBO used in the IWAE model.

One can observe that in the second line the expression of the denominator equals to the 𝑞𝐼𝑊
distribution proposed by Cremer et al., except for the multiplier 𝑘:

( 𝑝𝜽 (x|z)𝑝𝜽 (z)
𝑞𝝓 (z|x)∑𝑘

𝑗=1
𝑝𝜽 (x|z 𝑗 )𝑝𝜽 (z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

)
· 𝑞𝝓 (z|x) =

𝑝𝜽 (x|z)𝑝𝜽 (z)∑𝑘
𝑗=1

𝑝𝜽 (x|z 𝑗 )𝑝𝜽 (z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

=
𝑝𝜽 (x, z)

𝑝𝜽 (x,z)
𝑞𝝓 (z|x) +

∑𝑘
𝑗=2

𝑝𝜽 (x,z 𝑗 )
𝑞𝝓 (z 𝑗 |x)

20



Chapter 3

TDVAE

3.1 Insights into hierarchical models

Hierarchical VAE models, a generalized form of vanilla VAEs, have become the focus of many
research studies in the last few years. Their popularity can be explained firstly by the fact that
they can be used to model hierarchical dependecies or concepts, secondly that they can provide
increased expressiveness of the variational posterior and prior distributions. In a traditional VAE
architecture one stochastic layer is used which in itself is not always able to learn complex
data distributions as owning a simple form of the posterior distribution. Increased capacity is
achieved by utilizing several stochastic layers in the model. Stacking multiple latent variables
can relax the limitations of learning more complex posterior representations, and enables the
network to capture a richer posterior distribution [5], [31], [9]. Several outstanding hierarchical
generative models were published in recent years, such as NVAE [32], VDVAE [5], Ladder VAE
[31], which was further improved with the model BIVA [23]. A brief outline of hierarchical
VAEs is introduced here, mostly based on [9].

This work will focus on hierarchical VAE models with two stochastic layers hence their
theoretical background will be introduced in this fashion as well. In addition, the models
considered here possess a Markovian structure, meaning that the generative process forms a
Markov chain. In this sense the latent variable z𝑖 in the hierarchy depends only on the previous
z𝑖+1, and is independent of all the previous latents [21].

Considering the two latent variables z1, and z2, the joint distribution that the generative model
learns is 𝑝𝜽 (x, z1, z2). This can be factorized as:

𝑝𝜽 (x, z1, z2) = 𝑝𝜽 (x|z1, z2) · 𝑝𝜽 (z1 |z2) · 𝑝𝜽 (z2) = 𝑝𝜽 (x|z1) · 𝑝𝜽 (z1 |z2) · 𝑝𝜽 (z2)

Since the true posterior 𝑝𝜽 (z1, z2 |x) is intractable, the hierarchical model utilizes the variational
posterior, which is in the form 𝑞𝝓 (z1, z2 |x).

The factorization of this posterior defines how the recognition model is structured and there
are more options for this decomposition. The first approach is referred to as the bottom-up (or
chain) manner where the latents are in the opposite arrangement compared to their order in the
generative model:

𝑞𝝓 (z1, z2 |x) = 𝑞𝝓 (z2 |x, z1) · 𝑞𝝓 (z1 |x) = 𝑞𝝓 (z2 |z1) · 𝑞𝝓 (z1 |x)
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While the second approach is called the top-down factorization, firstly introduced by [31]:

𝑞𝝓 (z1, z2 |x) = 𝑞𝝓 (z1 |x, z2) · 𝑞𝝓 (z2 |x)

Sampling from the joint variational posterior when having a hierarchy of latent variables
can also be viewed as performing ancestral sampling. In order to sample from 𝑞𝝓 (z1, z2 |x) one
needs to get a sample obtained from 𝑞𝝓 (z2 |x) and then use this z2 from drawing a sample from
𝑞𝝓 (z1 |x, z2). In other words, for inference we need to sample from the distribution conditioned
on the variable’s parent variables [18].

In this thesis we will concentrate on hierarchical VAE with the top-down recognition model
with the latent variables z1, z2. The ELBO for the two-level top-down VAE can be derived
similarly to the one-layer case. Firstly, we have to rewrite the expression for log 𝑝𝜽 (x):

log 𝑝𝜽 (x) = E𝑞𝝓 (z1,z2 |x)
[
log 𝑝𝜽 (x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x, z1, z2)
𝑝𝜽 (z1, z2 |x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x, z1, z2)
𝑝𝜽 (z1, z2 |x)

·
𝑞𝝓 (z1, z2 |x)
𝑞𝝓 (z1, z2 |x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x, z1, z2)
𝑞𝝓 (z1, z2 |x)

·
𝑞𝝓 (z1, z2 |x)
𝑝𝜽 (z1, z2 |x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x|z1) · 𝑝𝜽 (z1 |z2) · 𝑝𝜽 (z2)
𝑞𝝓 (z1, z2 |x)

·
𝑞𝝓 (z1, z2 |x)
𝑝𝜽 (z1, z2 |x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x|z1) · 𝑝𝜽 (z1 |z2) · 𝑝𝜽 (z2)
𝑞𝝓 (z1, z2 |x)

]
+ E𝑞𝝓 (z1,z2 |x)

[
log

𝑞𝝓 (z1, z2 |x)
𝑝𝜽 (z1, z2 |x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x|z1) · 𝑝𝜽 (z1 |z2) · 𝑝𝜽 (z2)
𝑞𝝓 (z1, z2 |x)

]
+ 𝐾𝐿 [𝑞𝝓 (z1, z2 |x) | |𝑝𝜽 (z1, z2 |x)]

where the second term is the Kullback-Leibler divergence between the variational and true
posterior distributions. Since this latter term is non-negative, we can obtain a lower bound on
log 𝑝𝜽 (x):

log 𝑝𝜽 (x) ≥ E𝑞𝝓 (z1,z2 |x)

[
log

𝑝𝜽 (x|z1) · 𝑝𝜽 (z1 |z2) · 𝑝𝜽 (z2)
𝑞𝝓 (z1, z2 |x)

]
Generally, the approximate distributions and priors follow a Gaussian distribution with di-

agonal covariance. In contrast, in the present work we chose a Gaussian for parameterizing the
latent variable z2 and Laplace distribution for the latent z1. Note that the parameters of the
conditional distributions of latents are determined by neural networks, while the unconditional
𝑝𝜽 (z2) is set to be a factorized standard Gaussian. For 𝑝𝜽 (x|z1) we stuck to use a Gaussian as it
is usual in the literature.

To offer a comprehensive overview of hierarchical models, we should also mention the
drawbacks of these networks. Training with many layers of stochastic variables could be quite
challenging due to their increased complexity which requires larger memory and computational
power, longer training times and it also means higher sensitivity caused by the propagation in
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deeper networks. Furthermore, posterior collapse also poses difficulties for the training method-
ology.

3.1.1 Posterior collapse

The phenomenon of posterior collapse was recognized by several earlier studies and it is a well-
known problem of the optimization procedure of training VAEs [31], [10]. Posterior collapse
refers to the event when the variational posterior is getting closer to the prior, in terms of their
KL-divergence. To put it another way, some dimensions of the learnt posterior could become
inactive. Consequently, these dimensions of the latent space does not contain much meaningful
information about 𝑥. In hierarchical models, it predominantly affects the upper stochastic layers.

The collapse is mainly caused by the KL-term in the ELBO [31], since this regularization
term could be too strict to let the posterior to be learnt during training. Hence, the collapsed units
can also be identified by the relatively small KL-divergence value corresponding the given unit.
The generative performance of the model can also assist this phenomenon, since a network that
cannot capture the key features of the data, is also not able to produce good quality reconstructed
images.

A well-proven solution for preventing the collapse of the latent space is utilizing 𝛽-annealing
[31]. Essentially, this trick modifies the importance of the different terms in the ELBO during
training by introducing a weighting factor 𝛽 to the KL-divergence term. At the beginning, 𝛽
is set to a relatively small value, for instance to 0.1 and then it is progressively increased over
some epochs until reaches 1, which case is identical to the original ELBO. Smaller 𝛽 over the
epochs early in training means less weight to the regularization, allowing the model to learn and
incorporate some useful information into the latent space. Then, it is less likely to vanish in the
later stages of the training when 𝛽 is increased and when the KL-term is in full capacity with
𝛽 = 1 [31].

3.2 TDVAE

The present thesis is based on the TDVAE model taken from Csikor et al. [9], [8], which is a
hierarchical VAE featuring two stochastic latent layers and a top-down recognition network. In
this section we will review this network, detail its structure, specific architectural choices and
outline the top-down, hierarchical ELBO used for its training procedure.

The works from Csikor et al. focuses on inspecting a model of the early visual cortex with
two-latent layer hierarchical VAEs. The centre of attention of the examinations are the latent
representations learnt by these models on natural images. Among the investigated architectures,
the TDVAE and its learnt latent variables was discussed in more details in the paper [8]. The
results were compared to the cortical responses found in macaques as well. The structure of the
model is inspired from neuroscience to match the anatomy and conditions of the mammalian
vision.
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3.2.1 The connection between the visual cortex and TDVAE

The task of the visual system is to process and extract useful information from the incoming
visual signals. The first step in the perception of such visual information happens in the visual
cortex, where the neuronal computations are organized into a hierarchy [16].

The first layer of this cortical hierarchy is the primary visual cortex also known as V1, which
accounts for capturing local orientation of edges and lines, and spatial scale. [11], [16]. It is also
the most studied area of the visual pathway [16].

The second visual area V2 obtains information from V1, and extracts more complex features
from the visual image by incorporating the characteristics provided by V1. This area is sensitive
to changes in color, spatial frequency, and patterns [16], and it was also shown that it is highly
selective to natural image texture statistics [35], [11]. The stronger responses for texture stimuli
were investigated in macaques, and was found in V2 but not in V1. V2 also has connection with
the higher parts of the hierarchy which consists of the areas V3, V4, and V5.

In neuroscience, a neuron’s receptive field refers to the set of neurons from which it receives
its input [20]. In other words, it is a part of the stimulus which effects the activity of a neuron. In
the context of neural networks, in the field of image processing, the term can also be used for the
region in the input image which determines the output of a single neuron in the first layer [22].
In deeper layers, it is referred to the set of neurons to which it is connected to in the previous
layer. A neuron’s projective field denotes the collection of neurons to which it projects its output
[19].

The processes in the primary visual cortex could be modelled by a set of Gabor-filters.
The Gabor-filter is a linear filter which is a result of modulating a sinusoidal function with a
Gaussian function [15]. The filters are widely used in image processing, since they could be
used effectively for capturing the frequencies and orientations in the image. The response of a
cell to an image is given by a convolution operation of the Gabor-filter with the image [27]. A
filter will give high response to some particular patterns similar to neurons in the primary visual
cortex which are selective to certain orientations and spatial frequencies.

It has been observed that there are receptive fields in the mammalian primary visual cortex
which are spatially localized, oriented and bandpass [25]. The term bandpass stands for filters
which possess a specific frequency range, and only spatial frequencies falling into this range
are allowed to pass through. For modelling the primary visual cortex it is desired to obtain a
learning algorithm trained on natural images with comparable response properties. Olshausen
and Field [25] designed a learning algorithm which produces Gabor-like filters with the above
properties resembling to the receptive fields found in mammalians primary visual cortex. They
argue that the developed properties of the model’s receptive fields emerged from optimizing a
cost function which accounts not only for reconstruction quality but also for sparseness at the
same time.

Processes in the primary visual cortex are working in a sparse way, meaning that only a
relatively small set of neurons are firing to specific stimuli. The biological vision utilized this
type of encoding because natural images also possess a sparse structure, meaning that compared
to their size, they do not contain much meaningful information. Mostly there are repeated
patterns with low variability, introducing redundancy [26]. The sparse encoding of the natural
scenes enables an efficient representation for the following layers of the hierarchy [25].

Intuitively follows that when modelling the visual cortex with a learning algorithm, we are
looking for a sparse coding of the natural images shown to the algorithm, where the image
is composed only of a small set of basis functions. As images can be described as a linear
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combination of basis functions, it means we prefer that only few coefficients are not zero in
the combination. Olshausen and Field [25] utilized this property in their work, and concluded
that the algorithm which optimized for generating sparse codes for the natural stimuli, indeed
produces localized, bandpass and receptive fields. The Gabor-filters developed with these three
properties correspond to the basis functions from which the images are constructed as a linear
combination. The coefficients of the linear combination form the image code. It is argued that the
optimization objective used in [25] allows not only for sparsity, but also for overcompleteness
for the coefficients in this linear combination. Utilizing more basis functions than the image
dimension introduce higher flexibility and prevention from information loss in the representation
as there is no restriction for the number of basis functions [29].

The model developed by Olshausen et al. is a linear generative model, and served as an
inspiration for other researchers as well. In the work from Geadah et al. [12] a one latent-layer
variational autoencoder, the SVAE was introduced, possessing architectural elements inspired
from Olshausen et al. The model integrated the key properties of the sparse coding model in
the VAE framework, which consisted of 3 architectural changes: applying a single linear layer
as the generative model instead of a complex network, using overcomplete latent representation
meaning that there are more latent dimensions than image pixels, and employing a sparse
distribution as the prior for the latent variables instead of a Gaussian. The latter grants that the
neurons of latent vectors have a sparse activity distribution. The authors showed that the model
could represent the early visual cortical response properties of mammals.

The model TDVAE is a Variational Autoencoder with a hierarchical structure having two
stochastic layers. Its design are summarized in the papers from Csikor et al. [9], [8], and here
we will also overview the architectural specialties based on these works.

As intuition dictates, these first and second stochastic layers forming the latent space for
z1 and z2 can be corresponded with the primary and secondary visual cortices, V1 and V2,
respectively. The recognition network can be seen as the model of visual cortical processes,
hence its neuron’s activity as cortical neuronal activities [8].

The architecture based on the general form of VAEs, but several choices motivated by
neuroscience were made, in order to bring it closer to the composition of the early visual
pathway.

First of all, building on previous work in using generative methods to model the visual cortices
of mammalians, the prior distribution for the latent z1 was chosen to be Laplacian, encouraging
sparsity in the z1 representation. In addition, in the generative model the relationship of z1 and
the observations is constrained to be linear, hence the MLP which projects z1 to x̂ is a simple
linear layer: Wz1 + b = x̂. Also, the latent dimension for z1 was chosen to be overcomplete. As
the input images have size 20×20, meaning 400 input dimensions, the latent vector z1 possesses
450 dimensions.

Another key characteristic of the visual pathway is that along with the feedforward processes
performed upwardly in the hierarchy that act for more and more complex representations, top-
down connections can also be found [13]. These are feedback paths which transfer higher-order
information to lower layers in every stage of the hierarchy. In other words, it provides contextual
information for the first layers from upper stages, shaping the representation learnt there. The
structure of the cortical hierarchy gives motivation to formulate the recognition network using the
top-down manner, and consequently applying the top-down type factorization of the variational
posterior. The architecture of the recognition network firstly processes the input stimulus x,
creates a representation for it, and then this representation is used for not only to calculate
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the parameters of the variational posterior for z2, but also for computing the parameters of the
posterior of z1. The shared layer ensures that the signal goes through the layer V1 before entering
V2. The connections coming from V2 forms a contextual prior for the level V1, which we can
express in the context of generative modelling as a conditional distribution of the latent z1 given
z2. Another MLP in the recognition network is constructed in order to merge the signals coming
from the stimulus and from V2 for the purpose of implementing the feedback pathway.

Lastly, in order to mimic the environment to which the visual system accomodated itself
to, and to let the representations be developed by characteristics of natural stimuli, the dataset
used for training was composed of patches of natural images. For performing inference and
investigating the learnt properties, especially the texture selectivity, a dataset consisting of
patches extracted from texture images was used.

All things considered, the specific assumptions of the architecture are essential inductive
biases which enables the model to learn representations reproducing the principal properties of
the first layers of the cortical areas.

3.2.2 The architecture of TDVAE

Similar to other VAE models, TDVAE is composed of a recognition and a generative network
which own a hierarchical structure, more specifically it utilizes two stochastic latent layers, z1
and z2. As it was already discussed in the previous chapters, in this case the we seek to learn the
joint distribution 𝑝𝜽 (x, z1, z2) and owing to the fact that TDVAE features a top-down recognition
network, the joint variational posterior is factorized as

𝑞𝜙 (z1, z2 |x) = 𝑞𝜙 (z1 |x, z2) · 𝑞𝜙 (z2 |x) (3.1)

The major question naturally emerges: how does the ELBO look like in this scenario? Recall
that for a two-latent layer hierarchical VAE the ELBO is derived as a lower bound on the data
log-likelihood. This hierarchical ELBO can be further reshaped using the fact that the variational
posterior has a top-down composition:

log 𝑝𝜃 (x) ≥ E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (x|z1) · 𝑝𝜃 (z1 |z2) · 𝑝𝜃 (z2)
𝑞𝜙 (z1, z2 |x)

]
= E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (x|z1) · 𝑝𝜃 (z1 |z2) · 𝑝𝜃 (z2)
𝑞𝜙 (z1 |x, z2) · 𝑞𝜙 (z2 |x)

]
= L𝑇𝐷 (x)

(3.2)

The notation L𝑇𝐷 (x) stands for the ELBO for the two-level top-down hierarchical TDVAE.
What’s more, we can further transform it into an objective with a similar form as it was in the
case of the one-layer VAE ELBO, by separating out the reconstruction term and KL-divergence
term.

L𝑇𝐷 (x) = E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (x|z1) · 𝑝𝜃 (z1 |z2) · 𝑝𝜃 (z2)
𝑞𝜙 (z1 |x, z2) · 𝑞𝜙 (z2 |x)

]
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= E𝑞𝜙 (z1,z2 |x)
[
log 𝑝𝜃 (x|z1)

]
+ E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (z1 |z2)
𝑞𝜙 (z1 |x, z2)

]
+ E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (z2)
𝑞𝜙 (z2 |x)

]
(3.3)

where each term can be written as:

E𝑞𝜙 (z1,z2 |x)
[
log 𝑝𝜃 (x|z1)

]
= E𝑞𝜙 (z1 |x,z2)·𝑞𝜙 (z2 |x)

[
log 𝑝𝜃 (x|z1)

]
(3.4)

E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (z1 |z2)
𝑞𝜙 (z1 |x, z2)

]
= E𝑞𝜙 (z2 |x)

[
−𝐾𝐿 [𝑞𝜙 (z1 |x, z2) | |𝑝𝜃 (z1 |z2)]

]
(3.5)

E𝑞𝜙 (z1,z2 |x)

[
log

𝑝𝜃 (z2)
𝑞𝜙 (z2 |x)

]
= −𝐾𝐿 [𝑞𝜙 (z2 |x) | |𝑝𝜃 (z2)] (3.6)

It is easy to observe from this form that the KL-divergence is applied layerwise, between
the approximate posterior and prior of each latent. Hence the first KL term in the expression is
related to z1 and the second one is to z2. In practice, these KL-terms could be too restrictive for
learning the posteriors, especially in the case of the higher latent layer. In order to leave room
for this purpose, one can apply 𝛽-annealing during training for both of the KL-terms.

It is essential to summarize what distributions are used to parameterize the latent variables.
As it was already mentioned, this first stochastic layer, z1 was chosen to follow a Laplace
distribution, enabling sparsity. The second layer is left to have a Gaussian distribution. Since
the second stochastic layer has an influence on shaping the prior for z1, it is also referred as the
contextual prior for z1.

All the conditional distributions for z1 and z2 are parameterized by individual MLPs, more
precisely one network is corresponded to produce 𝝁, and another one is to calculate 𝝈2. An
outline of the specific distributions used in this framework is as follows:

• 𝑝(z2) = N(z2; 0, I) - The prior of z2 is a standard Normal;

• 𝑝(z1 |z2) = L(z1; 𝝁(z2), 𝒃I(z2)) - The contextual prior for z1 is a Laplacian conditioned
on z2;

• 𝑞(z2 |x) = N(z2; 𝝁(x),𝝈2I(x)) - The variational posterior for z2 is a Normal distribution
which only depends on the observation;

• 𝑞(z1 |x, z2) = L(z1; 𝝁(x, z2), 𝒃I(x, z2)) - The variational posterior for z1 is a Laplace
distribution influenced by the observations as well as by the latent z2;

• 𝑝(x|z1) = N(x̂;𝝈2I) - The likelihood is a Gaussian where the output of the generative
network is interpreted as the mean of the distribution and 𝝈 is the standard deviation of
the independent Gaussian observation noise, fixed to be 0.4.

The TDVAE architecture is composed of dense layers, and the nonlinearity used is the softplus
activation function. There are no residual connections in either of the components to preserve
that the dependencies are only present between consecuting variables.
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The architecture of the TDVAE model is depicted in Figure 3.1 and Figure 3.2. The recon-
struction network is composed of four MLP blocks and the generative part contains one MLP
and one linear layer for producing the output. None of the MLP blocks are shared between
the recognition and generative network. The input image x is fed to the first block, to MLP.a,
which produces the encoding l𝑥 . Then, l𝑥 serves as input for MLP.b which outputs the mean and
standard deviation of the distribution 𝑞𝝓 (z2 |x). As the parameters of the posterior is provided,
a sampling is performed to obtain z2 which is then passed to the next block, to MLP.c. The next
intermediate representation, l𝑧 is produced. For merging the two signals l𝑥 and l𝑧 a concatenation
is implemented, than the result is fed to MLP.d, which provides the parameters location and
scale for the distribution 𝑞𝝓 (z1 |x, z2). We need to sample from this posterior in order to get z1.

The generative part receives the latent z2 and it is directly fed to an MLP, that generates the
parameters 𝜇(z2) and 𝑏(z2) of the distribution 𝑝𝜽 (z1 |z2). Then to the sample z1 ∼ 𝑝𝜽 (z1 |z2) a
dense layer is applied that generates the output x̂.

Figure 3.1: The recognition model of TDVAE

Figure 3.2: The generative model of TDVAE
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Chapter 4

TD-IWAE

The goal of this thesis is to extend the hierarchical generative framework in the direction of
Importance Weighted Variational Autoencoder. My goal is to derive a novel form of ELBO,
implement it in the Pytorch environment and test it through experiments by training on natural
images. The standard TDVAE will be used as a benchmark for performance and the evaluation
of TD-IWAE will be performed in light of this model. The hope is that this new scheme will
enrich the learned representations in an interpretable way. In this chapter firstly the importance
weighted TD-IWAE will be introduced, then the details of how the properties of IWAE can be
generalized to the top-down hierarchical TDVAE will be described along with the differences in
the training methodology.

The TD-IWAE share the same architecture with the TDVAE, the main difference between
them lies in the optimization objective function and in the sampling procedure. The IWAE ELBO
averages the 𝑘 unnormalized importance weights belonging to the corresponding samples drawn
from the variational posterior. In the two-layer case we draw 𝑘 samples from the distribution
𝑞𝝓 (z1, z2 |x) which is performed through ancestral sampling, meaning that for the 𝑖th sample
firstly obtain z𝑖2 ∼ 𝑞𝝓 (z2 |x) and then using this sample perform z𝑖1 ∼ 𝑞𝝓 (z1 |z𝑖2, x). For the 𝑖th
sample (z𝑖1, z

𝑖
2) the associated unnormalized importance weight can be formulated in a fashion

similar to the single-layer case:

𝑤𝑖 =
𝑝𝜽 (x, z𝑖1, z

𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

(4.1)

Building on the formulation of the IWAE ELBO, we can define the ELBO for the importance
weighted TDVAE as

L𝑘
𝑇𝐷−𝐼𝑊𝐴𝐸 (x) = E𝑞𝝓 (z1,z2 |x)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜃 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

]
= E𝑞𝝓 (z1,z2 |x)

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x|z𝑖1) · 𝑝𝜽 (z
𝑖
1 |z

𝑖
2) · 𝑝𝜽 (z

𝑖
2)

𝑞𝝓 (z𝑖1 |x, z
𝑖
2) · 𝑞𝝓 (z

𝑖
2 |x)

] (4.2)

where the samples (z𝑖1, z
𝑖
2) are drawn from 𝑞𝝓 (z1, z2 |x). In comparison with the TDVAE

ELBO, this expression cannot be transformed further to reveal KL-divergences since we cannot
exchange the summation and the logarithm. In practice it has a crucial impact on the implemen-
tation and on the training instability owing to the fact that the expectation has to be approximated
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with Monte-Carlo sampling instead of calculating the exact KL-terms analytically.

Following the principles of VAEs, theL𝑘
𝑇𝐷−𝐼𝑊𝐴𝐸 derived above can be used as an optimization

objective for training the TD-IWAE as it is also a lower-bound on the data log-likelihood. The
model can be trained with stochastic optimization methods such as SGD, Adam, using the
reparametrization trick.

Theorem 4.0.1. log 𝑝𝜽 (x) ≥ L𝑘
𝑇𝐷−𝐼𝑊𝐴𝐸 (x)

Proof. We can argue that the weights 𝑤𝑖 are an unbiased estimate of 𝑝𝜽 (x):

E𝑞𝝓 (z1,z2 |x)

[
𝑝𝜽 (x, z1, z2)
𝑞𝝓 (z1, z2 |x)

]
=

∬
z1,z2

𝑞𝝓 (z1, z2 |x) ·
𝑝𝜽 (x, z1, z2)
𝑞𝝓 (z1, z2 |x)

𝑑z2 𝑑z1

=

∬
z1,z2

𝑝𝜽 (x, z1, z2) 𝑑z2 𝑑z1 = 𝑝𝜽 (x)
(4.3)

The arguments in support of the statement are the application of Jensen-inequality and the
Equation 4.3.

L𝑘
𝑇𝐷−𝐼𝑊𝐴𝐸 (x) = E𝑞𝝓 (z1,z2 |x)

[
log

(
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

)]
≤ log

(
E𝑞𝝓 (z1,z2 |x)

[
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

] )
= log

(
E𝑞𝝓 (z1,z2 |x)

[
1
𝑘

𝑘∑︁
𝑖=1

𝑤𝑖

] )
= log

(
1
𝑘

𝑘∑︁
𝑖=1
E𝑞𝝓 (z1,z2 |x)

[
𝑤𝑖
] )

= log
(
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x)
)
= log 𝑝𝜽 (x)

□

The proofs of the properties of L𝑘
𝐼𝑊𝐴𝐸

are also applicable in the two-latent case, consequently,
similar theorems can be stated about L𝑘

𝑇𝐷−𝐼𝑊𝐴𝐸 . The special case of 𝑘 = 1 returns the original
TDVAE formulation which, along with Theorem 4.0.2 gives the corollary that the TD-IWAE
ELBO provides a lower bound than the TDVAE ELBO.

Theorem 4.0.2.

1. L𝑘
𝑇𝐷−𝐼𝑊𝐴𝐸 ≥ L𝑚

𝑇𝐷−𝐼𝑊𝐴𝐸 for 𝑘 ≥ 𝑚

2. If
𝑝𝜽 (x, z𝑖1, z

𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

is bounded, then lim𝑘→∞ L𝑘
𝑇𝐷−𝐼𝑊𝐴𝐸 (x) = log 𝑝𝜽 (x).

In order to understand what variational posterior is formulated by the importance sampling
calculation done in the ELBO during training, we can follow the reasoning proposed in the rein-
terpretation of IWAE from Cremer et al. [7]. The multisample procedure is performed on both
latent layers, and the ELBO loss implicitly weights the obtained samples, given a weight𝑤𝑖 corre-
sponded to the sample (z𝑖1, z

𝑖
2). Then, the implicit distribution 𝑞𝐼𝑊 (z1, z2 |x, (z2

1, z
2
2), ..., (z

𝑘
1 , z

𝑘
2))

and the expected importance weighted distribution 𝑞𝐸𝑊 (z1, z2 |x) can be formulated in a similar
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way as it was with defining 𝑞𝐼𝑊 (z|x). The case of 𝑘 = 1 falls back to the original approximate
posterior 𝑞𝐼𝑊 (z1, z2 |x) = 𝑞𝝓 (z1, z2 |x).

𝑞𝐼𝑊 (z1, z2 |x, (z2
1, z

2
2), ..., (z

𝑘
1 , z

𝑘
2)) =

𝑝𝜽 (x, z1, z2)
1
𝑘

(
𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x) +

∑𝑘
𝑖=2

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

)
(4.4)

𝑞𝐸𝑊 (z1, z2 |x) = E(z2
1,z

2
2),...,(z

𝑘
1 ,z

𝑘
2 )
[
𝑞𝐼𝑊 (z1, z2 |x, (z2

1, z
2
2), ..., (z

𝑘
1 , z

𝑘
2))

]
= E(z2

1,z
2
2),...,(z

𝑘
1 ,z

𝑘
2 )

[
𝑝𝜽 (x, z1, z2)

1
𝑘

(
𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x) +

∑𝑘
𝑖=2

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

) ] (4.5)

Following the lines of the proof that the IWAE ELBO is equivalent with the VAE ELBO with
𝑞𝐼𝑊 in expectation, we provide the derivation of that the TD-IWAE lower bound is the same
as the TDVAE bound with the above defined 𝑞𝐼𝑊 (z1, z2 |x, (z2

1, z
2
2), ..., (z

𝑘
1 , z

𝑘
2)). Moreover, we

show that 𝑞𝐸𝑊 (z1, z2 |x) is a normalized distribution, using the proof from [7] as a basis.

Theorem 4.0.3. E(z1,z2)2,..,𝑘
[
L𝑇𝐷 [𝑞𝐼𝑊 (z1, z2 |x, .)]

]
= L𝑇𝐷−𝐼𝑊𝐴𝐸 [𝑞𝝓 (z1, z2 |x)]

Proof. For clearer readability, the following notational simplifications are introduced:

• The samples (z𝑖1, z
𝑖
2), (z

𝑖+1
1 , z𝑖+1

2 ), ..., (z 𝑗1, z
𝑗

2) drawn from 𝑞𝝓 (z1, z2 |x) will be denoted as
(z1, z2)𝑖,𝑖+1,.., 𝑗

• The conditional dependence of 𝑞𝐼𝑊 on the samples will be denoted as:
𝑞𝐼𝑊 (z1, z2 |x, (z2

1, z
2
2), ..., (z

𝑘
1 , z

𝑘
2)) = 𝑞𝐼𝑊 (z1, z2 |x, .)

The expectation in the ELBO L𝑇𝐷𝑉𝐴𝐸 [𝑞𝐼𝑊 ] will be instantly written in an integral form
instead of taking an expectation with an unnormalized distribution. As before, we will also use
the notation that z = z1.

31



E(z1,z2)2,..,𝑘
[
L𝑇𝐷𝑉𝐴𝐸 [𝑞𝐼𝑊 ]

]
= E(z1,z2)2,..,𝑘

[∬
z1,z2

𝑞𝐼𝑊 (z1, z2 |x, .) log
𝑝𝜽 (x, z1, z2)
𝑞𝐼𝑊 (z1, z2 |x, .)

𝑑z2 𝑑z1

]
= E(z1,z2)2,..,𝑘

[∬
z1,z2

𝑞𝐼𝑊 (z1, z2 |x, .) log
𝑝𝜽 (x, z1, z2)
𝑝𝜽 (x,z1,z2)

1
𝑘

(∑𝑘
𝑖=1

𝑝𝜽 (x,z𝑖1 ,z
𝑖
2 )

𝑞𝝓 (z𝑖1 ,z
𝑖
2 |x)

) 𝑑z2 𝑑z1

]

= E(z1,z2)2,..,𝑘

[∬
z1,z2

𝑞𝐼𝑊 (z1, z2 |x, .) log
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

𝑑z2 𝑑z1

]
= E(z1,z2)2,..,𝑘

[∬
z1,z2

𝑘

𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x)∑𝑘
𝑖=1

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

𝑞𝝓 (z1, z2 |x) log
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

𝑑z2 𝑑z1

]

= E(z1,z2)2,..,𝑘

[∬
z1

1,z
1
2

𝑘

𝑝𝜽 (x,z1
1,z

1
2)

𝑞𝝓 (z1
1,z

1
2 |x)∑𝑘

𝑖=1
𝑝𝜽 (x,z𝑖1,z

𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

𝑞𝝓 (z1
1, z

1
2 |x) log

1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

𝑑z1
2 𝑑z1

1

]

= E(z1,z2)1,2,..,𝑘

[
𝑘

𝑝𝜽 (x,z1
1,z

1
2)

𝑞𝝓 (z1
1,z

1
2 |x)∑𝑘

𝑖=1
𝑝𝜽 (x,z𝑖1,z

𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

· log
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

]

= E(z1,z2)1,2,..,𝑘

[∑𝑘
𝑖=1

𝑝𝜽 (x,z1
1,z

1
2)

𝑞𝝓 (z1
1,z

1
2 |x)∑𝑘

𝑖=1
𝑝𝜽 (x,z𝑖1,z

𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

· log
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

]

= E(z1,z2)1,2,..,𝑘

[∑𝑘
𝑖=1

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)∑𝑘

𝑖=1
𝑝𝜽 (x,z𝑖1,z

𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

· log
1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

]
= E(z1,z2)1,2,..,𝑘

[
log

1
𝑘

𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

]
= L𝑇𝐷−𝐼𝑊𝐴𝐸 [𝑞𝝓]

where after taking the expectation over all the sampled zs, the multiplier 𝑘 can be written as
a sum of 𝑘 items, since z𝑖 shares the same expectation with z1.

□

Theorem 4.0.4. 𝑞𝐸𝑊 (z1, z2 |x) is a normalized distribution.

Proof. For clearer readability, the samples (z𝑖1, z
𝑖
2), (z

𝑖+1
1 , z𝑖+1

2 ), ..., (z 𝑗1, z
𝑗

2) drawn from 𝑞(z1, z2 |x)
will be denoted as (z1, z2)𝑖,𝑖+1,.., 𝑗 .
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∬
z1,z2

𝑞𝐸𝑊 (z1, z2 |x) 𝑑z2 𝑑z1 =

∬
z1,z2

E(z1,z2)2,..,𝑘

[
𝑝𝜽 (x, z1, z2)

1
𝑘

(
𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x) +

∑𝑘
𝑖=2

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

) ] 𝑑z2 𝑑z1

=

∬
z1,z2

𝑞𝝓 (z1, z2 |x)
𝑞𝝓 (z1, z2 |x)

· E(z1,z2)2,..,𝑘

[
𝑝𝜽 (x, z1, z2)

1
𝑘

(
𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x) +

∑𝑘
𝑖=2

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

) ] 𝑑z2 𝑑z1

= E(z1,z2)E(z1,z2)2,..,𝑘

[ 𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x)

1
𝑘

(
𝑝𝜽 (x,z1,z2)
𝑞𝝓 (z1,z2 |x) +

∑𝑘
𝑖=2

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

) ]

= 𝑘 · E(z1,z2)1,..,𝑘

[ 𝑝𝜽 (x,z1
1,z

1
2)

𝑞𝝓 (z1
1,z

1
2 |x)∑𝑘

𝑖=1
𝑝𝜽 (x,z𝑖1,z

𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

]

=

𝑘∑︁
𝑗=1
E(z1,z2)1,..,𝑘

[ 𝑝𝜽 (x,z 𝑗

1 ,z
𝑗

2)
𝑞𝝓 (z 𝑗

1 ,z
𝑗

2 |x)∑𝑘
𝑖=1

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

]

= E(z1,z2)1,..,𝑘

[∑𝑘
𝑗=1

𝑝𝜽 (x,z 𝑗

1 ,z
𝑗

2)
𝑞𝝓 (z 𝑗

1 ,z
𝑗

2 |x)∑𝑘
𝑖=1

𝑝𝜽 (x,z𝑖1,z
𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

]
= 1

where we applied the linearity of expectation and the fact that z𝑖 shares the same expectation
with z1.

□

It is worth noting that by reformulating the expression of 𝑞𝐼𝑊 (z1, z2 |x), one can see that it
depends on the true posterior:

𝑞𝐼𝑊 (z1
1, z

1
2 |x, (z

2
1, z

2
2), ..., (z

𝑘
1 , z

𝑘
2)) =

𝑝𝜽 (x, z1
1, z

1
2)

1
𝑘

( 𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

) =
𝑝𝜽 (x)

1
𝑘

( 𝑘∑︁
𝑖=1

𝑝𝜽 (x, z𝑖1, z
𝑖
2)

𝑞𝝓 (z𝑖1, z
𝑖
2 |x)

) 𝑝𝜽 (z1
1, z

1
2 |x)

This also implies, as the denominator converges to 𝑝𝜽 (x) if 𝑘 → ∞, that 𝑞𝐼𝑊 (z1, z2 |x) →
𝑝𝜽 (z1, z2 |x), analogously to the single layer case.

While performing prediction with the trained model, it is essential to take care of the resam-
pling for the purpose of properly drawing samples from the implicit distribution. The method is
shown in Algorithm 2, formulated based on the routine by Cremer et al. for IWAE. Owing to the
fact that now we are sampling from a joint posterior, the method returns a pair of vectors (z 𝑗1, z

𝑗

2).
To marginalize the sample, one can just simply ignore the other vector from the returned pair.
With this procedure we can also consider a sample from 𝑞𝝓 (z1 |x).
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Algorithm 2 Sampling 𝑞𝐸𝑊 (z1, z2 |x)
1: Input: 𝑘: number of samples drawn
2: for 𝑖 = 1, ..., 𝑘 do
3: Sample (z𝑖1, z

𝑖
2) ∼ 𝑞𝝓 (z1, z2 |x) where 𝑞𝝓 (z1, z2 |𝑥) = 𝑞𝝓 (z1 |x, z2) · 𝑞𝝓 (z2 |x)

4: Calculate 𝑤𝑖 =
𝑝𝜽 (x,z𝑖1,z

𝑖
2)

𝑞𝝓 (z𝑖1,z
𝑖
2 |x)

5: end for
6: Normalization: �̃�𝑖 =

𝑤𝑖∑𝑘
𝑖=1 𝑤𝑖

for ∀𝑖

7: Resample according to the obtained normalized weights w̃𝑖: 𝑗 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (w̃𝑖)
8: Return: (z 𝑗1, z

𝑗

2)
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Chapter 5

Experiments

This chapter presents the analysis carried out on the learnt latent spaces in TDVAE and TD-
IWAE. Our first objective is to have an insight into the learnt representations, and our second
goal is to compare those inferred by TDVAE and TD-IWAE. Note that when we are drawing
samples from the variational posteriors, in TD-IWAE we perform it by using the discussed
Sampling-Importance-Resampling procedure.

The models trained and examined are the following:

• TDVAE

• TD-IWAE trained with 𝑘 = 1 samples

• TD-IWAE trained with 𝑘 = 4 samples

• TD-IWAE trained with 𝑘 = 10 samples

• TD-IWAE trained with 𝑘 = 50 samples

All of the experiments are performed for each model, and this summary aims to outline the
results for all of them. In some cases, in order to compare the baseline and importance weighted
networks, the visualizations are depicted only for the vanilla TDVAE and the more interesting
TD-IWAE models, and not for all of the networks. The exeriments are implemented in Python,
using packages fundamental in machine learning and data science, such as Matplotlib, Seaborn,
Sklearn, Pandas and Numpy. The model construction and training were performed in PyTorch.

5.1 Datasets and setup

In this thesis two datasets were used. The first one is a collection of 20 × 20 patches from
natural images, used for training the models. The dataset originates from the van Hateren natural
image database [33], but the dataset used in this thesis with the transformed and cut patches is
taken from [9], [8]. All the patches are whitened and their intensity distribution was normalized
to follow a standard normal distribution.

The second dataset is a set of 20× 20 texture image patches, representing five texture classes
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(oat, leather, soil, carpet and bubbles). The dataset, transformed in the same way as the natural
image dataset, is taken from the work of [9], [8]. Example patches from both the natural and
texture test data are shown in Figure 5.1. Both of the datasets are separated into a training and
test set, containing 640.000 and 64.000 patches, respectively. The models were trained on the
training set of natural images, and then for qualitative and quantitative evaluation both test sets
were used.

(a) Example natural patches from
the test set

(b) Example texture patches from
the test set. Each row contains
patches belonging to the same

family

Figure 5.1: Patches from the datasets

The models were trained from scratch with the default weight initialization, for 5000 epochs
using the Adam optimizer with a learning rate of 0.0001 and batch size 400. For stabilizing the
training procedure, gradient clipping was also utilized. In order to facilitate learning in the higher
latent space, 𝛽-annealing is applied for the KL-term of z2. The lower latent layer did not require
any annealing procedure. The optimization criterion is conventionally should be minimized,
hence the negative of the ELBO was used for the objective function. Due to the fact that we have
images with real values, 𝑝𝜽 (x|z) is assumed to follow a multivariate Normal distribution, and
then the reconstruction term log 𝑝𝜽 (x|z) was calculated as the mean-squared error between the
original x and the reconstructed x̂, for each component, since the log-likelihood for a univariate

Gaussian with mean 𝜇 and variance 𝜎2 is − 1
2𝜎2

𝑁∑︁
𝑛=1

(𝑥𝑛−𝜇)2+𝑐. The latent z1 was chosen to have

450 dimensions in order to act for an overcomplete representation, and the latent z2 possesses
20 dimensions.

5.2 Training and evaluation

Initially, the models were trained without 𝛽-annealing, and as it could be seen in Figure 5.2,
training with multiple samples resulted in a more smooth improvement of the KL-divergence
term for z2. However, it seemed that the variational posterior for z2 is developing quite slowly.
There was no serious posterior collapse as the KL-value for z2 started increasing, but in order to
learn a richer posterior in a reasonable time, we decided to apply the 𝛽-annealing method to z2.

In the TDVAE model it was straightforward to introduce a multiplier in front of the divergence
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𝐾𝐿 [𝑞𝜙 (z2 |x) | |𝑝𝜃 (z2)], but in the TD-IWAE model there are no separate KL-divergences. Hence
as a solution we plugged in the 𝛽 into the equation of its ELBO as the multiplier of

(
log 𝑝𝜃 (z𝑖2) −

log 𝑞𝜙 (z𝑖2 |x)
)

for the reason that these terms plays the main part in the calculations in the KL-
divergence between the variational posterior and prior of z2, even though this expression does
not count as a full KL-divergence.

After that, the 𝛽-annealing was incorporated in all of the models, and the training method
was performed with increasing 𝛽 linearly from the value 0.1 until the value 1, throughout 2500
epochs. All of the models exhibited similar behaviour in terms of the KL-divergence for z2,
shooting high at the beginning of the training and then slowly falling back to a reasonable value
as example training curves show this in Figure 5.3. All the networks achieved a much higher
value for KL-divergence corresponded with z2 than the ones trained without annealing. Thus, for
evaluating the performances on the test datasets, the models which were trained with annealing
were used for evaluation.

(a) TDVAE (b) TD-IWAE, 𝑘 = 10

(c) TD-IWAE, 𝑘 = 50

Figure 5.2: The improvement of Kullback-Leibler divergence between 𝑞𝜙 (z2 |x) and 𝑝𝜃 (z2) in
models trained without 𝛽-annealing

(a) TDVAE (b) TD-IWAE, 𝑘 = 50

Figure 5.3: The evolution of Kullback-Leibler divergence between 𝑞𝜙 (z2 |x) and 𝑝𝜃 (z2) in
models trained with linear 𝛽-annealing

The models trained on the natural images were evaluated on both the natural test set and texture
test data considering the ELBO averaged over the test data points. The results are aggregated in
the Figures 5.4, and 5.5. The ELBO, still viewed as a loss function, is lower on both datasets
when 𝑘 > 1 samples are used in TD-IWAE, and as the number of samples increased, the lower
the ELBO becomes. This phenomenon is even more present in the results performed on the
texture data. The reconstruction loss increased while the KL-divergence for z1 declined when
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more samples are drawn, and the KL-divergence for z2 stays approximately the same as the
baseline results even with large 𝑘 , on both datasets. In the case of 𝑘 = 1 the TD-IWAE ELBO
is roughly the same as the vanilla TDVAE ELBO, which is as expected. Altough the individual
terms in average does not reflect if an increasing 𝑘 had a positive impact on the performance, the
overall ELBO is definitely lower while 𝑘 grows larger, matching the experimental observations
in the literature.

(a) Total ELBO (b) Reconstruction loss

(c) KL-divergence for z1 (d) KL-divergence for z2

Figure 5.4: The average test ELBO terms given by the models on the natural test dataset. The
label "vanilla" indicates the TDVAE model, while the labels for different 𝑘 values denote the

TD-IWAE models trained with the specified 𝑘
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(a) Total ELBO (b) Reconstruction loss

(c) KL-divergence for z1 (d) KL-divergence for z2

Figure 5.5: The average test ELBO terms given by the models on the texture test dataset. The
label "vanilla" indicates the TDVAE model, while the labels for different 𝑘 values denote the

TD-IWAE models trained with the specified 𝑘

5.3 Examination of the latent space of z2

Along with the general examination of the latent space, the study of the higher latent layer
is mainly focused on its sensitivity to texture characteristics. The motivation is coming from
neuroscience as the V2 area in the cortical hierarchy is known to to be accounted for producing
texture representations [8]. To examine the texture-selectivity of the z2 representations, the
evaluation is performed on the texture test data. In addition, examining textures is valuable also
from a computer vision perspective, since they are key characteristics of images [8].

Firstly, the variational posterior 𝑞𝝓 (z2 |x) was studied through generating the posterior mean
and std for the test images, and then aggregating their values per dimension by taking their
average and standard deviation. The results are depicted in Figures 5.6 - 5.7 - 5.8 - 5.9 - 5.10.

It is observable in all models that while the average of posterior means close to zero in
many dimensions, the standard deviation of these means are relatively high, implying that the
values of posterior means in these dimensions are activated, but their sign varies between
observations. There are few coordinates with more stable mean value across images, for instance
the dimensions 1, 5, 15 in TD-IWAE, 𝑘 = 50. By looking at the average of the posterior standard
deviation, all the coordinates are far away from the unit value, instead grouping around 𝜎 = 0.4,
in each model.

The activity of dimensions can be identified by looking at the differences between their
distribution and their prior, therefore activity is reflected not only in the relatively high values
of the standard deviation of the posterior means, but also in smaller means of posterior standard
deviations. The plots show that in each model, all of the z2 dimensions were activated, and none
of them collapsed to the prior. Example distributions of each dimensions are shown in Figure
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5.11 from TDVAE and from TD-IWAE trained with 𝑘 = 10 samples, in comparison with their
standard normal prior. Additionally, no visible differences can be seen when comparing the
figures of TDVAE and all the TD-IWAEs.

(a) (b)

Figure 5.6: Examination of the mean and standard deviation values of the posterior 𝑞𝜙 (z2 |x) in
TDVAE

(a) (b)

Figure 5.7: Examination of the mean and standard deviation values of the posterior 𝑞𝜙 (z2 |x) in
TD-IWAE, 𝑘 = 1

(a) (b)

Figure 5.8: Examination of the mean and standard deviation values of the posterior 𝑞𝜙 (z2 |x) in
TD-IWAE, 𝑘 = 4
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(a) (b)

Figure 5.9: Examination of the mean and standard deviation values of the posterior 𝑞𝜙 (z2 |x) in
TD-IWAE, 𝑘 = 10

(a) (b)

Figure 5.10: Examination of the mean and standard deviation values of the posterior 𝑞𝜙 (z2 |x)
in TD-IWAE, 𝑘 = 50

(a) TDVAE (b) TD-IWAE, 𝑘 = 10

Figure 5.11: Visualizations of the distribution of 𝑞𝜙 (z2 |x) and its comparison with the standard
normal distribution, per dimension

In order to examine the texture-selectivity in the higher latent space, all the z2 representations
corresponding to texture stimuli were plotted in two dimension and colored according to their
texture classes. The 2D display in Figure 5.12 is performed by taking the two dimensions where
the posterior variance was the lowest.

The experiments showed that the points are clustered according to their class labels, meaning
that the five texture families formulate groups in the latent space, even though the training data
contained natural patches and the models were not directly trained to recognize different texture
types. The clusters are also present in the TD-IWAE models, meaning that this characteristic
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is steadily learnt by the top-down hierarchical models, like in [9] and in [8]. The clusters are
formulated in a similar way in every model, not showing any meaningful difference between the
baseline network and the importance weighted versions.

(a) TDVAE (b) TD-IWAE, 𝑘 = 1 (c) TD-IWAE, 𝑘 = 4

(d) TD-IWAE, 𝑘 = 10 (e) TD-IWAE, 𝑘 = 50

Figure 5.12: Texture families form clusters when plotting z2 in 2D. Colours indicate texture
class labels, while individual points are the marginalized z2 latents of the texture test images

For the reason that texture families are clustered in the latent space of z2, it would be intriguing
to explore how well the texture classes could be decoded from these latents. To investigate this,
we fit a multinomial logistic regression on the z2 posterior means to predict the class labels of
the observations.

To be more precise, the trained models were used to extract the means of 𝑞𝝓 (z2 |x) for each of
the image patches in the train and test dataset, and then these were used as input to the classifier
alongside with the corresponding class labels. The logistic regression was trained on the means
belonging to the training patches, and then the fitted model was used for prediction on the means
belonging to the test patches.

The training and evaluation methodology for the logistic regression was repeated 5 times, and
the obtained accuracies and confusion matrices were averaged to decrease side effects coming
from randomization. The above procedure was done for all the hierarchical models and the
results are shown in Figure 5.13 and in the Table 5.1.

Generally, it can be stated for all the generative models that from the z2 posterior means the
texture classes can be decoded quite confidently as every accuracy is at least 0.75. Due to the
fact that in the training and test sets the ratio of the class labels are balanced, accuracy presents
valid performance results. From the confusion matrices it can be said that the prediction for
class labels 1, 2 and 4 are pretty good, in contrast to labels 0 and 3.

When comparing the importance weighted models with the baseline TDVAE, no significant
difference can be seen in the confusion matrices. Regarding the accuracy scores, the one related
to TDVAE posterior means seems to have the highest one. Additionally, concerning the accuracy
scores in connection with TD-IWAE models, increasing the number of samples does not imply
any gradual improvement or deterioration. The predictor fitted on the posterior means obtained
from TD-IWAE with 𝑘 = 4 had the lowest accuracy, while taking into consideration the TD-
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IWAEs with more samples have higher scores as well as the 𝑘 = 1 case which should be more
or less identical with the baseline model.

Model Average accuracy

TDVAE 0.779
TD-IWAE, 𝑘 = 1 0.767
TD-IWAE, 𝑘 = 4 0.757
TD-IWAE, 𝑘 = 10 0.771
TD-IWAE, 𝑘 = 50 0.766

Table 5.1: Accuracies of decoding texture families with logistic regression from z2 posterior
means

(a) TDVAE (b) TD-IWAE, 𝑘 = 1

(c) TD-IWAE, 𝑘 = 4 (d) TD-IWAE, 𝑘 = 10

(e) TD-IWAE, 𝑘 = 50

Figure 5.13: Confusion matrices of decoding texture families with logistic regression from z2
posterior means
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An additional interesting question arises after the above results: all of the dimensions con-
tribute equally to the texture family classification or some of them are encoding more information
about texture types?

To investigate the above question, the logistic regression was refitted by gradually adding a
new dimension to its training dataset in every new fit. The experiment shows that most of the
coordinates of the posterior means do not contribute to the finally accuracy significantly, but very
few dimension has a huge impact on the increase in accuracy, matching with the findings in [9],
[8]. After collecting these texture-selective coordinates, the classification was performed again
by separating the dataset into two parts: to the posterior means considered only on the texture
selective dimensions, and on the non-selective ones. Logistic regression was fitted 5 times on
both datasets, and the results were averaged over the fits, to exclude randomization effects. The
accuracies can be found in Table 5.3, along with the texture-selective dimensions listed in Table
5.2.

The results clearly show that the texture information is only encoded in few dimensions in all
models, as these coordinates are enough to predict the texture classes with at least 0.75 accuracy,
while using the other dimensions in themselves the accuracy is close to random guessing. The
TD-IWAE models did not beat the vanilla TDVAE, all of them have lower, but close to baseline
performance. Regarding the number of texture-selective dimensions, TD-IWAE with 𝑘 = 1 and
𝑘 = 50 has the same number of selective coordinates as TDVAE, while the models with 𝑘 = 4,
𝑘 = 10 have more such dimensions, meaning that the information about texture characteristics
is spread over more coordinates. Additionally note that the texture-selective dimensions approx-
imately matches the dimensions possessing smaller standard deviation of posterior means and
smaller mean of the posterior standard deviations in the activity plots.

All things considered, the desired properties in the higher latent space of the top-down
hierarchical network was present in all models, however, the results in the importance weighted
models were quite similar to the results in the TDVAE, even with a slight performance degradation
in the texture family decoding accuracy experiments.

Model Texture-selective
dimensions

TDVAE [0, 4, 5, 7]
TD-IWAE, 𝑘 = 1 [0, 3, 5, 12]
TD-IWAE, 𝑘 = 4 [0, 1, 2, 4, 14, 15]
TD-IWAE, 𝑘 = 10 [0, 1, 3, 5, 13]
TD-IWAE, 𝑘 = 50 [0, 1, 5, 15]

Table 5.2: The texture-selective
dimensions in z2 posterior means

Average accuracy

Models Selective Non-
selective

TDVAE 0.775 0.270
TD-IWAE, 𝑘 = 1 0.765 0.242
TD-IWAE, 𝑘 = 4 0.754 0.242
TD-IWAE, 𝑘 = 10 0.766 0.263
TD-IWAE, 𝑘 = 50 0.764 0.273

Table 5.3: Accuracies of logistic regressions
fitted on z2 means constrained on the

texture-selective and non-selective dimensions

5.4 Examination of the latent space of z1

When studying the lower latent layer, we are interested in two things. Firstly, we would like
to reproduce the properties of TDVAE presented in [9], [8], arising from the choices of specific
architectural elements, and secondly investigating how importance weighting shapes the learnt
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representation. As it is stated in [9], [8], the top-down path, through the contextual prior 𝑝(z1 |z2),
influences the posterior correlations in the level of z1, therefore we are particularly interested in
the effects of importance weighting in these correlations.

The first step in the examination is to look at the activity of latent dimensions in our models.
The latent space of z1 possesses 450 dimensions, but not all of them are active, unlike it was in
the case of z2. Again, the activity can be seen by looking at the location and scale parameter of the
posteriors, taking their mean and standard deviation over the test set. Many of the dimensions
have relatively high standard deviation for the location parameter, but there are some being
completely 0. The coordinates that own standard deviation different from 0 are defined to be
active. The different models have nearly the same number of active dimensions: the TDVAE has
317 active ones while every importance weighted model have 314-315 active dimensions.

In the figure of the average scale parameters the dimensions are also isolated into two easily
separable groups, and the ones which were considered active before are colored in red. This
coloring help us indicate that the grouping of the dimensions regarding the scale parameter and
the grouping corresponded to the std of location parameters are the same. This confirms that the
active and non active dimensions can clearly be separated in all models.

Another observable phenomenon is that the active dimensions have their average posterior
scale at around 0.4 in all models, while the magnitude of not active dimensions are different in
the baseline TDVAE and in the importance weighted models.

(a) (b)

Figure 5.14: Examination of the location and scale values of the posterior 𝑞𝜙 (z1 |x) in TDVAE

(a) (b)

Figure 5.15: Examination of the location and scale values of the posterior 𝑞𝜙 (z1 |x) in
TD-IWAE, 𝑘 = 1
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(a) (b)

Figure 5.16: Examination of the location and scale values of the posterior 𝑞𝜙 (z1 |x) in
TD-IWAE, 𝑘 = 4

(a) (b)

Figure 5.17: Examination of the location and scale values of the posterior 𝑞𝜙 (z1 |x) in
TD-IWAE, 𝑘 = 10

(a) (b)

Figure 5.18: Examination of the location and scale values of the posterior 𝑞𝜙 (z1 |x) in
TD-IWAE, 𝑘 = 50

From now on, the analysis considers only the active dimensions in the models. The projective
field of the model can be examined with latent traversal, which is a great tool to gain insight into
what properties are encoded in the latent space. The traversal is performed in the following way:
given a latent vector z1, one latent coordinate is changed by shifting it with the same constant
value both by subtracting it and adding it to the latent coordinate, while the other dimensions kept
fixed. The two new vectors are fed into the generative model, and the two resulted reconstructed
images are subtracted from each other. The method indicates what sensitivities were encoded in
the linear generative part of the model by observing the changes in the output image.

The obtained projective fields of the active units were mostly Gabor-like filters which are
localized and oriented, such as in [9], [8]. The appearance of these linear filters is due to the
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linear relationship between z1 and x̂ as it is stated in [8]. In addition, some non-localized, more
structured filters also emerged in all models. Examples of the learnt Gabor and non-Gabor filters
are depicted in Figure 5.19. In all models, most of the active dimensions return Gabor-like filters,
and they also learnt nearly the same number of localized filters: the TDVAE has 269 such filters,
the TD-IWAE with 𝑘 = 1, 𝑘 = 4, 𝑘 = 10, and 𝑘 = 50 has 271, 270, 272, and 267 localized
filters, respectively.

Figure 5.19: Example units of Gabor-like, and non-localized, more structured filters

Similarly to the examination of the posterior of z2, multinomial logistic regression was fit on
the posterior locations, to investigate the decoding of texture families. Our expectation was that
the texture classes can not be decoded properly from z1 locations, since texture-selectivity in
thought to be encoded in z2.

An individual logistic regression was built for all hierarchical models, these were fit on the
labels and posterior locations corresponded to the training texture image patches, and were
evaluated on the locations obtained from the test texture patches. For every top-down model,
the classifier was fitted and evaluated 5 times, and the results were averaged to get rid of
randomization effects. The accuracies measured on the test set are shown in Table 5.4 , and the
corresponding confusion matrices can be seen in Figure 5.20.

The accuracy values are less than the accuracies of the logistic regressions trained on z2
posterior means, as expected. Also, the TDVAE has near chance classification scores while all
the TD-IWAE models achieved at least 0.51 accuracy, which came as a surprise. It was the
case even with TD-IWAE 𝑘 = 1. There is even some tendency appear, that the with 𝑘 > 1, the
more samples we have in the importance weigthing, the higher this accuracy is. The phenomenon
indicates that there are more texture-related information in the lower latent layer in the TD-IWAE
models than in the lower latent space of vanilla TDVAE.

Building on this observation, it is worth taking a look at the z1 samples visualized in two
dimension. These illustrations are generated in the same way as with z2 samples, and can be
observed in Figure 5.21. The obvious difference with the plots of z2 samples is that in the lower
latent layer the texture families do not form clusters at all. The clusters are not even present
in the figures of importance weighted models, therefore this visualization does not provide an
additional evidence that texture information is presenting in the z1 latent space.
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Model Accuracy

TDVAE 0.254
TD-IWAE, 𝑘 = 1 0.558
TD-IWAE, 𝑘 = 4 0.516
TD-IWAE, 𝑘 = 10 0.567
TD-IWAE, 𝑘 = 50 0.571

Table 5.4: Accuracies of decoding texture families with logistic regression from z1 posterior
locations

(a) TDVAE (b) TD-IWAE, 𝑘 = 1

(c) TD-IWAE, 𝑘 = 4 (d) TD-IWAE, 𝑘 = 10

(e) TD-IWAE, 𝑘 = 50

Figure 5.20: Confusion matrices of decoding texture families with logistic regression from z1
posterior locations
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(a) TDVAE (b) TD-IWAE, 𝑘 = 1 (c) TD-IWAE, 𝑘 = 4

(d) TD-IWAE, 𝑘 = 10 (e) TD-IWAE, 𝑘 = 50

Figure 5.21: Plotting z1 posterior samples in 2D. Colours indicate texture families.

We examined further the phenomenon of better texture family classification in z1 provided by
importance weighted models by fitting additional logistic regression predictors on z1 posterior
locations, but this time only the active dimensions of the posterior parameter is used and these
are separated into localized filters and noon-localized filters. The intuition behind splitting up
the coordinates is that the active dimensions formulate only two types of filters, the Gabor-like
ones, and the more abstract ones as the visualization showed, probably indicating that different
types of information were captured in these two forms of filters. Moreover, surprisingly the
number of the non-localized filters is more or less matches the number of dimensions in z2 as it
can be seen in the Table 5.5.

For all hierarchical models two dataset was provided to the logistic regressions, one is for the
active units returning localized filters and one is for the active units providing the abstract filters.
For each model, on both datasets 5 fitting and evaluation of the predictors were performed and
the results were averaged over the 5 fittings in the Table 5.6. Unlike in the case of z2, no clear
distinction can be seen in the predictors’ performance on the separated datasets. The classifiers
fitted the localized filters obtained by importance weighted models seem to be slightly more
powerful in decoding classes than the one fitted on locations coming from TDVAE, while it is
totally the opposite with the classifiers fitted on the non-localized filters.

To sum up, the logistic regression trained on posterior locations coming from importance
weighted models outperformed the ones fitted on posterior locations given by TDVAE, indicating
that information about texture families were present more in the lower layer representation of
these models than of TDVAE. However, no clear conclusion can be drawn about the role
of different filters in improved prediction obtained by importance weighted models from this
experiment.

5.4.1 Posterior correlations of z1

For the reason that both hierarchical VAE and importance weighting aims to enrich the latent
spaces, studying the relationships of the latent dimensions through computing correlation values
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Model Non-localized
filters

TDVAE 21
TD-IWAE, 𝑘 = 1 18
TD-IWAE, 𝑘 = 4 18
TD-IWAE, 𝑘 = 10 18
TD-IWAE, 𝑘 = 50 20

Table 5.5: Number of non-localized filters
in z1 posterior locations

Average accuracy

Models Localized Non-
localized

TDVAE 0.279 0.305
TD-IWAE, 𝑘 = 1 0.311 0.275
TD-IWAE, 𝑘 = 4 0.297 0.293
TD-IWAE, 𝑘 = 10 0.315 0.282
TD-IWAE, 𝑘 = 50 0.323 0.264

Table 5.6: Accuracies of logistic regressions
fitted on z1 locations constrained on the
localized filters and non-localized ones

would provide a great insight about the learnt representations. Also, the analysis will be carried
out on individual patches besides considering several input patches and aggregating the results,
since it was stated in [9] that contextual priors influence the posterior correlation values of z1
causing it to depend on the input patch.

To carry out an analysis for the posterior correlations, the test set of natural images was used,
and we selected the 1000 highest contrast patches from this set to conduct the study on them.

Firstly, to have a full picture of the correlations between z1 dimensions, we took natural
patches, and drew 1000 samples from the marginalized posterior 𝑞𝝓 (z1 |x) returned by the hi-
erarchical models for the underlying image patch, and then the correlation coefficients were
calculated between the latent dimensions over the drawn samples. As before, in case of im-
portance weighted models, the samples are drawn according to the resampling method. Note
that the correlation coefficients depend on the input image patch. Examples of such correlation
matrices are shown in Figure 5.23. Note that the coefficients corresponding the cases where a
unit is paired with itself, hence yielding a coefficient value of 1, are excluded in the analyses.
The distributions of correlation values follow a normal distribution concentrated around 0 with
heavy tails, meaning that among a lot of low absolute correlation values we can found some
higher absolute ones in all models. For this image patch, these higher absolute values are around
0.4-0.5. Comparing the standard TDVAE and its importance weighted versions for this natural
patch, the distribution of coefficients are similar, but in the TD-IWAE models some values
stronger then the ones in TDVAE (around 0.5) can be found as well.

Figure 5.22: Natural image patch used for individual image posterior correlation analysis
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(a) TDVAE (b) TD-IWAE, 𝑘 = 10 (c) TD-IWAE, 𝑘 = 50

(d) TDVAE (e) TD-IWAE, 𝑘 = 10 (f) TD-IWAE, 𝑘 = 50

Figure 5.23: Correlation matrices and distribution of correlation values of z1 on a natural patch

After gaining insight into the correlation matrices of the whole latent z1 obtained on some
natural image patches, we seek to examine them in more details by investigating the correlations
between some interesting dimensions and also by inspecting the strongest correlations values in
general.

Firstly, we chose some dimensions from the active units which yielded Gabors with their
centers located approximately in the middle of the patch, their sizes presented within some
predefined range, and their spatial frequency and wavelength was higher than a predefined
threshold. Examples of such Gabor-filters can be seen in Figure 5.24 along with the defined
thresholds. The selection process were performed with the same thresholds in all the models.

The distribution of the absolute value of the correlation coefficients of the selected Gabor-
coordinates were calculated for 500 image patches, and these are shown in Figure 5.25. From
the results, we can claim that these units do not present meaningful correlations, most of the
coefficients are almost 0, and only few have their absolute value between 0.1 and 0.2 in every
model. This can be caused by the patch sizes which are relatively small compared to the size of
the filters, as it can also be observed by looking at the examples of the selected filters in Figure
5.24.

Figure 5.24: Example Gabor-filters selected according to predefined relative threshold values:
with their center localized between the 6th and 14th pixels both vertically and horizontally,
their scale falling between the values 3 and 6, their wavelengths being > 2, and their spatial

frequency being > 0.18
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(a) TDVAE (b) TD-IWAE, 𝑘 = 10

(c) TD-IWAE, 𝑘 = 50

Figure 5.25: Distributions of absolute correlation values averaged over 500 image patch,
between the selected Gabor-filters

Another way to examine the differences in correlation values between the models, we can
simply investigate the highest correlations in absolute value. Firstly, we observed on the image
patch shown previously how the 5 highest correlation values change between the models, as it can
be seen in Figure 5.26. In this image, the TD-IWAE with 𝑘 = 50 has the strongest correlations,
beating TDVAE, while the model where we sample only once, and which should be more or
less identical to the baseline model, has the lowest. Generally, no tendency can be seen in the
direction of the highest correlations.

Secondly, we searched for the 10 coordinates which have the highest absolute correlation
coefficients in the underlying image, and also plotted the coordinates yielding the 3 strongest
among them in two dimension by marginalizing the z1 samples on these coordinate pairs. For the
image patch presented above, the average and standard deviation of the 10 highest correlations
are summarized in Table 5.7, which shows that for this input the importance weighted models
seem to have less or the same correlation as the baseline model, except for the TD-IWAE, 𝑘 = 50.
The filters corresponding the units with the 3 strongest correlations are visualized in Figures
5.28, 5.29, 5.30 along with their distribution plots. Surprisingly, in all models the non-localized,
more exotic filter pairs gave the strongest correlation relations. Also, the two-dimension plots
corresponding to the examined unit pairs show that the distribution of these dimensions do not
concentrate around 0, indicating the activation of these units.

TDVAE TD-IWAE,
𝑘 = 1

TD-IWAE,
𝑘 = 4

TD-IWAE,
𝑘 = 10

TD-IWAE,
𝑘 = 50

Average 0.439 0.371 0.445 0.401 0.516
Std 0.029 0.022 0.037 0.062 0.045

Table 5.7: The 10 highest absolute correlations averaged per model on an image patch

For the reason that the study of highest absolute correlation coefficients was performed only
on one image patch, we would like to also extend this survey to more patches to get a clearer
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Figure 5.26: The 5 strongest correlations measured on our example image patch in every model

picture about these coordinates. Hence, we searched for the 5 highest correlations in absolute
value on 500 image patches, and averaged the results in Figure 5.27. It is clearly visible that
on average the importance weighted models do not introduce stronger correlation structure than
the one found in TDVAE. Moreover, the TD-IWAE with 𝑘 = 1 experienced a huge drop in its
highest absolute correlations compared to the TDVAE highest ones. The plot also shows us that
the standard deviations, indicated by error lines on top of the bars, are larger in the importance
weighted versions than in the standard TDVAE.

In addition, in order to examine if stronger relations between posterior units are also strong
in other image patches or not, we took 3 random image patches from the dataset, calculated the
5 highest absolute correlation values for each of them and then returned these values along with
the filter pairs that produced them. After that for each of the 3 patches and coordinate pairs we
examined what correlation coefficients these pairs give on another 500 patches, and then we
averaged the results. To put it simply, we are interested in if these pairs produce consistently
high absolute values for a bunch of other image patches as well or not.

The results of the consistency study are present in Table 5.8. For every coordinate pair, the
mean and standard deviation of the 500 obtained correlation coefficients were computed, and we
measured the ratio of the difference between this mean and the referred coefficient in absolute
value, and the standard deviation of the 500 coefficients. This measure outlined a picture about
how far away the referred coefficient from the sample mean relatively to the sample standard
deviation for this coordinate pair. These ratios were averaged over coordinates and the 3 image
patches and depicted in Table 5.8. One can observe that TDVAE seems to be more consistent for
strong correlation values then the TD-IWAE models. Also, incorporating importance weighting
altered this consistency since with 𝑘 = 1 the ratio is much higher than with the baseline model.
On the other hand, taking many samples provides some improvement as the consistency of
TD-IWAE with 𝑘 = 50 is better than with 𝑘 = 4 and 𝑘 = 10.
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Figure 5.27: The 5 highest absolute correlation values averaged over 500 natural patches in
every model. Height of the bars indicate mean of the measured correlations, while the standard

deviation also depicted as error lines on top of the bars

(a) Pair 1 (b) Pair 2 (c) Pair 3

(d) Pair 1 (e) Pair 2 (f) Pair 3

Figure 5.28: The Gabor pairs which provide the 3 strongest correlation values on an example
natural patch, and their 2D distribution for TDVAE
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(a) Pair 1 (b) Pair 2 (c) Pair 3

(d) Pair 1 (e) Pair 2 (f) Pair 3

Figure 5.29: The Gabor pairs which provide the 3 strongest correlation values on an example
natural patch, and their 2D distribution for TDIWAE, 𝑘 = 10

(a) Pair 1 (b) Pair 2 (c) Pair 3

(d) Pair 1 (e) Pair 2 (f) Pair 3

Figure 5.30: The Gabor pairs which provide the 3 strongest correlation values on an example
natural patch, and their 2D distribution for TDIWAE, 𝑘 = 50

TDVAE TD-IWAE,
𝑘 = 1

TD-IWAE,
𝑘 = 4

TD-IWAE,
𝑘 = 10

TD-IWAE,
𝑘 = 50

0.8936 1.5453 1.8718 1.7489 1.5443

Table 5.8: The consistency of Gabor pairs with higher absolute correlation

To summarize the the study of the posterior correlations of z1, the importance weighted
models did not introduce additional or stronger correlation relations in general. For individual
natural image patches, we could observe that in TD-IWAE with 𝑘 = 50 the mean of 10 strongest
coefficients were higher than of TDVAE, as well as the individual 5 highest absolute coeffiecients,
but considering multiple patches TDVAE had higher absolute values, these were more stable
and also more consistent regarding the strong coefficients given by filter-pairs.

55



Chapter 6

Summary

The aim of this thesis was to to give an outline of Importance Weighted Variational Autoen-
coders [4], discuss their properties, and apply their methodology in a hierarchical variational
autoencoder, TDVAE proposed in [9], [8]. Since TDVAE is a top-down hierarchical VAE with
two latent layers, formulating an extension of the IWAE scheme is needed in order to adapt it to
the TDVAE model. Both the baseline TDVAE and its generalized, importance-weighted version,
TD-IWAE was discussed in detail. In addition, an attempt to generalize to TDVAE the properties
of the reinterpretation of single latent layer IWAE models proposed in [7], [6] was also included.

The thesis is complemented by implementing both TDVAE and TD-IWAE, training them on
a dataset consisted of natural image patches, and carrying out an analysis on the learnt represen-
tations. The single latent layer VAE enhanced with importance weighting was also implemented
and examined, but in this thesis I focused only on my main contribution, the extended version
of this model.

The TD-IWAE model was trained in four variations, each of them with different number of
samples drawn from the variational posterior: with 𝑘 = 1, 𝑘 = 4, 𝑘 = 10, and 𝑘 = 50. The
evaluation of the trained models was done by measuring their average ELBO loss obtained on
both the natural and texture image test set. It was observed that the importance weighted models
achieved lower loss value than TDVAE on both test data, and as the training was performed with
higher 𝑘 , the lower this averaged loss value was, which matched with our expectations.

Owing to the appealing properties of IWAE models, with which we wished to obtain more
expressive variational posteriors, it was particularly interesting to study how the importance
weighting shaped the learnt representations. The analysis was conducted on both latent layers,
building on the examinations carried out in [9], [8] and the results were compared between the
TDVAE and TD-IWAE models.

In the higher latent layer the focus of interest was the information encoded in z2 about textures.
Visualizing these higher layer representations of input patches revealed that texture classes form
clusters. No qualitative difference could be seen between the different models. Also, logistic
regression was fit to classify the input images into the five texture families based on posterior
means. The predictors of fitting on data obtained from models with lower 𝑘 were slightly worse
than the ones trained on TDVAE posterior means, but with 𝑘 = 50 the results were again close
to the performance on data given by TDVAE.

The lower latent layer was also examined from the aspect of texture encoding, and surprisingly
the classifiers which were fit on z1 posterior locations coming from importance weighted models
performed better then the ones fitted on TDVAE posterior locations. The analysis was extended
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by other investigations to find out the reason behind this phenomenon but no clear answer
was found. Furthermore, the posterior correlations were also studied. We concluded that while
individual natural patches can be found where the importance weighted models yield some
stronger correlation values, these models could not provide stronger relations when averaging
over several patches.

Future research directions include the investigation of texture-related information captured
by the lower latent layer in TD-IWAE models, as the reason for why fitting multinomial logistic
regression on posterior locations of importance weighted models achieved unexpectedly high
prediction accuracy is still unanswered. Related questions also emerge about the relationship
of the latent layer of z2 and z1, and its different nature in TDVAE and TD-IWAE, because we
have seen that information about texture classes are quite reliably present in the higher latent
layer in all models. Studying these properties would provide us a deeper understanding of the
differences between the learnt representations in TDVAE and TD-IWAE.
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