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Chapter 1

Introduction

Fixed-parameter tractability provides a framework for addressing computationally hard problems
by concentrating on specific parameters. It allows the development of efficient algorithms,
with running times that are exponential only in the size of a fixed parameter. This makes
certain problems solvable even for large inputs when the parameter is small. Some successful
applications are in bioinformatics, network analysis, and combinatorial optimization.

The appearance of FPT algorithms motivated the research of practical parameters in all
combinatorial optimization fields. Among the various graph parameters are tree-width and tree-
depth. Tree-width measures how close a graph is to being a tree, and many NP-hard problems can
be solved efficiently by using dynamic programming on tree decompositions. Some examples
include the traveling salesman problem, vertex cover, and coloring problems. The parameter tree-
depth measures how far a graph is from being a star. It is commonly defined as the minimum
height of a rooted forest whose closure contains the graph. Like tree-width, many difficult
problems become solvable in polynomial time when parameterized by tree-depth, for example,
the mixed Chinese postman problem.

As with many graph attributes, a natural idea is to try and generalize these types of parameters
to the field of matroids. However, this generalization is not straightforward because the above
definitions involve vertices, which do not have a direct counterpart in matroids. As a workaround,
it is natural to consider using the concept of connectivity functions instead.

For tree-width, Robertson and Seymour [32] defined the parameter branch-width of graphs
using the above-mentioned connectivity functions. They showed that branch-width and tree-
width are tied for graphs. Geelen, Gerards, and Whittle [16] studied this parameter in the
matroid setting. One of the many reasons why branch-width became such an important parameter
is because of Hliněnỳ [20]. He showed that we can test any properties defined in the monadic
second-order logic of matroids within polynomial time for matroids represented over a fixed
finite field with bounded branch-width.

Many researchers defined parameters to generalize tree-depth. DeVos, Kwon, and Oum [9]
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introduced the concept of branch-depth as one such generalization. Their definition led to the
creation of various parameters, such as the rank-depth of a graph, achieved by substituting
different types of connectivity functions.

Other depth parameters include contraction-depth, deletion-depth, and contraction-deletion
depth. The first two were initially researched by Robertson and Seymour as C-type and D-type,
respectively [31]. Similarly, contraction-deletion depth was examined by Ding, Oporowski, and
Oxley under the name type [10]. These concepts represent the minimum number of operations
required to reduce a matroid to a trivial form. Consequently, these values are closely related
to the complexity of the matroid. Understanding these parameters can aid in developing more
effective coding strategies in network coding and demonstrate their resilience. They also have
applications in system design and computational biology.

Kardoš, Král’, Liebenau, and Mach [23] introduced contraction∗-depth, as another analogue
of tree-depth in graphs. The last parameter we consider is contraction∗-deletion depth, which
was first introduced and studied in [1]. The significance of these parameters is highlighted by
their connection to preconditioners in combinatorial optimization.

The structure of the thesis is the following. Chapter 2 summarizes basic notation and def-
initions. Chapter 3 is about the parameter branch-width, its definition, and its computational
properties. Chapters 4, 5 discuss depth parameters mentioned above. Finally, Chapter 6 explains
the relations between these parameters.

2



Chapter 2

Preliminaries

The goal of this chapter is to summarize the basic definitions and notation used in this thesis.
The first section discusses fixed-parameter tractable algorithms, the second covers matroids,
including their definitions and fundamental properties, and the third focuses on connectivity
functions.

2.1 Fixed-parameter tractability

To gain a brief understanding of this topic, imagine a small kingdom with several villages
connected by roads. Unfortunately, the kingdom faces difficulties, as bandits lurk on the roads,
robbing unlucky travelers. The king decides to send guards to protect the villages, but since
guards are costly, deploying them to every village is not a financially wise decision. A road is
considered protected if at least one of its end villages is guarded. The king’s task is to protect
all the roads in the kingdom using as few guards as possible. The problem can be rephrased as
a vertex cover problem, a basic example for fixed-parameter tractability [8, 12].

Definition 2.1. A parameterized problem is a language 𝐿 ⊂ Σ∗ × N, where Σ is a fixed, finite
alphabet and Σ∗ denotes the set of all words gained from Σ. For an instance (𝑥, 𝑘) ∈ Σ∗ × N, 𝑘
is called the parameter.

Definition 2.2. A parameterized problem 𝐿 ⊂ Σ∗ ×N is called fixed-parameter tractable (FPT)
if there exists an algorithm A (called a fixed-parameter algorithm), a computable function
𝑓 : N→ N, and a constant 𝑐 such that, given (𝑥, 𝑘) ∈ Σ∗×N, the algorithm A correctly decides
whether (𝑥, 𝑘) ∈ 𝐿 in time bounded by 𝑓 (𝑘) · | (𝑥, 𝑘) |𝑐. The complexity class containing all
fixed-parameter tractable problems is called FPT.

The vertex cover problem for a graph 𝐺 parameterized by 𝑘 is fixed-parameter tractable.
The language of this parameterized problem is (𝐺, 𝑘), so the question of whether 𝑘 guards
are enough to protect the kingdom can be answered in polynomial time. We can demonstrate
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this by creating a rooted tree that includes all potential solutions. The root is marked with an
empty set and the graph 𝐺. It will have two child nodes, each representing a choice of any edge
𝑢𝑣 in 𝐸 (𝐺). One child will be labeled with 𝑢, and the other with 𝑣, as one of them must be
included in a covering set. Both nodes also receive an additional label representing the parts of
the graph that still need to be covered. In general, for a node labeled with the set of vertices 𝑆, we
choose an edge 𝑢′𝑣′ ∈ 𝐸 (𝐺) where neither 𝑢′ nor 𝑣′ is in 𝑆 and create two child nodes labeled,
respectively,𝑆 ∪ {𝑢′} and𝑆 ∪ {𝑣′}. If there exists a node in the tree with a height of at most k that
covers G, there is no need to continue exploring the tree.

Figure 2.1: The tree on the right is the above-mentioned case separation. It shows that the graph
on the left has a vertex cover of size three {𝑎, 𝑐, 𝑑}.

2.2 Matroids

This section is devoted to matroids, using definitions from [14] and [29]. The notion of matroid
was introduced by Hassler Whitney in 1933, it generalizes the concept of linear independence
from vector fields to family of sets. A matroid is given by a pair (𝑆, F ), where 𝑆 represents
the set of elements, referred to as the ground-set, and F contains certain subsets of 𝑆. These
subsets should satisfy the next three axioms.

Definition 2.3. A set-system 𝑀 = (𝑆, F ) is called a matroid if it satisfies the following
properties, called independence axioms.

• ∅ ∈ F .

• If 𝑋 ⊆ 𝑌 ∈ F , then 𝑋 ∈ F .

• For every subset 𝑋 ⊆ 𝑆, the maximal subsets of 𝑋 which are inF have the same cardinality.

The members of F are called independent, and the other subsets of 𝑆 are called dependent.
The maximal independent subsets of 𝑆, which by the last axiom have the same size, are the
basis, and the minimal dependent sets are called circuits. A co-circuit is the minimal subset of
𝑆 that intersects every basis. One can get a basis by putting independent elements greedily into
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a set. In other words, a matroid is a structure where the greedy algorithm works. The rank of
𝑋 ⊆ 𝑆, denoted by 𝑟 (𝑋), is the size of the maximal independent set in 𝑋 . The function 𝑟 is the
rank function and 𝑟 (𝑆) is the rank of the matroid. An element 𝑠 with 𝑟 ({𝑠}) = 0 is a loop, and
an element 𝑠 such that 𝑟 (𝑀 \ {𝑠}) = 𝑟 (𝑀) − 1 is a bridge. Two elements 𝑠 and 𝑠′ are parallel if
they form a circuit, so 𝑟 ({𝑠, 𝑠′}) = 1 and neither of them is a loop. The connected components
of a matroid are inclusion-wise maximal sets, that for every two elements of a component, there
exists a circle that contains them.

Basis, rank, and circuits have special properties that can be seen as axioms, allowing the
matroid to be defined by any of those. In some cases, it may be more convenient to work with
matroids using these alternative definitions.

The dual of a matroid 𝑀 , denoted by 𝑀∗, is defined on 𝑆, and the basis of 𝑀∗ are the
complements of the basis of 𝑀 . Two matroids are considered isomorphic if there exists a
bĳection between their ground sets so that a subset is independent in the first matroid if and only
if its corresponding subset is independent in the second.

The two most important matroid operations are deletion and contraction. For a set 𝑍 ⊆ 𝑆,
𝑀 \ 𝑍 means the deletion of 𝑍 from the matroid. This operation results in a new matroid with
the ground-set 𝑆 \ 𝑍 , where a set is independent if and only if it is independent in 𝑀 . On the
other hand, 𝑀/𝑍 denotes the contraction of 𝑍 . In this operation, the resulting matroid has the
ground-set 𝑆\𝑍 , and a set 𝑍′ is independent if 𝑟 (𝑍∪𝑍′) = 𝑟 (𝑍) +𝑟 (𝑍′), where 𝑍′ is independent
in 𝑀 . A matroid obtained through a series of deletions and contractions is referred to as a minor.

Since a matroid is a family of certain subsets of elements, and the number of independent
sets is typically exponential, listing or storing them would pose significant challenges. Hence
matroids are usually given by oracles. An oracle can be thought of as a black box that, given a
subset as an input, outputs the rank of the given set, or decides whether the subset is independent.
In matroid algorithms, complexity is measured by the number of oracle calls and additional steps.

For demonstration purposes, we provide two examples here, which will also be referenced
later. Let 𝑆 be a finite set of vectors over an arbitrary field F, with F containing the linearly
independent subsets of 𝑆. It is evident that (𝑆, F ) forms a matroid known as a vector or linear
matroid. A matroid is representable over a finite field F if there exists a vector matroid over F
that is isomorphic to it.

Consider 𝑆 as the edge set of an undirected graph, with F comprising subsets of edges that
do not form cycles. In other words, the independent sets consist of trees and forests in the graph.
This structure is referred to as a graphic or circuit matroid.
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1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0
𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

Figure 2.2: Linear matroid Figure 2.3: Graphic matroid

Figure 2.4: 2.2 and 2.3 are two representations of the same matroid

2.3 Connectivity functions

Let 𝑆 be a finite set of elements. The next definition from [9] describes general connectivity
functions.

Definition 2.4. 𝜆 : 2𝑆 → Z is a connectivity function if it satisfies the following three properties.

• 𝜆(∅) = 0,

• 𝜆(𝑋) = 𝜆(𝑆 \ 𝑋) ∀𝑋 ⊆ 𝑆 (symmetry),

• 𝜆(𝑋) + 𝜆(𝑌 ) ≥ 𝜆(𝑋 ∩ 𝑌 ) + 𝜆(𝑋 ∪ 𝑌 ) ∀𝑋,𝑌 ⊆ 𝑆 (submodularity).

The following holds for all connectivity functions and some particular subsets of the ground
set.

Lemma 2.5. Let 𝜆 be a connectivity function on 𝑆 and let 𝐾 be a subset of 𝑆 such that 𝜆(𝐾) = 0.
Then the function 𝜆 |𝐾 on 2𝐾 defined by 𝜆 |𝐾 (𝑋) = 𝜆(𝑋) is a connectivity function on 𝐾 and
𝜆(𝑋) = 𝜆 |𝐾 (𝑋 ∩ 𝐾) + 𝜆 |𝑆\𝐾 (𝑋 \ 𝐾) for all 𝑋 ⊆ 𝑆.

Generally, in the context of graphs, connectivity means vertex-connectivity or edge-connecti-
vity, which means at least how many vertices or edges should one take out for the graph to
fall apart. A connectivity function for a graph is defined in a slightly different manner. For
𝐺 = (𝑉, 𝐸), look at the subsets of its edge set. For 𝑋 ⊆ 𝐸 , 𝜆𝐺 (𝑋) is the number of vertices,
that are incident to edges from both 𝑋 and 𝐸 \ 𝑋 sets. This function is a connectivity function,
meeting the criteria of the first two points in the definition. One approach to confirming the third
point is by examining all possible cases of edge placement.

For a matroid 𝑀 = (𝑆, F ), a connectivity function 𝜆𝑀 : 2𝑆 → Z is defined as 𝜆𝑀 (𝑋) =

𝑟𝑀 (𝑋) + 𝑟𝑀 (𝑆 \ 𝑋) − 𝑟𝑀 (𝑆) for 𝑋 ⊆ 𝑆, where 𝑟 denotes the rank function of 𝑀 . The first two
conditions are trivially satisfied, and the third arises from the submodularity of the rank function.
From the definition, it can be deduced that the connectivity function of a matroid is the same as
that of its dual.
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Chapter 3

Branch-width

Branch-width is one of the most researched matroid parameters, initially introduced for graphs
by Robertson and Seymour [32]. In their paper, they showed its close connection to tree-width.
Tree-width is an important parameter measuring how close a graph is to being a tree, with
great results in parameterized algorithms. Nevertheless, the challenge with tree-width lies in its
complexity in generalizing to matroids, as its definition heavily relies on graph vertices. However,
branch-width has a definition independent of vertices, using only connectivity functions defined
in Section 2.3. Therefore, it is easy to generalize it from graphs to matroids, as shown later in
Section 3.3.

First let us take a look at exact definitions from [25,27,30], we will define this parameter for
graphs, some special functions, and matroids.

Definition 3.1. A branch-decomposition of 𝐻 (where H can be an edge set of a graph,
hypergraph, the domain of a function or a matroid) is a (𝑇, 𝐿) pair, where 𝑇 is a sub-cubic tree
(all nodes have at most 3 neighbours), and 𝐿 is a bĳection between the elements of 𝐻, and the
leaves of 𝑇 . If 𝐿 is solely surjective, (𝑇, 𝐿) is a partial branch-decomposition.

An edge 𝑒 ∈ 𝑇 splits it into two connected components. This gives a partition (𝐸1, 𝐸2) in 𝐻.
From this, we can specify the width of the decomposition, along with the branch-width.

Definition 3.2. For a connectivity function 𝜆 the width of an edge 𝑒 is 𝜆(𝐸1) = 𝜆(𝐸2),
where (𝐸1, 𝐸2) is the partition induced by 𝑒. For a graph 𝐺 = (𝑉, 𝐸) it is 𝜆𝐺 (𝐸1) = 𝜆𝐺 (𝐸2),
where 𝜆𝐺 is the connectivity function of 𝐺 defined in Section 2.3. For a matroid 𝑀 , it is
𝜔𝑇 (𝑒) = 𝜆𝑀 (𝐸1) + 1 = 𝜆𝑀 (𝐸2) + 1, where 𝜆𝑀 is the connectivity function of matroids defined
in Section 2.3.

Definition 3.3. The width of T, if T is a branch-decomposition, is the maximum edge-width
for all 𝑒 ∈ 𝑇 . Branch-width is the minimum width over all branch-decompositions. Its notation
for graphs, matroids and connectivity-functions is bw(𝐺), bw(𝑀) and bw(𝜆), respectively.

𝑇 is tight, if there is no other branch-decomposition with less branch-width.
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Figure 3.1: Example of a branch-decomposition. The graph on the left is viewed as a graphic
matroid, the right picture shows an optimal branch-decomposition with bw(𝑀) = 2.

3.1 Computation

It was shown by Seymour and Thomas [33] that computing the exact number of branch-width is
NP-hard even for graphs. Therefore, creating a polynomial-time algorithm for determining the
branch-width of a general matroid is unfeasible. Nonetheless, this topic is still intriguing from
an algorithmic point of view, as later in this section, there will be some noteworthy algorithms,
using fixed parameters.

In [19], Hliněnỳ presented a polynomial-time algorithm that determines whether a matroid
has a branch-width of at most 3. For a while, it was uncertain whether a polynomial-time
algorithm existed for deciding if a matroid has a branch-width of at most 𝑘 for any fixed 𝑘 . For
matroids represented over a fixed finite field, Hliněn‘y [21] developed an𝑂 ( |𝐸 (M)|3) algorithm
that not only solves the problem mentioned above but also computes the exact branch-width if
it is at most 𝑘 . This demonstrates that branch-width is fixed-parameter tractable. The algorithm
is relatively straightforward once its concepts and definitions are understood. The key concepts
include parse trees, the monadic second-order logic of matroids, and finite tree automata.

A parse tree illustrates the step-by-step construction of a matroid along the tree. Its leaves
are single-element 1-boundaried and loop 0- boundaried matroids. For an F-represented
matroid 𝑁 , 𝑁 = (𝑁; 𝛿) is a 𝑡-boundaried matroid, if 𝑡 ≥ 0 integer and 𝛿 : [1, 𝑡] → 𝐸 (𝑁)
injective mapping, where 𝛿( [1, 𝑡]) independent in 𝑁 . The other vertices are ≤ 𝑡-boundaried
composition operators. These operators compose the boundaried matroids together, to get the
matroid parsed by the tree. For precise definitions and further details, refer to [21, 22]. The
following theorem 3.4 demonstrates the significance of these structures.

Theorem 3.4. An F-represented matroid 𝑀 has branch-width at most 𝑡 + 1 if and only if 𝑀 is
parsed by some spanning 𝑡-boundaried parse tree.

In [21] there is a 3-approximation algorithm computing a spanning boundaried parse tree of
a matroid, in 𝑂 (𝑛3) running time. The second significant definition is the following.
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Figure 3.2: Here is an illustration of a parse tree. The numbers along the edges indicate the
boundary ranks, while the ovals symbolize the composition operators. The filled circles represent
the 1-boundaried matroids, while the empty circles denote the 0-boundaried ones [21].

Definition 3.5. The monadic second-order logic of matroids (MSOL) includes variables
representing matroid elements and sets of elements, as well as the quantifiers∀ and ∃, and logical
connectives ∧, ∨, and ¬. In MSOL, the following three questions can be easily determined:

• equality for elements and their sets,

• whether an element is in a set,

• whether a set is independent in a matroid, hence MSOL uses the independence oracle.

The importance of MSOL comes from graph theory. Courcelle [5,6] showed, that problems
expressible in MSOL can be efficiently solved for graphs with bounded width. Similar to numer-
ous other graph properties, this characteristic can also be extended to matroids. Hliněnỳ [21] also
proves that all matroid properties expressible in the monadic second-order logic are uniformly
fixed-parameter tractable for represented matroids bounded by branch-width.

A finite tree automaton is a machine designed to process tree structures. It can accept or
reject a tree based on its purpose and the attributes of the trees it evaluates.

Theorem 3.6. Let 𝑡 ≥ 1 and let F be a fixed finite field. AssumeM is a set of represented matroids
over F described by a sentence in the monadic second-order logic of matroids. Then there is a
finite tree automaton accepting exactly the ≤ (𝑡 − 1)-boundaried parse trees of members of M
(of branch-width bounded by t).

The proof for Theorem 3.6 can be found in [22]. This proof is algorithmic, it includes a
method for computing the tree automaton that accepts boundaried parse trees.

Lemma 3.7. For every matroid 𝑁 there is an MSOL formula 𝜓𝑁 such that 𝜓𝑁 is true on matroid
𝑀 , if and only if 𝑁 is a minor of 𝑀 .
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This implies that the class of matroids with branch-width at most 𝑘 is closed under taking
minors, a significant property in matroid theory. Consequently, membership can be determined
by identifying the excluded minors, which are the minor-minimal matroids that do not belong to
the family. For many matroid classes, the number of excluded minors is finite. Specifically, for
matroids with bounded branch-width, Geelen, Gerards, and Robertson proved in [15] that the
excluded minors have a size of at most (6𝑘+1 − 1)/5. Using a brute force search, all such minors
can be found.

The proof of Lemma 3.7 constructs a formula of this kind, using the elements of the minor
as variables. Consequently, Corollary 3.8 naturally follows.

Corollary 3.8. For every 𝑘 ≥ 1, there is a computable MSOL formula 𝜙𝑘 , such that 𝜙𝑘 is true
in 𝑀 if and only if 𝑀 has branch-width at most 𝑘 .

Following these theoretical introductions, presented below is the primary theorem of the
paper [21].

Theorem 3.9. Let F be a finite field, and let 𝑡 ≥ 1 be a constant. There is an algorithm that,
given a rank-r matrix A ∈ F𝑟×𝑛 such that the branch-width of the matroid 𝑀 (𝐴) is at most 𝑡 + 1,
finds the exact branch-width of 𝑀 (𝐴) in time 𝑂 (𝑛3).

Proof. The proof is the algorithm itself.

• Pre-computation: for 𝑘 = 2, . . . , 𝑡+1 compute the excluded minors of the class of matroids,
that has branch-width at most 𝑘 , and the formula Φ𝑘 from Corollary 3.8. Then compute
the finite tree-automaton portrayed in Theorem 3.6, which accepts only the parse trees
described by Φ𝑘 .

• Let 𝑀 (𝐴) be the input n-element matroid represented over a finite field. Algorithm 4.1
from [21] computes an ≤ 3𝑡-boundaried parse tree T of 𝑀 (𝐴). From this, find the smallest
𝑘0 that the finite tree-automaton A𝑘0 accepts 𝑇 , 𝑘0 ≤ 𝑡. This 𝑘0 is the branch-width. □

Next, another method for computing branch-width is presented. From the definition of
branch-width 3.3, it follows that searching for the branch-width of a matroid is equivalent to
searching for the branch-width of its connectivity function. The algorithm below, for the branch-
width of connectivity functions, is presented by Oum and Seymour in [28]. They approach the
search for branch-width from a different perspective by attempting to identify the dual object
known as a tangle.

Definition 3.10. Let 𝑉 be a finite set, and let 𝑓 be a connectivity-function on 2𝑉 . A set Γ of
subsets of 𝑉 is called an 𝑓 -tangle of order 𝑘 + 1 if it satisfies the next three axioms.

• ∀ 𝐴 ⊆ 𝑉 , if 𝑓 (𝐴) ≤ 𝑘 , then either 𝐴 ∈ Γ or 𝑉 \ 𝐴 ∈ Γ,
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• if 𝐴, 𝐵, 𝐶 ∈ Γ, then 𝐴 ∪ 𝐵 ∪ 𝐶 ≠ 𝑉 ,

• ∀ 𝑣 ∈ 𝑉 , we have 𝑉 \ {𝑣} ∉ Γ.

Robertson and Seymour [32] showed that there is a connection between tangles and branch-
width, thus making them each other’s dual object.

Theorem 3.11. Let 𝑓 be a connectivity function on 2𝑉 . There is no 𝑓 -tangle of order 𝑘 + 1 if
and only if the branch-width of 𝑓 is at most 𝑘 .

Oum and Seymour introduced definitions of loose tangles and loose tangle kits, which
initially seem weaker but ultimately prove to offer the same benefits as tangles.

Definition 3.12. A set Γ of subsets of 𝑉 is a loose 𝑓 -tangle of order 𝑘 + 1, if it satisfies the next
three axioms.

• For a subset 𝑋 ⊆ 𝑉 , if |𝑋 | ≤ 1 and 𝑓 (𝑋) ≤ 𝑘 , then 𝑋 ∈ Γ,

• if 𝐴, 𝐵 ∈ Γ, 𝐶 ⊆ 𝐴 ∪ 𝐵, and 𝑓 (𝐶) ≤ 𝑘 , then 𝐶 ∈ Γ,

• 𝑉 ∉ Γ .

Let 𝑓min(𝐴, 𝐵) = min𝐴⊆𝑍⊆𝑉\𝐵 𝑓 (𝑍) for an 𝑓 connectivity function, where 𝐴.𝐵 ⊆ 𝑉 disjoint
subsets.

Definition 3.13. A pair (𝑃, 𝜇) is a loose 𝑓 -tangle kit of order 𝑘 + 1, if 𝑃 = {(𝐴, 𝐵) : 𝐴, 𝐵 ⊆
𝑉, 𝐴∩ 𝐵 = ∅, max( |𝐴|, |𝐵 |) ≤ 𝑓min(𝐴, 𝐵) ≤ 𝑘} and 𝜇 : 𝑃 → 2𝑉 is a function satisfying the next
three axioms.

• If |𝑋 | ≤ 1 and 𝑓 (𝑋) ≤ 𝑘 , then there exists (𝐴, 𝐵) ∈ 𝑃 such that 𝐴 ⊆ 𝑋 ⊆ 𝑉 \ 𝐵, 𝑓 (𝑋) =
𝑓min(𝐴, 𝐵), and 𝑋 ⊆ 𝜇(𝐴, 𝐵),

• if (𝐴, 𝐵), (𝐶, 𝐷), (𝐸, 𝐹) ∈ 𝑃, 𝐸 ⊆ 𝑋 ⊆ (𝜇(𝐴, 𝐵) ∪𝜇(𝐶, 𝐷)) \𝐹, and 𝑓 (𝑋) = 𝑓min(𝐸, 𝐹),
then 𝑋 ⊆ 𝜇(𝐸, 𝐹).

• 𝜇(∅, ∅) ≠ 𝑉 if (∅, ∅) ∈ 𝑃.

It is stated in [28], that a loose 𝑓 -tangle kit of order 𝑘 + 1 exists if and only if an 𝑓 -tangle kit
of order 𝑘 + 1 exists, therefore, the following theorem is also applicable to loose tangle kits.

Theorem 3.14. Let 𝑓 be a connectivity function on 2𝑉 . Then, no loose 𝑓 -tangle of order 𝑘 + 1
exists if and only if the branch-width of 𝑓 is at most 𝑘 .

The first algorithm uses loose tangle kits to decide whether the branch-width of a given
matroid is at most 𝑘 . The idea is to try and construct a loose tangle kit of order 𝑘 + 1, if it
succeeds, then the branch-width is more than 𝑘 , if it fails, the branch-width is at most 𝑘 .
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Algorithm 1.
1. Create 𝑃 = {(𝐴, 𝐵) : 𝐴, 𝐵 ⊆ 𝑉, 𝐴 ∩ 𝐵 = ∅, max( |𝐴|, |𝐵 |) ≤ 𝑓min(𝐴, 𝐵) ≤ 𝑘}.

2. If (∅, ∅) ∈ 𝑃, let 𝜇(∅, ∅) = {𝑣 ∈ 𝑉 : 𝑓 ({𝑣}) = 0}. For every 𝑣 ∈ 𝑉, 𝑖 𝑓 0 < 𝑓 ({𝑣}) ≤ 𝑘 ,
find a subset 𝐵 ⊆ 𝑉 \ {𝑣} such that |𝐵 | ≤ 𝑓min({𝑣}, 𝐵) = 𝑓 ({𝑣}), then let 𝜇({𝑣}, 𝐵) = {𝑣}.
For other (𝐴, 𝐵) ∈ 𝑃 , let 𝜇(𝐴, 𝐵) = ∅.

3. For the (𝑃, 𝜇) pair, test the third property of loose tangle kits from definition 3.13. If it
fails, then there is no loose 𝑓 -tangle kit of order 𝑘 + 1. STOP. The branch-width is at most
𝑘 .

4. Test the second property from definition 3.13. If it fails, then we have (𝐴, 𝐵), (𝐶, 𝐷), (𝐸, 𝐹)
∈ 𝑃 and 𝑋 such that 𝐸 ⊆ 𝑋 ⊆ (𝜇(𝐴, 𝐵) ∪ 𝜇(𝐶, 𝐷)) \ 𝐹, 𝑓 (𝑋) = 𝑓min(𝐸, 𝐹), and
𝑋 ⊈ 𝜇(𝐸, 𝐹). So let’s make 𝜇(𝐸, 𝐹) to be 𝜇(𝐸, 𝐹) ∪ 𝑋 , thus increasing |𝜇(𝐸, 𝐹) | at least
by 1. Now go back to step 3.

5. (𝑃, 𝜇) is a loose 𝑓 -tangle kit of order 𝑘 + 1. STOP. The branch-width of 𝑓 is more than 𝑘 .

The running time of the algorithm is 𝑂 (𝛾𝑛8𝑘+6 log 𝑛), where 𝛾 is the computation time of
𝑓 (𝑋) for any 𝑋 ⊆ 𝑉 , 𝑘 is constant and 𝑛 = |𝑉 |.

The second algorithm constructs a branch-decomposition f width at most 𝑘 , if it exists. It
uses the the first algorithm as a black box.

Algorithm 2.
1. If |𝑉 | < 1, then no branch-decomposition exists. For |𝑉 | = 1, there exists the trivial

decomposition. If |𝑉 | = 2, then there is a unique branch-decomposition, its width is
determined by 𝑓 . If 𝑓 ({𝑣}) > 𝑘 for a 𝑣 ∈ 𝑉 , then branch-width is larger than 𝑘 . STOP.

2. Find a pair {𝑢, 𝑣}, where 𝑢, 𝑣 ∈ 𝑉 , such that branch-width of 𝑓 /𝑢𝑣 is at most 𝑘 with
Algorithm 3.1.

3. If there is no such pair, the branch-width of 𝑓 is larger than 𝑘. STOP.

4. Obtain a branch-decomposition (𝑇 ′, 𝐿′) of 𝑓 /𝑢𝑣 of width at most 𝑘 by recursively calling
this algorithm.

5. Extend (𝑇 ′, 𝐿′) to a branch-decomposition (𝑇, 𝐿) by attaching two leaves 𝑢𝑇 and 𝑣𝑇 to the
leaf 𝐿′(𝑢𝑣) of 𝑇 ′, then set 𝐿 (𝑢) = 𝑢𝑇 and 𝐿 (𝑣) = 𝑣𝑇 .

Algorithm 3.1 has running time 𝑂 (𝑛3A), where A denotes the running time of the first
algorithm 3.1.
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3.2 Approximation

In [27], Sang-il Oum and Paul Seymour developed an algorithm that approximates the branch-
decomposition of certain submodular functions. One application of this algorithm is an 𝑂 (𝑛3.5)
time approximation which, for a fixed 𝑘 and an input 𝑛-element matroid, provides a branch-
decomposition of at most 3𝑘 − 1 or outputs a witness that the branch-width is greater than 𝑘 .
In [13], Fomin and Korhonen made a 2-approximating FPT algorithm for the same problem;
however, their work will not be presented here.

To understand the algorithm, we must first define the interpolation of submodular functions.

Definition 3.15. Let 𝑓 : 2𝑉 → Z be a submodular function such that 𝑓 (∅) ≤ 𝑓 (𝑋) for all
𝑋 ⊆ 𝑉 . 𝑓 ∗ : 3𝑉 → Z is an interpolation of 𝑓 if it satisfies the following:

• 𝑓 ∗(𝑋,𝑉 \ 𝑋) = 𝑓 (𝑋) for all 𝑋 ⊆ 𝑉 .

• If 𝐶 ∩ 𝐷 = ∅, 𝐴 ⊆ 𝐶, and 𝐵 ⊆ 𝐷, then 𝑓 ∗(𝐴, 𝐵) ≤ 𝑓 ∗(𝐶, 𝐷).

• 𝑓 ∗(𝐴, 𝐵) + 𝑓 ∗(𝐶, 𝐷) ≤ 𝑓 ∗(𝐴∩𝐶, 𝐵∪𝐷) + 𝑓 ∗(𝐴∪𝐶, 𝐵∩𝐷) for all (𝐴, 𝐵), (𝐶, 𝐷) ∈ 3𝑉 ,

• 𝑓 ∗(∅, ∅) = 𝑓 (∅).

The algorithm uses the following properties of interpolations, assuming that ∅ is the mini-
mizer of 𝑓 .

Proposition 3.16. Let 𝑓 : 2𝑉 → Z be a submodular function, and 𝑓 (∅) ≤ 𝑓 (𝑋) for all 𝑋 ⊆ 𝑉 ,
and let 𝑓 ∗ : 3𝑉 → Z be an interpolation of 𝑓 . Then:

• For all (𝑋,𝑌 ) ∈ 3𝑉 , the interpolation 𝑓 ∗(𝑋,𝑌 ) ≤ min𝑋⊆𝑍⊆𝑉\𝑌 𝑓 (𝑍).

• 𝑓 ∗(∅, 𝑌 ) = 𝑓 (∅) for all 𝑌 ⊆ 𝑉 .

• If 𝑓 ({𝑣}) − 𝑓 (∅) ≤ 1 for every 𝑣 ∈ 𝑉 , then for every fixed 𝐵 ⊆ 𝑉 , 𝑓 ∗(𝑋, 𝐵) − 𝑓 (∅) is the
rank function of a matroid on 𝑉 \ 𝐵.

Proposition 3.17. Let 𝑓 : 2𝑉 → Z be a submodular function such that 𝑓 (∅) ≤ 𝑓 (𝑋) for all
𝑋 ⊆ 𝑉 . Then 𝑓min is an interpolation of 𝑓 , where 𝑓min(𝑋,𝑌 ) = min𝑋⊆𝑍⊆𝑉\𝑌 𝑓 (𝑍).

Generally, there are multiple interpolations for a submodular function. Furthermore, if there
is a submodular function a 𝑓 ∗ : 3𝑉 → Z that satisfies the second point from Proposition 3.16,
then there exists a submodular function 𝑓 : 2𝑉 → Z such that 𝑓 (∅) ≤ 𝑓 (𝑋) and 𝑓 ∗ is an
interpolation of 𝑓 .

The main theorems in [27] use the concept of well-linkedness. The witness demonstrating
that the branch-width exceeds 𝑘 will be a well-linked set.
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Definition 3.18. Let 𝑉 be a finite set and let 𝑓 : 2𝑉 → Z be a symmetric submodular function
satisfying 𝑓 (∅) = 0. A subset 𝑊 ⊆ 𝑉 is well-linked with respect to 𝑓 if for every partition
(𝑋,𝑌 ) of𝑊 and every 𝑍 with 𝑋 ⊆ 𝑍 ⊆ 𝑉 \ 𝑌 , the inequality 𝑓 (𝑍) ≥ min( |𝑋 |, |𝑌 |) is fulfilled.

Theorem 3.19. Let 𝑉 be a finite set with |𝑉 | ≥ 2, and let 𝑓 : 2𝑉 → Z be a symmetric
submodular function such that 𝑓 (∅) = 0. If with respect to 𝑓 there is a well-linked set of size 𝑘 ,
then bw( 𝑓 ) ≥ 𝑘/3.

Proof. Let (𝑇, 𝐿) be a branch-decomposition, and𝑊 a well-linked set of size 𝑘 . By contracting
the incident edges, we can assume that𝑇 does not have any degree-two vertices. This assumption
does not affect the branch-width. For each edge 𝑢𝑣, let 𝑋𝑢 be the component that contains 𝑢 after
deleting the edge 𝑢𝑣 in 𝑇 . The subsets 𝐴𝑢𝑣 = 𝐿−1(𝑋𝑢) and 𝐵𝑢𝑣 = 𝑉 \ 𝐴𝑢𝑣.

Figure 3.3: Image of the components in a branch-decomposition. Here 𝐴𝑢𝑣 = {𝑎, 𝑏}.

From 𝑓 (∅) = 0, we may assume that𝑊 ≠ ∅. The value 𝑓 ({𝑤}) ≥ 1, since𝑊 is well-linked
with respect to 𝑓 and from a ({𝑤},𝑊 \ {𝑤}) partition 𝑓 {𝑤} ≥ min( |{𝑤}|, |𝑊 \ {𝑤}|) = 1. Thus,
the decomposition (𝑇, 𝐿) has a width of at least 1. If 𝑘 ≤ 3, then bw( 𝑓 ) ≥ 1 ≥ 𝑘/3 satisfies the
statement of the theorem. Therefore, we can assume 𝑘 > 3.

To prove the theorem, we need to show that 𝑓 (𝐴𝑢𝑣) ≥ min( |𝐴𝑢𝑣 ∩𝑊 |, |𝐵𝑢𝑣 ∩𝑊 |) ≥ 𝑘/3.
Suppose that min( |𝐴𝑢𝑣 ∩𝑊 |, |𝐵𝑢𝑣 ∩𝑊 |) < 𝑘/3 for all 𝑢𝑣 edges in 𝑇 . Construct a directed graph,
by orienting all 𝑢𝑣 edges from 𝑢 to 𝑣, if |𝐴𝑢𝑣 ∩𝑊 | < 𝑘/3 and |𝐵𝑢𝑣 ∩𝑊 | ≥ 𝑘/3.

Now all edges are oriented, because |𝑊 | = 𝑘 . Since there are more vertices in the tree than
edges, there exists a node 𝑡 ∈ 𝑉 (𝑇) such that every edge incident to it has head 𝑡.

If 𝑡 is a leaf, then let 𝑠 be its neighbour. Due to the orientation |𝐵𝑠𝑡 ∩𝑊 | ≥ 𝑘/3, but |𝐵𝑠𝑡 | = 1,
which is a contradiction.

If 𝑡 is not a leaf, then it has 3 neighbours (𝑥, 𝑦, 𝑧) by the assumption from the beginning of the
proof. Since 𝑡 is the head of all its edges, |𝐴𝑥𝑡∩𝑊 | < 𝑘/3, |𝐴𝑦𝑡∩𝑊 | < 𝑘/3, and |𝐴𝑧𝑡∩𝑊 | < 𝑘/3.
Therefore |𝐴𝑥𝑡 ∩𝑊 | + |𝐴𝑦𝑡 ∩𝑊 | + |𝐴𝑧𝑡 ∩𝑊 | < 𝑘 = |𝑊 |, which is a contradiction.

Thus, there exists an edge 𝑢𝑣 with min( |𝐴𝑢𝑣 ∩𝑊 |, |𝐵𝑢𝑣 ∩𝑊 |) ≥ 𝑘/3, which implies that
𝑓 (𝐴𝑢𝑣) ≥ 𝑘/3, and the width of (𝑇, 𝐿) is at least 𝑘/3 in any arbitrary decomposition. □

Before the second theorem, take a look at the following definition.
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Definition 3.20. A partial branch-decomposition (𝑇, 𝐿) extends another (𝑇 ′, 𝐿′) if𝑇 ′ is obtained
by contracting some edges of 𝑇 and for every 𝑣 ∈ 𝑉 𝐿′(𝑣) in 𝑇 ′ corresponds to the vertex 𝐿 (𝑣)
after the contraction.

Theorem 3.21. Let 𝑉 be a finite set, let 𝑓 : 2𝑉 → Z be a symmetric submodular function such
that 𝑓 ({𝑣}) ≤ 1 for all 𝑣 ∈ 𝑉 and 𝑓 (∅) = 0, and let 𝑘 ≥ 0 be an integer. If there is no well-linked
set of size 𝑘 with respect to 𝑓 , then bw( 𝑓 ) ≤ 𝑘 .

Proof. We may assume, that bw( 𝑓 ) > 0, 𝑘 > 0 and |𝑉 | ≥ 2. Consider (𝑇𝑠, 𝐿𝑠) as a partial
branch-decomposition of width at most 𝑘 . Such a decomposition surely exists because we can
take the trivial decomposition 3.4 which has a width at most 1.

Let (𝑇, 𝐿) be a partial branch-decomposition, which extends (𝑇𝑠, 𝐿𝑠). The width of (𝑇, 𝐿)
is at most 𝑘 , and the number of leaves is maximal. The proof will show that if there is no
well-linked set of size 𝑘 , then (𝑇, 𝐿) is a branch-decomposition, so 𝐿 is a bĳection.

Suppose, that 𝐿 is not a bĳection, so there is a leaf 𝑡 ∈ 𝑉 (𝑇), such that 𝐵 = 𝐿−1(𝑇) has
more than one elements. Let 𝑓 (𝐵) < 𝑘 , 𝑣 ∈ 𝐵 then let’s construct another partial decomposition
(𝑇 ′, 𝐿′), by adding two vertices 𝑡1, 𝑡2, and edge 𝑡𝑡1, 𝑡𝑡2.

Figure 3.4: The figures illustrate the step-by-step process of constructing the partial decomposi-
tion to achieve a complete decomposition.

Let 𝐿′(𝑣) = 𝑡1 and 𝐿′(𝐵 \ {𝑣}) = 𝑡2. Here (𝑇 ′, 𝐿′) extends (𝑇, 𝐿). From the assumption in
the theorem 𝑓 (𝐵 \ {𝑣}) + 𝑓 (∅) ≤ 𝑓 (𝐵) + 𝑓 ({𝑣}) ≤ 𝑘 . This implies that (𝑇 ′, 𝐿′) is a partial
branch-decomposition, with branch-width at most 𝑘 and more leaf than (𝑇, 𝐿). This leads to a
contradiction. Thus, we conclude that 𝑓 (𝐵) = 𝑘 .

Let 𝑓 ∗ be an interpolation of 𝑓 , the third point of Proporition 3.16 states that 𝑓 ∗(𝑋, 𝐵) is the
rank function of the matroid on 𝑉 \ 𝐵. Let 𝑋 be a base, then |𝑋 | = 𝑓 ∗(𝑉 \ 𝐵, 𝐵) = 𝑓 (𝑉 \ 𝐵) =
𝑓 (𝐵) = 𝑘 , from Definition 3.15 and the condition that 𝑓 is symmetric. There exists a set 𝑍 ⊆ 𝑉 ,
with 𝑓 (𝑍) < min( |𝑍 ∩ 𝑋 |, |𝑍 ∩ (𝑉 \ 𝑋) |) given that 𝑋 is not well-linked. 𝑍 ∩ 𝐵 is not empty,
as a result of 𝑓 (𝑍 \ 𝐵) = 𝑓 ∗(𝑍 \ 𝐵,𝑉 \ (𝑍 \ 𝐵)) = 𝑓 ∗(𝑍 \ 𝐵, 𝐵 ∪ (𝑉 \ 𝑍)) ≥ 𝑓 ∗(𝑍 ∩ 𝑋, 𝐵) =
|𝑋 ∩ 𝑍 | > 𝑓 (𝑍), since 𝑓 ∗ is uniform. It can be shown similarly that 𝐵 \ 𝑍 = (𝑉 \ 𝑍) ∩ 𝐵 = ∅.
Add two vertices 𝑡1, 𝑡2, and two edges 𝑡𝑡1, 𝑡𝑡2 to the tree 𝑇 , to get another subcubic tree 𝑇 ′. Let
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𝐿′(𝑣) = 𝑡1 if 𝑣 ∈ 𝐵, 𝐿′(𝑣) = 𝑡2 if 𝑣 ∈ 𝐵 \ 𝑍 . From the attributes of 𝑓 and 𝑓 ∗ we got

| (𝑉 \ 𝑍) ∩ 𝑋 | + 𝑓 (𝐵) > 𝑓 (𝑍) + 𝑓 (𝐵) ≥

≥ 𝑓 (𝑍 ∪ 𝐵) + 𝑓 (𝑍 ∩ 𝐵) = 𝑓 ((𝑉 \ 𝑍) \ 𝐵) + 𝑓 (𝑍 ∩ 𝐵) =

= 𝑓 ∗((𝑉 \ 𝑍) \ 𝐵, 𝐵) + 𝑓 (𝑍 ∩ 𝐵) ≥ 𝑓 ∗((𝑉 \ 𝑍) ∩ 𝑋, 𝐵) + 𝑓 (𝑍 ∩ 𝐵) =

= | (𝑉 \ 𝑍) ∩ 𝑋 | + 𝑓 (𝑍 ∩ 𝐵)

So 𝑓 (𝑍 ∩ 𝐵) < 𝑓 (𝐵) ≤ 𝑘 and similarly 𝑓 (𝐵 \ 𝑍) < 𝑓 (𝐵) ≤ 𝑘 . Hence, (𝑇 ′, 𝐿′) forms a partial
branch-decomposition, which extends (𝑇, 𝐿), with a branch-width at most 𝑘 , and 𝑇 ′ has more
leaves than 𝑇 , which contradicts our assumption. □

The proof of Theorem 3.21 offers an algorithm capable of either identifying a well-linked
set of size 𝑘 or constructing a branch-decomposition with a width of at most 𝑘 . Let 𝑡 =

𝑘/3, Theorem 3.19 and Theorem 3.21 combined either concludes, that bw( 𝑓 ) > 𝑡, or finds a
decomposition with width at most 3𝑡 + 1.

Analyzing the running time involves considering two cases. The first case arises when only
the function 𝑓 is provided as an input, and the interpolation function 𝑓 ∗ needs to be computed. In
this case let 𝑓min be the interpolation, and use the submodular function minimization algorithm
for calculating its value. This computation can be completed in 𝑂 (𝑛5𝛾 log 𝑛) time, where 𝛾
represents the computation time of 𝑓 (𝑋) for a subset 𝑋 . The overall time complexity, with
finding a base, checking well-linkedness, etc. is 𝑂 (𝑛7𝛾 log 𝑛).

Another case is where both the function 𝑓 and 𝑓 ∗ are provided as input. The overall time
complexity for this case is𝑂 (𝑛6𝛿 log 𝑛), where 𝛿 represents the time required to compute 𝑓 ∗(𝑋)
for a subset 𝑋 .

Applying this algorithm with small modifications for the matroid’s connectivity function
decreases the general running time. Let 𝑀 = (𝑆, 𝑟) be a matroid, 𝑆 is the ground-set, and 𝑟 is the
rank function. There is an interpolation of 𝜆𝑀 , which can be computed faster, than 𝜆min. This
interpolation is 𝜆𝐵 (𝑋,𝑌 ) = 𝑟 (𝑋 ∪ (𝐵 \𝑌 )) + 𝑟 (𝑌 ∪ (𝐵 \ 𝑋)) − |𝐵 \ 𝑋 | − |𝐵 \𝑌 | + 1, where 𝐵 is
a base of matroid 𝑀 .

The original algorithm uses submodular function minimization not only to find an inter-
polation of 𝜆, but also at another instance. It searches for a set 𝑍 for two disjoint sets 𝑋,𝑌 ,
such that 𝑋 ⊆ 𝑍 ⊆ 𝑆 \ 𝑌 and 𝜆(𝑍) is minimized. This process involves matroid intersection of
𝑀1 = 𝑀/𝑋 \ 𝑌 and 𝑀2 = 𝑀 \ 𝑋/𝑌 , with rank functions 𝑟1, 𝑟2, respectively. If 𝑀 is given by
the rank oracle, the running time is 𝑂 (𝑛2.5), making the overall running time𝑂 (𝑛3.5), assuming
that oracle calls take unit time.
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3.3 Connection to graph parameters

The branch-width of a graph and the branch-width of its cycle matroid is not always the same.
The question is, is there a way to rule out those cases where they differ? Mazoit and Thomassé
in [25] proved that the branch-width of a bridgeless graph is equal to the branch-width of its cycle
matroid. Their theorem will be presented later on in this section, it utilizes hypergraphs instead
of graphs. In hypergraphs, the branch-width is defined similarly to that in graphs. Additionally,
Hicks and McMurray in [18] showed that if a graph contains a cycle of length at least 2, then
the branch-width of the graph and of its cycle matroid is the same.

Figure 3.1 illustrates a graph 𝐺 where the branch-width matches that of its corresponding
graphic matroid. Conversely, the following example illustrates the opposite.

Figure 3.5: Here is an example demonstrating that the branch-width of a graphic matroid does
not always match the branch-width of the graph. In the illustration, it is evident that the tree on
the right serves as an optimal branch-decomposition for the tree on the left. The dashed edge
has the maximum edge-width, indicating that bw(𝐺) = 2. However, if you consider the tree as
a graphic matroid, all edges have a width 0, resulting in a branch-width of 1.

The branch-width of a graph is always at least as large as the branch-width of its cycle matroid.
To demonstrate this, consider a hypergraph 𝐻 = (𝑉, 𝐸) its cycle matroid 𝑀𝐻 . A component
of 𝐸 is the smallest nonempty subset 𝐶 ⊆ 𝐸 such that 𝜆𝐻 (𝐶) = ∅, where 𝜆𝐻 (𝐶) represents
the number of vertices with incident edges from both 𝐶 and 𝑉 \ 𝐶. This is the connectivity
function for graphs defined in Definition 2.4. For a subset 𝑋 ⊆ 𝐸 let 𝑐(𝑋) denote the number
of components in the subhypergraph spanned by 𝑋 . A hypergraph is considered connected, if
𝑐(𝐸) = 1, and bridgeless if 𝐸 \ 𝑒 is connected for all 𝑒 ∈ 𝐸 .

Consider a partition (𝐸1, 𝐸2), and let 𝑛1, 𝑛2, and 𝑛 denote the number of vertices spanned in
𝐸1, 𝐸2, and 𝐸 , respectively. Since in a graphic matroid, the independent subsets are forests and
trees, the rank of a subset 𝑋 ⊆ 𝐸 corresponds to the size of a maximal forest. Hence:

𝜆𝑀𝐻
(𝐸1) = 𝜆𝑀𝐻

(𝐸2) = 𝑟 (𝐸1) + 𝑟 (𝐸2) − 𝑟 (𝐸) + 1 = 𝑛1 − 𝑐(𝐸1) + 𝑛2 − 𝑐(𝐸2) − 𝑛 + 𝑐(𝐸) + 1 =

= 𝜆𝐻 (𝐸1) + 𝑐(𝐸) + 1 − 𝑐(𝐸1) − 𝑐(𝐸2) ≤ 𝜆𝐻 (𝐸1).
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As 𝜆𝐻 (𝐸1) = 𝜆𝐻 (𝐸2) = 𝑛1 + 𝑛2 − 𝑛. Equality only holds in the above inequality when both
𝐸1 and 𝐸2 are connected.

The main result of [25] demonstrates that if 𝐻 is connected and bridgeless, then there exists
a branch-decomposition with the same width as the branch-width of 𝑀𝐻 . Additionally, in every
edge-induced partition (𝐸1, 𝐸2) the sets 𝐸1 and 𝐸2 are connected.

Lemma 3.22. If 𝑇 is tight, every edge-induced partition (𝐸1, 𝐸2) is such that either 𝐸1 or 𝐸2 is
connected.

Theorem 3.23. For every branch-decomposition 𝑇 of a connected hypergraph 𝐻, there exists
a tighter branch-decomposition 𝑇 ′ such that for every edge-induced partition (𝐸1, 𝐸2) with
𝑐(𝐸1) > 1, 𝐸1 consists of components of 𝐻 \ 𝑒, for some 𝑒 ∈ 𝐸2. In particular, if 𝐻 is bridgeless,
it has an optimal connected branch-decomposition.
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Chapter 4

Branch-depth

Branch-depth is a concept that generalizes the tree-depth of graphs. While tree-width measures
how close a graph is to being a tree, tree-depth measures how close it is to being a star. The
challenge in generalizing this parameter from graphs to matroids is similar to the one for branch-
width discussed in Chapter 3. The original definitions rely on vertices, which cannot be directly
applied to matroids. The solution, as with branch-width, is to use a definition that relies solely
on connectivity functions.

Matt DeVos, O-joung Kwon, and Sang-il Oum addressed this problem [9], defining the
branch-depth of a connectivity function. The branch-depth of a matroid and a graph is determined
by the branch-depth of their connectivity functions as outlined in Section 2.3. The definition of
DeVos et al. is the following.

Definition 4.1. Let 𝑆 be a finite set of elements. A depth-decomposition of a connectivity
function 𝜆 : 2𝑆 → Z is a (𝑇, 𝐿) pair, where 𝑇 is a tree with at least one internal node, which is a
node that has child nodes.

A key difference between this definition and that of a branch-decomposition is that, in this
case, the tree does not need to be sub-cubic. However, since an internal node is required, a
decomposition consisting of just one node does not qualify as a depth-decomposition. Conse-
quently, if the ground set 𝑆 has fewer than two elements, no branch-decomposition exists. In
such instances, the branch-depth of 𝜆 is defined 0.

The radius of a (𝑇, 𝐿) decomposition is the radius of the tree 𝑇 . It is the smallest number 𝑟 ,
such that there exists a node within a distance of 𝑟 from every other node.

Definition 4.2. Let (𝑇, 𝐿) be a decomposition of a connectivity function 𝜆. For an internal node
𝑣 ∈ 𝑉 (𝑇), the connected components of the graph 𝑇 \ {𝑣} give a partition P𝑣 on 𝐸 by 𝐿. The
width of 𝑣 is defined to be 𝜆(P𝑣), where 𝜆(P𝑣) = maxP⊆P𝑣

𝜆𝑀 (⋃𝑋∈P 𝑋). The width of the
decomposition (𝑇, 𝐿) is the maximum width of an internal node of𝑇 . The decomposition (𝑇, 𝐿)
is a (𝑘, 𝑟)-decomposition of 𝜆 if the width is at most 𝑘 and the radius is at most 𝑟. The branch-
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depth of 𝜆, denoted by bd(𝜆), is the minimum 𝑘 such that there exists a (𝑘, 𝑘)-decomposition
of 𝜆.

The most notable difference between this definition and the definition of branch-width is
that, in this case, we use the vertices of the tree to create the components rather than the edges.
As a result, a partition can contain multiple subsets, not just two.

Figure 4.1: An example of an optimal depth-decomposition for the matroid in Figure 3.1. This
is a (2, 2) decomposition, as the root has a distance of at most 2 from every node, and 𝜆(P𝑣) is
at most 2 for every node in the tree.

4.1 Computation

Before any computation, Devos, Kwon, and Oum in [9], and Gollin, Hendrey, Mayhew, and Oum
in [17], present certain properties of matroids that aid in establishing bounds on branch-depth,
or the branch-depth of their minors.

Theorem 4.3. Let 𝑘 ≥ 1. If a matroid 𝑀 has no circuits of size more than 𝑘 or no cocircuits of
size more than 𝑘 , then the branch-depth of 𝑀 is at most 1

2 𝑘 (𝑘 + 1).

Theorem 4.3 is a corollary of Theorem 5.11 by using the connection between branch-depth
and contraction-deletion depth Theorem 6.1.

Lemma 4.4. Let 𝑘 be a non-negative integer. Let 𝑀 = (𝑆, F ) be a matroid of branch-depth 𝑘
and let 𝑋,𝑌 be disjoint subsets of 𝑆 such that 𝑋 ∪ 𝑌 ≠ ∅. Then 𝑀 \ 𝑋/𝑌 has a component of
branch-depth at least 𝑘 − |𝑋 | − |𝑌 |.

Let 𝑆 be a finite set of elements and 𝜆 : 2𝑆 → Z be a connectivity function. The following
two lemmas assist in finding decompositions of 𝜆 based on partitions.

Lemma 4.5. Let 𝜆 be a connectivity function on 𝐸 and let 𝐾 be a subset of 𝐸 such that
𝜆(𝐾) = 0. Let 𝑘, 𝑟1, 𝑟2 be integers such that 𝜆 |𝐾 has a (𝑘, 𝑟1)-decomposition and 𝜆 |𝐸\𝐾 has a
(𝑘, 𝑟2)-decomposition.
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• If 𝑟1 ≠ 𝑟2, then 𝜆 has a (𝑘,max{𝑟1, 𝑟2})-decomposition.

• If 𝑟1 = 𝑟2, then 𝜆 has a (𝑘, 𝑟1 + 1)-decomposition.

Proof. Let’s assume that 𝑟1 ≥ 𝑟2, and let (𝑇1, 𝐿1) be a (𝑘, 𝑟1)-decomposition of 𝜆 |𝐾 . Let 𝑣1 be
an internal node of 𝑇1 such that each node of 𝑇1 is within distance radius 𝑟1 from 𝑣1. Similarly,
let (𝑇2, 𝐿2) be a (𝑘, 𝑟2)-decomposition of 𝜆𝐸\𝐾 and 𝑣2 an internal node of 𝑇2 such that each node
of 𝑇2 is within the radius 𝑟2 from 𝑣2. Let 𝑇 be the tree obtained from the disjoint union of 𝑇1 and
𝑇2 by adding an edge between 𝑣1 and 𝑣2.

Figure 4.2: Here is an example of the tree resulting from a disjoint union. The new edge is
highlighted in green, connecting the two nodes in 𝑇1 and 𝑇2, each of which has a distance of 2
and 1 from every other node, respectively.

Then 𝑇 with 𝐿1 and 𝐿2 forms a decomposition (𝑇, 𝐿) of 𝜆. The function 𝜆 is the disjoint
union of 𝜆1 and 𝜆2, then by using the lemma of connectivity functions 2.5, (𝑇, 𝐿) has a width
at most 𝑘 . Look at the radius of 𝑇 . If 𝑟2 < 𝑟1, then it is at most 𝑟1 and consequently (𝑇, 𝐿) is a
(𝑘, 𝑟1)-decomposition. If 𝑟2 = 𝑟1, then the radius of 𝑇 is at most 𝑟1 + 1 so (𝑇, 𝐿) is a (𝑘, 𝑟1 + 1)-
decomposition. □

The second Lemma 4.6 is a generalization of the first Lemma 4.5 for 𝑚-partitions.

Lemma 4.6. Let 𝜆 be a connectivity function on 𝑆. Let 𝑆1, 𝑆2, ..., 𝑆𝑚 be a partition of 𝑆 into
non-empty sets such that 𝜆(𝑆𝑖) = 0 for all 1 ≤ 𝑖 ≤ 𝑚. Let 𝜆𝑖 := 𝜆 |𝑆𝑖 and 𝑘𝑖 be the branch-depth
of 𝜆𝑖. Let 𝑘 = max{𝑘1, 𝑘2, ..., 𝑘𝑚}. Then the branch-depth of 𝜆 is 𝑘 or 𝑘 + 1. In particular,
if the branch-depth of 𝜆 is 𝑘 + 1, then there exist 𝑖 < 𝑗 such that 𝑘𝑖 = 𝑘 𝑗 = 𝑘 and 𝜆 has a
(𝑘, 𝑘 + 1)-decomposition.

Proof. We can prove this by induction on 𝑚, assuming 𝑚 ≥ 2. The branch-depth of 𝜆 is at
least 𝑘 , as it’s at least the branch-depth of 𝜆𝑖 for every 𝑖 when we consider subtrees. If 𝑘𝑖 = 0
for all 𝑖, then each |𝑆𝑖 | = 1. In this case, the branch-depth of 𝜆 is 1 because we can create a
(0, 1)-decomposition (𝑇, 𝐿) where 𝑇 consists of a root and 𝑚 leaves. Now, assume that max𝑖 𝑘𝑖
is positive, and let’s say it’s 𝑘1. Let (𝑇1, 𝐿1) be a (𝑘, 𝑘)-decomposition of 𝜆 |𝑆1 , and let 𝑣1 be an
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internal node of 𝑇1 such that each node of 𝑇1 is within distance 𝑘 from 𝑣1. If |𝑆2 | = 1, we attach
a leaf to 𝑣1 corresponding to the element of 𝑆2. This addition gives a (𝑘, 𝑘)-decomposition of
𝜆 |𝑆1∪𝑆2 , fulfilling the lemma’s statement for 𝑆1 ∪ 𝑆2, 𝑆3, . . . , 𝑆𝑚 by induction. Therefore, we may
assume that |𝑆2 |, |𝑆3 |, . . . , |𝑆𝑚 | ≥ 2, implying 𝑘2, 𝑘3, . . . , 𝑘𝑚 ≥ 1. We can then apply Lemma 4.5
repeatedly for these cases. □

Lemma 4.7 follows as a corollary from Lemma 4.6.

Lemma 4.7. Let 𝑀 be a matroid. Let 𝑘 be the maximum branch-depth of the components of
𝑀 . Then the branch-depth of 𝑀 is 𝑘 or 𝑘 + 1. In particular, if 𝑀 has at most one component
having branch-depth exactly 𝑘 , then the branch-depth of 𝑀 is equal to 𝑘 .

In Lemma 4.5 and Lemma 4.6 we saw how to find a decomposition for matroids with special
partitions. The following lemma makes an upper bound of branch-depth based on the matroid’s
partitions.

Lemma 4.8. Let 𝑚 and 𝑘 be non-negative integers, let 𝑀 = (𝑆, F ) be a matroid, and let 𝑁1

and 𝑁2 be minors of 𝑀 such that (𝑆(𝑁1); 𝑆(𝑁2)) is a partition of 𝑆 and 𝜆𝑀 (𝑆(𝑁1)) ≤ 𝑘 . If all
components of both 𝑁1 and 𝑁2 have branch-depth at most 𝑚, then 𝑀 has branch-depth at most
𝑚𝑎𝑥{𝑚 + 𝑘;𝑚 + 2}.

The computation of branch-depth is closely tied to its relationship with branch-width. If the
branch-depth of a matroid is at most 𝑘 , then in consequence its branch-width is at most 𝑘 . To
determine whether the depth is at most 𝑘 , we require the following proposition from [9], which
highlights a useful parameter trait concerning matroids.

Proposition 4.9. If 𝑁 is a minor of a matroid 𝑀 , then the branch-depth of 𝑁 is less than or
equal to the branch-depth of 𝑀 .

Proof. Assume that 𝑁 has at least two elements, and assume that |𝑆(𝑀) | > |𝑆(𝑁) |. Let 𝑘 be
the branch-depth of 𝑀 , and (𝑇, 𝐿) be a (𝑘, 𝑘)-decomposition. Let 𝑇 ′ be a minimal subtree of
𝑇 , which contains all 𝐿 (𝑣) leaves, where 𝑣 ∈ 𝑆(𝑁). Let 𝐿′ be the restriction of 𝐿 on the set
of leaves of 𝑇 ′. Since |𝑆(𝑀) | > |𝑆(𝑁) | ≥ 2, by assumption, 𝑇 ′ must have at least one internal
node. 𝑇 ′ is a subtree of 𝑇 , hence the radius of it is at most 𝑘 .

From Lemma 2.5 for all 𝑋 ⊆ 𝑆(𝑀), 𝜆 |𝑁 (𝑋 ∩ 𝑆(𝑁)) ≤ 𝜆𝑀 (𝑋), so the width of (𝑇 ′, 𝐿′) is at
most the width of (𝑇, 𝐿), 𝑘 . As a consequence, (𝑇 ′, 𝐿′) is a (𝑘, 𝑘)-decomposition of 𝑁 . □

In essence, Proposition 4.9 implies that the class of matroids with branch-depth at most 𝑘
is minor-closed. This enabled Matt DeVos, O-joung Kwon, and Sang-il Oum [9] to straightfor-
wardly prove the following corollary algorithmically.
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Corollary 4.10. For each fixed finite field F and an integer 𝑘 , we can decide in time 𝑂 (𝑛3)
whether the input n-element rank-r matroid represented by an 𝑟 × 𝑛 matrix over F has branch-
depth at most 𝑘 .

Proof. Initially, to discover a branch-decomposition with a branch-width no greater than 𝑘 , we
can use the algorithm proposed by Hliněný [21], detailed earlier in Section 3.1, with a time
complexity of 𝑂 (𝑛3). Given the connection between branch-depth and branch-width, if no such
decomposition exists, it implies that the branch-depth exceeds 𝑘 . Conversely, if the algorithm
does discover such a decomposition, then we can proceed to use the method outlined in [22] to
ascertain whether the input matroid has a minor isomorphic to a fixed matroid. □

4.2 Connection to graph parameters

The parameters branch-depth and tree-depth are tied for graphs. For a connected graph, the
branch-depth is at most its tree-depth, as will be demonstrated later in this section. However, in
general, these two parameters diverge for a graph’s cycle matroid, as illustrated by the following
figure.

Figure 4.3: 𝑃𝑛 serves as a typical example where the matroid branch-depth and tree-depth differ.
While its tree-depth is ⌈log2(𝑛 + 1)⌉, as demonstrated in [26], its branch-depth remains 1.

However, certain restrictions can be established to make them tied. When a graph is 3-
connected, its tree-depth as a graph and the branch-depth of its cycle matroid become tied to
each other.

Lemma 4.11. The branch-depth of a connected graph is less than or equal to its tree-depth.

Proof. Let 𝐺 be a graph. The branch-depth of a graph with at most one edge is 0, hence we may
assume that 𝐺 has at least two edges.

Let 𝐹 be a rooted forest with height 𝑘 , where 𝑘 = td(𝐺) denotes the tree-depth of 𝐺. This
forest is structured such that its closure contains the simplification of 𝐺 as a subgraph, devoid
of loops and parallel edges. The closure of a rooted forest is a simple graph on its vertices with
edges between two nodes if there is a directed path between them in the forest. We may assume
that 𝑉 (𝐹) = 𝑉 (𝐺). Thus 𝐹 is connected.
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For every edge 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐺), where 𝑣 is under 𝑢 in the forest 𝐹, attach a leaf to the node
𝑣, thus making a tree 𝑇 . Let 𝐿 be the bĳection from 𝐸 (𝐺) to the leaves of 𝑇 . The claim is that
(𝑇, 𝐿) is a (𝑘, 𝑘)-decomposition.

Figure 4.4: The image on the left is the above-mentioned rooted forest of 𝑃5, its closure trivially
contains the path. The image on the right is the tree obtained by attaching leafs to the respective
vertices.

Consider an internal node 𝑣 of 𝑇 with distance 𝑖 from the root. This distance is bounded by
𝑘 − 1 due to the height of 𝐹. Let 𝑃 be the partition of 𝐸 (𝐺) determined by node 𝑣. If a vertex
in 𝐺 has edges from multiple parts of this partition, it must lie on the path from the root to 𝑣.
Therefore, the number of such vertices, which equals the width of 𝑣 is at most 𝑖 + 1 ≤ 𝑘 .

As the root node has a distance of at most 𝑘 , the radius of 𝑇 is also at most 𝑘 , thereby
confirming the claim. □

Furthermore, Theorem 4.12 holds for all graphs.

Theorem 4.12. Let 𝐺 be a graph, 𝑘 be its branch-depth, and 𝑡 be its tree-depth. Then 𝑘 − 1 ≤
𝑡 ≤ max{2𝑘2 − 𝑘 + 1.2}.

Proposition 4.13. bd(𝑀 (𝐺)) ≤ bd(𝐺)−1 ≤ 𝑡. In addition, if G is connected, then bd(𝑀 (𝐺)) ≤
bd(𝐺) − 1 ≤ 𝑡 − 1.

To prove the Proposition 4.13 use the following lemma for connectivity functions from [29].

Lemma 4.14. For a connected graph 𝐺, if ∅ ≠ 𝑋 ≠ 𝑆(𝐺), then 𝜆𝑀 (𝐺) (𝑋) ≤ 𝜆𝐺 (𝑋) − 1.

Proof of the Proposition 4.13.

Proof. The inequality from Lemma 4.14, with Lemma 4.11 suggests, that if 𝐺 is connected,
then bd(𝑀 (𝐺)) ≤ bd(𝐺) − 1 ≤ 𝑡 − 1.

If 𝐺 is disconnected, then choose a vertex from each component and contract them into
one vertex. That cannot increase the branch-depth of the graph, and the cycle matroid does not
change. With Theorem 4.12, the statement is fulfilled. □
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Chapter 5

Depth parameters

This section is dedicated to more matroid depth parameters. Let 𝑀 be a matroid, and let dd(𝑀),
cd(𝑀) and cdd(𝑀) denote the deletion-depth, contraction-depth and contraction-deletion
depth parameters respectively. These notions were first mentioned in [10], by Ding, Oporowski
and Oxley, they referred to contraction-deletion depth as type. Similarly, Robertson and Seymour
used the names C-type and D-type for contraction-depth and deletion-depth respectively. The
parameter names used in this paper are derived from [9] by DeVos, Kwon, and Oum. Their
definition is the following 5.1.

Definition 5.1.

• If 𝐸 (𝑀) = ∅, then dd(𝑀) = cd(𝑀) = cdd(𝑀) = 0.

• If M is not connected, then dd(𝑀), cd(𝑀), cdd(𝑀) is the maximum respective depth of
the matroid’s components.

• If 𝑀 is connected, and 𝐸 (𝑀) ≠ ∅, then:

– dd(𝑀) = 1 + min𝑒∈𝑀{dd(𝑀 \ 𝑒)}.

– cd(𝑀) = 1 + min𝑒∈𝑀{cd(𝑀/𝑒)}

– cdd(𝑀) = min{min𝑒∈𝑀{dd(𝑀 \ 𝑒)},min𝑒∈𝑀{cd(𝑀/𝑒)}}

Figure 5.1: Deletion-depth of the matroid in Figure 3.1. By deleting the bottom edge, we got the
image on the left containing two components that we can examine recursively. Consequently,
the deletion-depth of the matroid is 3.
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Figure 5.2: The contraction-depth of the matroid in Figure 3.1. As for Figure 5.1, by contracting
the edge 𝑐, we get two components that we can examine separately. The contraction-depth of the
matroid is 4.

These parameters can also be set, by the height of their decomposition trees. Definition 5.2
is the definition of the deletion-decomposition tree, we get the decomposition trees of the
remaining two parameters by changing 𝑀 \ 𝑒 to 𝑀/𝑒 or min{dd(𝑀 \ 𝑒), cd(𝑀/𝑒)}, depending
on the parameter.

Definition 5.2. Deletion-decomposition tree:

• If 𝑀 has a single element, the tree has a single vertex, labelled with the element.

• If 𝑀 is disconnected the tree is obtained by merging the roots of the decomposition trees
of the components of 𝑀 .

• If 𝑀 is connected, there exists an element 𝑒 ∈ 𝑀 such that dd(𝑀) = dd(𝑀 \ 𝑒) + 1.
The tree is obtained by attaching the decomposition tree of 𝑀 \ 𝑒 to a new vertex, label
the edge by the deleted element 𝑒, and change the root to the newly added vertex. The
deletion-depth is then the smallest height of the tree.

Figure 5.3: The deletion-decomposition tree and contraction-decomposition tree of the matroid
in Figure 3.1.

From Definition 5.1 it follows trivially, that the contraction-deletion depth of a matroid is at
most the minimum of its contraction-depth, and deletion-depth.

Another notable observation is the duality between contraction-depth and deletion-depth. For
a matroid 𝑀 , we have cd(𝑀) = dd(𝑀∗), where 𝑀∗ represents the dual matroid. Consequently,
for contraction-deletion depth, cdd(𝑀) = cdd(𝑀∗).
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Two other depth parameters are contraction∗-depth and contraction∗-deletion depth de-
noted by c*d(𝑀) and c*dd(𝑀), respectively. The first one was introduced by Kardoš, Král’,
Liebenau and Mach [23] under the name branch-depth.Around the same period, Devos, Kwon,
and Oum introduced a parameter with the same name, presented earlier in Chapter 4, which
made the topic slightly confusing. This prompted Král’ et al. to rename their parameter. In some
papers, it is referred to by the name 𝐾𝐾𝐿𝑀-depth, derived from the authors’ initials.

Let 𝑀 = (𝑆, F ) be a matroid, below are the definitions for each notion.

Definition 5.3. Contraction∗-depth decomposition is a pair (𝑇, 𝑓 ), where 𝑇 is a tree with
𝑟 (𝑀) edges. The function 𝑓 maps the elements to the leaves such that for every set of elements
𝑋 ⊆ 𝑆, the number of edges in the rooted subtree induced by 𝑓 (𝑋), denoted by | |𝑇∗(𝑋) | |, is at
least 𝑟 (𝑋). Contraction∗-depth is the minimum depth of a contraction∗-depth decomposition
of 𝑀 .

Figure 5.4: The contraction∗-decomposition of the matroid in Figure 3.1. The result of this
decomposition is that c*d(𝑀) = 3, as it is relatively easy to see that no other decomposition
with a lesser depth could satisfy the rank requirements.

For matroids represented over a fixed finite field F, there exists a recursive definition, that
does not include the decomposition.

Definition 5.4. Contraction∗-depth: For representable matroids.

• If M has a single element, then c*d(𝑀) = rank(𝑀).

• If M is not connected, then c*d(𝑀) is the maximum contraction∗-depth of a component
of M.

• If𝑀 is connected, c*d(𝑀) = 1+𝑚𝑖𝑛(𝑀/𝐾) factoring M over an arbitrary one-dimensional
subspace.

The last point of the definition resembles the definition of contraction-depth 5.1, which
explains why the authors ultimately chose this name. The difference here is that the contraction
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can be made by any arbitrary one-dimensional subspace; it does not have to be a subspace
generated by an element of the matroid. This implies the following inequality: for a matroid 𝑀 ,
c*d(𝑀) ≤ cd(𝑀).

The contractions from the definition can be visualized using a contraction∗-tree, which is
defined similarly to contraction-decomposition trees. In this context, one-vertex trees correspond
to matroids with rank 0, and the edges are labeled with one-dimensional subspaces. A principal
contraction∗-tree has all its edge labels generated by elements of the matroid. Naturally, the
minimal depth of such a tree serves as an upper bound on the contraction∗-depth.

Bria’nski, Král’, and Lamaison in [2] proved the following lemma about 𝑐∗-depth of a
matroid. This is one of their auxiliary results in the course of their research on this parameter.

Lemma 5.5. Let (𝑇, 𝑓 ) be a contraction∗-decomposition of a matroid 𝑀 and let 𝑣1, . . . , 𝑣𝑘 be
the maximal descendants of the root that are branching vertices or leaves. Each set𝑇 (𝑣𝑖), 𝑖 ∈ [𝑘],
is a union of components of the matroid 𝑀 . In particular, the following holds for every subset 𝑋
of elements of 𝑀:

𝑟𝑀 (𝑋) =
∑︁
𝑖∈[𝑘]

𝑟𝑀 (𝑋 ∩ 𝑇 (𝑣𝑖))

.

The lemma informally states that if the root of the contraction∗-decomposition tree has a
degree greater than one, then the matroid associated with this decomposition is not connected.
The subtrees of the root’s children contain the images of each component, meaning all elements
of a component are mapped into the same subtree.

The definition of contraction∗-deletion depth from [30] applies only to representable ma-
troids. Similar to Definition 5.4, the following definition is recursive.

Definition 5.6.

• If 𝑟 (𝑀) = 0 then c*dd(𝑀) = 0.

• If 𝑟 (𝑀) = 1 then c*dd(𝑀) = 1.

• If M is disconnected, then c*dd(𝑀) is the maximum contraction∗-deletion depth of com-
ponents of M.

• If M is connected then c*dd(𝑀) is one plus the smaller among the two:

– the minimum contraction∗-deletion depth of (𝑀 \ 𝑒),

– the minimum contraction∗-deletion depth of the matroid (𝑀/𝐾) factoring 𝑀 over
an arbitrary one-dimensional subspace K.

Just like in the case of contraction-deletion depth, it follows trivially from the definition that
the contraction∗-deletion depth of a matroid is at most its contraction∗-depth.
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Contraction-depth, deletion-depth, contraction-deletion depth, contraction∗-depth, and con-
traction∗-deletion depth can be extended from matroids to matrices. This extension means that
given a matrix 𝐴, these notions correspond to those of its associated column matroid.

5.1 Computation

In preceding sections 3.1, 4.2, one could read that for branch-width and branch-depth, there
exists a polynomial time algorithm, that can decide for a matroid 𝑀 whether the bw(𝑀) and the
bd(𝑀) is less than a fixed integer. Moreover, if the answer is yes, it can compute the exact value
of these parameters. Unfortunately, there is no such algorithm for the parameters discussed in
this chapter. In a recent paper Brianski, Koutecký, Král’, Pekárková, and Schröder [1] proved
that here these decisions are NP-complete even for represented matroids.

Theorem 5.7. For every field F, each of the following five decision problems, whose input is an
F-represented matroid 𝑀 and an integer 𝑘 , is NP-complete:

• Is the contraction-depth of 𝑀 at most 𝑘?

• Is the contraction∗-depth of 𝑀 at most 𝑘?

• Is the contraction-deletion depth of 𝑀 at most 𝑘?

• Is the contraction∗-deletion depth of 𝑀 at most 𝑘?

• Is the deletion-depth of 𝑀 at most 𝑘?

Proof. Let 𝐺 = (𝑋,𝑌 ; 𝐸) be an input bipartite graph. 𝐺′ is obtained from 𝐺 by connecting all
vertices from 𝑋 with all vertices from𝑌 . Deciding whether there exist 𝑘-element subsets 𝑋′ ⊆ 𝑋

and 𝑌 ′ ⊆ 𝑌 such that 𝑋′∪𝑌 ′ is independent is NP-complete. The crucial part of the proof lies in
demonstrating that the existence of such subsets in 𝐺 is equivalent to certain statements, which
in turn are equivalent to the corresponding questions posed in the theorem.

- The matroid 2𝑀F(𝐺′) has contraction-depth at most |𝑋 | + |𝑌 | − 𝑘 + 1.

- The matroid 𝑀F(𝐺′) has contraction∗-depth at most |𝑋 | + |𝑌 | − 𝑘 .

- The matroid ( |𝑉 (𝐺′) | +1)𝑀F(𝐺′) has contraction-deletion depth at most |𝑋 | + |𝑌 | − 𝑘 +1.

- The matroid ( |𝑉 (𝐺′) | + 1)𝑀F(𝐺′) has contraction∗-deletion depth at most |𝑋 | + |𝑌 | − 𝑘 .

𝑀F(𝐺′) denotes a represented matroid over a field F obtained from graph 𝐺′. This contains
|𝑉 (𝐺′) | + |𝐸 (𝐺′) | elements, each represented by a vector of dimension |𝑉 (𝐺′) |. For every vertex
𝑣 ∈ 𝑉 (𝐺′), its corresponding element is 𝑒𝑣 ∈ 𝑀F(𝐺′), where 𝑒𝑣 represents a unit vector in
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the field. For an edge 𝑢𝑣 ∈ 𝐸 (𝐺′), the corresponding element is 𝑒𝑣 − 𝑒𝑢 or 𝑒𝑢 − 𝑒𝑣, the order
does not change the matroid. For a constant 𝐷, 𝐷𝑀F(𝐺′) means that each element in 𝑀F(𝐺′),
represented by a column, is included 𝐷 times in 𝐷𝑀F(𝐺′).

The following lemma concerning bipartite graphs helps establish the equivalence. The proof
can be found in [3].

Lemma 5.8. Let 𝐺 be a bipartite graph with parts 𝑋 and 𝑌 , F be a field, and 𝑘 be an integer. Let
𝐺′ be the graph obtained from 𝐺 by adding all edges between the vertices of 𝑋 and between the
vertices of 𝑌 . The following three statements are row-equivalent.

- The graph 𝐺 has an independent set containing 𝑘 elements of 𝑋 and 𝑘 elements of 𝑌 .

- The contraction∗-depth of 𝑀F(𝐺′) is at most |𝑋 | + |𝑌 | − 𝑘 .

- The contraction-depth of the matroid 2𝑀F(𝐺′) is at most |𝑋 | + |𝑌 | − 𝑘 + 1.

The equivalence of the first two statements and the existence of an independent set follow
directly from the lemma.

The matroid ( |𝑉 (𝐺′) |+1)𝑀F(𝐺′) has rank |𝐺′|, indicating that its contraction-deletion depth
and contraction∗-deletion-depth at most |𝐺′| + 1 and at most |𝐺′|, respectively. In this matroid
each element is parallel to at least |𝑉 (𝐺′) | others, meaning that the contraction-deletion depth
of𝑀F(𝐺′) is the same as its contraction-depth and its contraction∗-deletion depth is the same as
its contraction∗- depth. From Lemma 5.8 follows the equivalence of statements 3 and 4.

The proof easily constructs the listed matroids in polynomial time in the number of input
graph’s vertices. Hence the NP-completeness is fulfilled.

To prove that deletion-depth is NP-complete, it is important to note that the contraction-depth
of a matroid is equal to the deletion-depth of its dual. For a represented matroid it is easy to
construct its dual in polynomial time in the number of the elements of the matroid. □

Since it is not possible to create similar algorithms as in the previous chapters, let us examine
the upper and lower bounds of the parameters.

For contraction-depth and deletion-depth, DeVos, Kwon, and Oum in [9] proved upper and
lower bounds with the size of the matroid’s circuit. The proof of their theorem requires the
following.

Theorem 5.9. Seymour (see [10])). If 𝐶 is a longest circuit in a connected matroid 𝑀 , then
𝑀/𝐶 has no circuits of size at least |𝐶 |.

Lemma 5.10. Let 𝑀 be a matroid and 𝑒 ∈ 𝑆(𝑀). If 𝐶 is a circuit of a matroid 𝑀 with |𝐶 | ≥ 2,
then 𝑀/𝑒 has a circuit of size at least |𝐶 |/2.

Now the theorem by DeVos et. al.
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Theorem 5.11. Let 𝑐 be the length of a longest circuit in 𝑀 . (If M has no circuits, then let 𝑐 = 1.)
log2 𝑐 ≤ cd(𝑀) ≤ 𝑐(𝑐 + 1)/2.

Proof. First, we prove the upper bound with induction on 𝑐. We assume that 𝑐 ≥ 2, and 𝑀 is
connected. If 𝑐 ≤ 1, the contraction-depth is less than one, as all components have elements at
most 1.

Let 𝐶 be one of the longest circuits in 𝑀 . According to the definition, cd(𝑀) ≤ |𝐶 | +
cd(𝑀/𝐶). Using induction and Theorem 5.9, we can show that cd(𝑀/𝐶) ≤ 𝑐(𝑐 − 1)/2. By
substituting cd(𝑀/𝐶) by its upper bound in the first inequality cd(𝑀) ≤ 𝑐(𝑐 + 1)/2.

The lower bound is proven by induction on |𝑆(𝑀) |. Assume that 𝑀 is connected, otherwise,
we can look at the components of 𝑀 . Assume 𝑐 > 1, since if 𝑐 = 1, and by connectedness
all elements are in the same circuit, the statement would automatically be satisfied. Hence
|𝑆(𝑀) | > 1.

For all 𝑒 ∈ 𝑆(𝑀), 𝑀/𝑒 has a circuit of size at least 𝑐/2 according to Lemma 5.10. Therefore,
by the induction hypothesis cd(𝑀/𝑒) ≥ log2 𝑐 − 1. The statement follows directly from the
definition. □

Since contraction-depth and deletion-depth are dual notions, Corollary 5.12 follows from
Theorem 5.11.

Corollary 5.12. Let 𝑐′ be the length of a longest cocircuit in 𝑀 . (If 𝑀 has no cocircuits, then
let 𝑐′ = 1.) Then log2 𝑐

′ ≤ dd(𝑀) ≤ 𝑐′(𝑐′ + 1)/2.

These results imply that having a small contraction-depth equals having small circuits, and
having a small deletion-depth equals having small cocircuits. More precisely a class of matroids
has bounded contraction-depth if and only if all circuits have bounded size, and a class of
matroids has bounded deletion depth if and only if all cocircuits have bounded size.

Another implication of these findings is the characterization of a class of matroids that have
both bounded contraction-depth and bounded deletion-depth.

Corollary 5.13. A class M of matroids has bounded deletion-depth and bounded contraction-
depth if and only if there exists a constant 𝑚 ≥ 0 such that every connected component of a
matroid in M has at most 𝑚 elements.

Proof. The converse is trivial from the definition of a connected component.
For the forward direction, from Theorem 5.11 and Corollary 5.12 follows, that there exist

constants 𝑐 and 𝑐′ such that in every connected component of a matroid in M, all circuits have
size at most 𝑐 and all cocircuits have size at most 𝑐′.

It was proven by Lemos and Oxley in [24] that if a connected matroid has no circuits of more
than 𝑐 elements and no cocircuits of more than 𝑐′ elements, then it has at most 𝑐𝑐′/2 elements.
Therefore, each component of a matroid in M has at most 𝑐𝑐′/2 elements. □
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It was mentioned earlier, that, from the definition contraction-deletion depth is always less
than or equal to contraction-depth, and deletion-depth, hence all the upper bounds cited above
are upper bounds for cdd.

Easy to see, that another upper bound for contraction-depth is the rank of the matroid. To find
a lower bound of contraction-deletion depth on a special matroid, refer to the graph definition
below.

Definition 5.14. An n-fan denoted by 𝐹𝑛 is a graph on 𝑛 + 1 vertices, where 𝑛 vertex creates a
path 𝑃𝑛, and the remaining vertex is adjacent to all vertices.

Dittman and Oporowski in [11] proved the theorem below about graphs containing n-fans.

Theorem 5.15. If a graph 𝐺 contains 𝐹𝑛 as a minor, then the contraction-deletion depth of
𝑀 (𝐺) is at least ⌊log2 𝑛⌋ + 1.

For branch-width and branch-depth it was stated, that they are closed under taking a minor.
Sadly, it cannot be claimed about contraction-, deletion-, and contraction-deletion depth.

By duality, it is enough to demonstrate that these parameters may increase for minors, as
referenced in [9], for one of the first two parameters.

Figure 5.5: The deletion depth of the graph on the left is 3. This is because if we delete the bottom
edge, two components remain, both with 2 edges. If we contract the bottom edge, the minor
graph has a deletion depth of 4. This relationship also holds for contraction depth by duality.
For the graph on the right, the contraction-deletion-depth is 3. If we delete the bottom edge, we
get two components, each with a contraction-deletion depth of 3. However, by contracting this
edge, the minor will have a circuit of size 6 after an edge deletion, so the contraction-deletion
depth is at least 4.
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Unlike contraction-depth, the concept of contraction∗-depth, as proven by Kardoš, Král’,
Liebenau, and Mach [23], has this above-mentioned attribution. Specifically, the class of matroids
with a 𝑐∗-depth of at most 𝑘 , where 𝑘 is a constant, is minor-closed. Consequently, the 𝑐∗-depth
of any minor of a matroid provides a lower bound for this parameter.

Proposition 5.16. If 𝑁 is a minor of 𝑀 , then c*d(𝑁) ≤ c*d(𝑀).

Proof. It is enough to show, that for an element 𝑒 ∈ 𝑀 the contraction∗-depth for the minors
𝑀/𝑒 and 𝑀 \ 𝑒 are at most c*d(𝑀) since all minors are derived from 𝑀 through a series
of contractions and deletions. Let (𝑇, 𝑓 ) be a depth-decomposition of 𝑀 with depth at most
c*d(𝑀). There are two cases.

The first case is when 𝑒 is a loop in 𝑀 . Then 𝑀0 := 𝑀 \ 𝑒 = 𝑀/𝑒. Consequently, for every
𝑋 ⊆ 𝑀0 we have 𝑟𝑀0 (𝑋) = 𝑟𝑀 (𝑋). Therefore, (𝑇, 𝑓 |𝑀0) is a depth-decomposition of 𝑀0.

If 𝑒 is not a loop, let 𝑀1 := 𝑀/𝑒, let 𝑢 be the leaf 𝑓 (𝑒), and let 𝑣 be the parent of 𝑢. Let the
tree 𝑇1 = 𝑇 \ 𝑒 and let the function 𝑓1 : 𝑀1 → 𝑉 (𝑇1) be defined as follows:

𝑓1(𝑥) =

𝑣 if 𝑓 (𝑥) = 𝑢, and

f(x) otherwise

Now we have to show that (𝑇1, 𝑓1) is a depth-decomposition of 𝑀1. | |𝑇1 | | = 𝑟 (𝑀1), since
𝑟 (𝑀1) = 𝑟 (𝑀) − 1 because of 𝑒 not being a loop. From this, let 𝑋 ⊆ 𝑀1, the following is
satisfied 𝑟𝑀1 (𝑋) = 𝑟𝑀 (𝑋 ∪ {𝑒}) − 1. If 𝑢 ∈ 𝑓 (𝑋), then by the depth-decomposition:

| |𝑇∗
1 (𝑋) | | = | |𝑇∗(𝑋 ∪ {𝑒}) | | − 1 ≥ 𝑟𝑀 (𝑋 ∪ {𝑒}) − 1 = 𝑟𝑀1 (𝑋).

If 𝑢 ∉ 𝑓 (𝑋), then
| |𝑇∗

1 (𝑋) | | = | |𝑇∗(𝑋) | | ≥ 𝑟𝑀 (𝑋) ≥ 𝑟𝑀1 (𝑋).

For the deletion let 𝑀2 = 𝑀 \ 𝑒. If 𝑒 is a bridge, then 𝑀/𝑒 = 𝑀 \ 𝑒, thus we may assume,
that 𝑒 is not a bridge. The claim is that (𝑇, 𝑓𝑀2) is a depth-decomposition of 𝑀2. Since 𝑒 is not a
bridge 𝑟 (𝑀2) = 𝑟 (𝑀) = | |𝑇 | |, which is the number of edges in the tree. Furthermore, for every
𝑋 ⊆ 𝑀2 holds, that | |𝑇∗(𝑋) | | ≥ 𝑟𝑀 (𝑋) = 𝑟𝑀2 (𝑋). □

Similarly to Proposition 5.11 and Corollary 5.12, the following can be established for
contraction∗-depth [1].

Theorem 5.17. Let 𝑀 be a matroid and 𝑐 the size of its largest circuit. It holds that log2 𝑐 ≤
c*d(𝑀) ≤ 𝑐2. Moreover, there exists a polynomial-time algorithm that for an input oracle-given
matroid 𝑀 outputs a contraction∗-decomposition tree of depth at most 𝑐2.

After reading Chapter 6 the similarity of the theorems will not be surprising. In [1] an
example shows, that this quadratic upper bound cannot be lowered, it is optimal up to a constant
factor.
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Chan, Cooper, Kouteckỳ, Král’, and Pekárková [4] presented a dynamic programming algo-
rithm for contraction∗-depth decomposition of certain represented matroids. Their theorem is
the following. The idea of the proof is to first approximate the parameter with the algorithm from
Section 5.2. Then proceed computing along its depth-first-search transversal possible frontiers.
A frontier is a tuple, described more in [4].

Theorem 5.18. For the parameterization by a positive integer 𝑑 and a prime power 𝑞, there
exists a fixed parameter algorithm that for a vector matroid 𝑀 over the 𝑞-element field either
outputs that c*d(𝑀) is larger than 𝑑, or outputs a depth-decomposition of 𝑀 with depth 𝑑.

5.2 Approximation

František Kardoš, Daniel Král, Anita Liebenau and Lukáš Mach [23] presented an algorithm,
which finds a depth-decomposition of a matroid 𝑀 , with depth at most 4c*d(𝑀) . Their steps are
the following.

Algorithm 3. Input an 𝑀 connected matroid, a 𝐶 circuit of this matroid, and a non-loop
element 𝑒 ∈ 𝐶.From the definition of connected matroids, it follows that every connected
matroid with at least two elements contains a circuit.

If 𝑟 (𝑀) = 0 or 𝑟 (𝑀) = 1, the depth-decomposition is trivial. It consists of either a single
vertex (the root) if 𝑟 (𝑀) = 0 or two vertices (the root and one additional vertex where all
elements are mapped) if 𝑟 (𝑀) = 1.

Now consider the case, when 𝑟 (𝑀) ≥ 2. If the size of the input circle is at most 2, find a
different one as follows. Determine a base 𝐵 with greedy algorithm, then delete all the elements
𝑓 from 𝐵 such that 𝐵∪ {𝑒} \ { 𝑓 } is dependent. The resulting set forms a circle of length at least
3.

The next step is to contract 𝑒 in the matroid and use the matroid intersection algorithm to
check if the resulting matroid remains connected. If it is connected, the algorithm calls itself
recursively, with input parameters 𝐶 \ {𝑒} and an arbitrary 𝑒1 ∈ 𝐶 \ {𝑒}. After getting the
decomposition of this matroid, we got the decomposition of 𝑀 by adding a new vertex to be the
root.

If it is not connected, the algorithm calls itself recursively for each component. The one
component which contains 𝐶 \ {𝑒} has input parameters 𝐶 \ {𝑒} and an arbitrary 𝑒1 ∈ 𝐶 \ {𝑒}.
The other components have parameters 𝐶′ \ {𝑒} and 𝑒1 ∈ 𝐶′ \ {𝑒}, where 𝐶′ is a different circle
that contains 𝑒. To get the decomposition of 𝑀 , add a new vertex which becomes the root of all
these small decompositions.

The algorithm is polynomial and returns a valid depth-decomposition, as demonstrated in [23].
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Lemma 5.19. The algorithm returns a depth-decomposition of 𝑀 with depth at most 4c*d(𝑀) .

The following Corollary 5.20 is a result of Lemma 5.19.

Corollary 5.20. The contraction∗-depth of a finite matroid 𝑀 is at most 𝑐2, where 𝑐 is the size
of the largest circuit of 𝑀 .

5.3 Connection to graph parameters

This section aims to prove that all the parameters defined above are tied to graph tree-depth.
However, this is not universally true; a few restrictions need to be applied. The first claim
from [9], by DeVos, Kwon, and Oum, is that 2-connectedness for graphs is enough for tree-depth
to be tied with contraction-depth.

Proposition 5.21. Let G be a 2-connected graph of tree-depth t. Then 1 + 1
2 log2(𝑡 − 1) ≤

cd(𝑀 (𝐺)) ≤ 22(𝑡−1)

Proof. In [26], Proposition 6.1 states that if a graph contains no path longer than 𝑛, then its
tree-depth is at most 𝑛. 𝐺 has a path of length 𝑡 − 1. and by an old Dirac theorem, which states
that if a 2-connected graph has a path of length 𝐿, it also has a cycle of length at least 2

√
𝐿.

Therefore, 𝐺 has a cycle of length at least 2
√
𝑡 − 1. By Theorem 5.11 the contraction-depth of

𝑀 (𝐺) is at least log2(2
√
𝑡 − 1).

For the upper bound, let 𝐿 be the length of a longest cycle of 𝐺. Since 𝑡 ≥ td(𝐶𝐿) =

1 + td(𝑃𝐿 − 1) = 1 + ⌈log2 𝐿⌉, it follows, that 𝐿 ≤ 2𝑡−1. By theorem 5.11 cd(𝑀 (𝐺)) ≤
2𝑡−1(2𝑡−1 + 1)/2 ≤ 22(𝑡−1) . □

While the requirement of being 2-connected is insufficient for establishing a tiedness between
tree-depth and other depth parameters, the real criterion is only slightly different. As for branch-
depth, DeVos, Kwon, and Oum demonstrated in [9] that if a graph 𝐺 is 3-connected, then the
tree-depth of graphs and the contraction-depth, as well as the contraction-deletion depth of their
cycle matroids, are all tied. For completeness, we include branch-depth into the theorem.

Theorem 5.22. Let𝐺 be a 3-connected graph of tree-depth 𝑡 and let 𝑘 = ⌊ 1
6
√

2

√︁
log(2(𝑡 − 1)/5)⌋.

Then log(2𝑘−1)
𝑙𝑜𝑔(1+4 log(2𝑘−1)) ≤ bd(𝑀 (𝐺)) ≤ cdd(𝑀 (𝐺)) ≤ cd(𝑀 (𝐺)) ≤ 22(𝑡−1)

The upper bound is clear from Proposition 5.21 and from knowing the connection between
these parameters from Chapter 6.

The next two propositions from [23] suggest the connection between the contraction∗-depth
of a graphic matroid and the tree-depth of the corresponding graph.

Proposition 5.23. For any graph 𝐺, the contraction∗-depth of the graphic matroid 𝑀 (𝐺) is at
most the tree-depth of the graph 𝐺.
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The converse of this Proposition 5.23 does not hold. For example the contraction∗-depth of
𝑀 (𝑃𝑛) is 1, but the tree-depth of that graph is ⌈log2(𝑛 + 1)⌉. Yet the following can be said.

Proposition 5.24. For any 2-connected graph 𝐺, the contraction∗-depth of the graphic matroid
𝑀 (𝐺) is at least 1

2 log2(𝑡𝑑 (𝐺) − 1).
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Chapter 6

Connections between the parameters

Grasping the connections between these parameters proves quite beneficial as it deepens our
understanding of the matroid’s structure and potentially enables us to extend known properties
to other parameters.

Previously, we mentioned some trivial connections such as bw(𝑀) ≤ bd(𝑀) and cdd(𝑀) ≤
min cd(𝑀), dd(𝑀), now we will present some additional ones. The first pair to examine are
branch-depth and contraction-deletion depth. From definitions 4, 5 the following inequality
obtained [9].

Theorem 6.1. For all matroids 𝑀 , bd(𝑀) ≤ cdd(𝑀).

This establishes a hierarchy among matroids with bounded parameters, as depicted in the
figure below.

Moreover, Briański, Král’ and Pekárková [3] proved the following theorems, showing that
branch-depth can be viewed as a minor closure of contraction-deletion depth.

Theorem 6.2. Let M be a class of F-representable matroids. The class has bounded branch-
depth if and only if there exists an F-representable classN of matroids with bounded contraction-
deletion depth such that M is a subclass of the minor closure of N .
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The main theorem of their paper states that if a representable matroid has a rooted (𝑑, 𝑟)-
decomposition, then it is a minor of a matroid with contraction-deletion depth bounded by a
function of 𝑑, 𝑟 . The corollary of this is the subsequent Theorem 6.3, which is also useful for
proving Theorem 6.2.

Theorem 6.3. Every F-representable matroid 𝑀 is a minor of an F-representable matroid 𝑁
such that cdd(𝑁) ≤ 2 bd(𝑀) · (4bd(𝑀) − 1) + 1.

Given that branch-depth is minor-closed, Theorem 6.3 implies that a representable matroid
has a small branch-depth if and only if it is a minor of a matroid with small contraction-deletion
depth.

Figure 6.1: An example illustrating a matroid with small branch-depth and large contraction-
deletion depth. The left figure shows a fat cycle, while the right image contains it as a minor.
Both have branch-depth 2, but the matroid on the left has a contraction-deletion depth of 6. This
can be demonstrated by contracting an edge of each parallel edges; the resulting matroid has a
contraction-deletion depth of 1. Conversely, the matroid on the right has a contraction-deletion
depth of 3. This example also highlights that contraction-deletion depth is not minor-monotone.

Regarding depth-parameters another easy observation from the definitions, is that c*dd(𝑀) ≤
cdd(𝑀). An interesting relationship exists between contraction-depth and contraction∗-depth.
Theorem 6.4 proved by Briański et. al [2] demonstrates that a matroid can be augmented in such a
manner that the resulting matroid’s contraction-depth, minus one, equals the contraction∗-depth
of the original matroid. A corollary of this statement is that c*d(𝑀) ≤ cd(𝑀).

Theorem 6.4. Let 𝑀 be a matroid. The minimum contraction-depth of a matroid 𝑀′ that
contains 𝑀 as a restriction is equal to the contraction∗-depth of 𝑀 increased by one, i.e.,
𝑐∗𝑑 (𝑀) + 1 = min𝑀 ′⊑𝑀 𝑐𝑑 (𝑀′) unless every element of 𝑀 is either a loop or a bridge and 𝑀
has at least one bridge (when this happens, then 𝑐∗𝑑 (𝑀) = 𝑐𝑑 (𝑀) = 1).

The definition of contraction-depth can be altered to exclude exceptions with a single mod-
ification: if the matroid consists of one element, then let cd′(𝑀) be the rank of that element.
Furthermore, it has been proved that these two parameters are functionally equivalent [23].

Proposition 6.5. Contraction-depth and contraction∗-depth are functionally equivalent; the
following holds for every matroid 𝑀 , c*d(𝑀) ≤ cd(𝑀) ≤ 4c*d(𝑀) + 1 .
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Chapter 7

Summary

My thesis aimed to familiarize the reader with matroid parameters, highlight their key attributes
and connections and demonstrate interesting algorithms for computing them, where feasible. The
importance of these parameters was briefly discussed in Chapter 1. Here, I want to emphasize
their crucial role in integer programming. If the column matroid of matrix 𝐴 has a bounded
branch-width and 𝐴 is non-negative, solving an integer program can be achieved in pseudo-
polynomial time [7]. Moreover, integer programming becomes fixed-parameter tractable when
parameterized by the contraction∗-depth of the matroid and the entry complexity of the constraint
matrix [4].

Matroid parameters have paved the way for numerous new research avenues. For instance,
it has been demonstrated that for graphs with bounded tree-width, determining isomorphism is
tractable. This raises the question: can we achieve something similar for matroids with certain
bounded parameters? Král’ and Pekárková are currently investigating this problem, specifically
aiming to design a parameterized algorithm that can determine whether two given represented
matroids with bounded branch-width are isomorphic.

Concerning contraction∗-depth, an approximation algorithm exists for computing a depth-
decomposition. Nonetheless, the issue persists that the approximation factor is not constant.
Improving the approximation ratio and devising approximation algorithms for other matroid
parameters are open problems.
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