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Introduction

Voting and election rules affect us in various ways, from proportionate parlia-
mentary representation to family holiday planning. In some scenarios, voters
carry different weights: in a workplace, for example, the vote of senior staff
may count for more, while in an EU committee, the vote of countries might
count in proportion to their population size. In such cases, a vote from a
lower-weighted party may not count at all, i.e. the outcome of the vote is
the same, with no regard to the vote of the so-called null player. A practical
example often cited is the electoral system of the Council of Ministers of the
European Union in 1958, where Luxembourg acted as a null player.

The definition of null players was first introduced by von Neumann and
Morgenstern [17] in game theory, and then studied by Shapley [19] and
Barthelemy [5] collected several properties of null players in weighted vot-
ing games. Null players can also be defined for weighted committee games—
when weights are introduced for voting rules known from social choice theory.
Weighted committee games were studied by Kurz [14], however, much less is
known about the properties of null players in weighted voting rules.

An intuitive characterization of a null player is the so-called null player
out property, which states that a player is a null player exactly if for all
possible voting profiles the voting outcome will be exactly the same with and
without the null player. This property is slightly different from the definition
of a null player: there, the outcome does not depend on what the null player
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votes. In our work, we formally prove that the two characterizations are the
same in virtually all practical voting systems, and give examples of somewhat
contrived systems where they are not.

Chapter 1 provides an overview of the voting rules and related definitions.
Firstly, the input and output of the voting rules are discussed. Afterwards, the
characterisation of voting rules follows where their most important properties
are introduced. Lastly, famous theorems are mentioned to summarise the
impossibility results of voting rules satisfying certain axioms.

Chapter 2 focuses on the most well-known voting rules, their properties
and real-life applications. Six voting rules will be introduced in the first part
of the chapter. Most of them are applied in parliamentary or presidential
elections, as detailed examples show. The second part gives a more general
categorisation of voting rules by introducing the family of scoring rules and
Condorcet extensions. Afterwards, strategic abstention and manipulation are
discussed.

The aim of Chapter 3 is to introduce weighted voting and to formally
define null players. Firstly, simple and weighted voting games from game
theory are detailed and then the weighted committee games, i.e. the weighted
versions of voting rules from social choice theory are introduced. The rest of
the chapter provides an overview of null players, their properties, and the
related literature. One can see that null players are well-studied in game
theory, however, the chapter shows that they can be analysed in weighted
committee games as well.

Chapter 4 introduces the so-called null player out property and studies
whether it holds for certain voting rules. The property was briefly researched
for weighted voting games in game theory, but not for weighted committee
games, therefore our main focus in the chapter is to extend it to weighted
voting rules, i.e. to find examples, counterexamples, and sufficient conditions.
The results in Chapter 4 are novel.
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For thousands of years, elections and votes have determined the decisions,
large and small, of mankind. Recognising that a voter has little or no influence
on the outcome of an election is important for proportional representation.
We have demonstrated how rigorous mathematical methods can be used to
filter out the occurrence of null players not only in current electoral systems,
but also in those that are planned.
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Chapter 1

Voting rules

This chapter provides a general overview of the voting rules. First, we intro-
duce the input in Section 1.1 starting from the sets of players and alternatives,
building up the preferences voters can have over the alternatives. Section 1.2
continues with the output, i.e. the voting rule winners. Section 1.3 details
making rational choices and the properties that fair voting rules can have.
Lastly, in Section 1.4, one can find a summary of the well-known results on
whether voting rules exist with certain desirable properties.

1.1 The input

This section introduces the input that is needed for the voting rules. First, the
set of players and alternatives will be defined, and then the voters’ possible
preferences over the alternatives will be analysed. The notations and basics of
social choice follow the lecture notes of Brandt [7] and the books of Brandt,
Conitzer, and Endriss [9, 10].

Consider the set of n players N = {1, . . . , n} who have to vote on m

alternatives with m ≥ 2, and let U be the set of alternatives. The set of all
non-empty subsets of U is denoted by F(U) = 2U \ {∅}.
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3 2 1

a b c
b c a
c a b

Table 1.1: Example for a preference profile

Let R be a binary preference relation on U and a, b ∈ U . If alternative
a is at least as good as b, then it can be written as aRb using the prefer-
ence relation. We assume that each player i has a complete, transitive, strict
preference relation Pi on the alternatives, which means the following.

• Preference relation R is complete if for all a, b ∈ U it holds that aRb or
bRa.

• A relation R is transitive if aRb and bRc imply aRc.

• Lastly, we denote strict preferences with P and strictness means that
aPb holds if and only if aRb and not bRa. If the latter two relations
hold simultaneously, it is called indifference and is denoted by aIb.

Given a preference relation R and a set A ∈ F(U), the maximal set
is Max(R,A) = {x ∈ A : ∄y ∈ A with yPx}. In other words, Max(R,A)

contains the best elements of A according to R.
We denote the preference profile by RN = (P1, . . . , Pn). Table 1.1 is an

example of a preference profile when there are six players and three alter-
natives. The first line denotes the number of players choosing the preference
order.The rest of the table shows the ordering of the alternatives in the
columns — in each column, the higher alternative is more preferred than a
lower one. For example, the first column means that three players prefer a

to b to c, i.e. if Pi is the preference relation of these players, then aPibPic.
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1.2 The output

Having the preference profile, the next step is to determine the output—the
winner alternatives—by a collective decision. A function that maps the pref-
erences of individual voters to a choice set of socially preferred alternatives
is called a social choice function.

Definition 1.2.1. A social choice function is a function f : R(U)n×F(U) →
F(U) such that f(RN , A) ⊆ A for all RN and A.

In other words, a social choice function is a function that chooses a set of
alternatives—the winners—for a given preference profile RN ∈ R(U)n and
feasible alternatives A. Sometimes we simplify the notation to f(RN) when
A is the whole set of alternatives U . In practice, it is often required to have
only one winner. This property is called resoluteness. Formally, a voting rule
is resolute if |f(RN)| = 1 for all preference profiles RN .

1.3 The characterisation of voting rules

The section provides an overview of the different properties of voting rules.
In the first part, rational choice is introduced. The most important axioms
that voting rules can satisfy are detailed in the second part. These axioms
help to characterise the fairness of the rules.

1.3.1 Rational choice

It is desirable to make a rational choice. For example, let f : F(U) → F(U)

be a choice function and let c, s, v be three alternatives; they can be ice
cream flavours chocolate, strawberry, and vanilla. Let f({c, s, v}) = {c} and
f({c, s}) = {s}, with the ice cream example: if we can choose from three
different flavours, we choose the chocolate, but if the shop runs out of vanilla,
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we will choose strawberry instead of chocolate. This choice function is not
rationalisable based on the following definition.

Definition 1.3.1. A choice function f is rationalisable if there exists a binary
relation R on U such that f(A) = Max(R,A) for all A.

One can construct a binary relation based on f({x, y}) for every {x, y}
pair. This is called the base relation Rf where xRfy ⇔ x ∈ f({x, y}).

Claim 1.3.2. A choice function f is rationalisable if and only if it is ratio-
nalised by its base relation Rf .

In other words, it means that f(A) = Max(Rf , A), i.e. the binary relation
from Definition 1.3.1 can be chosen as the base relation of f .

1.3.2 Properties of voting rules

One would like to require several other properties for a “fair” election. Firstly,
it is desirable that voters are treated equally: the outcome of the voting rule
should not be affected if the players are renamed.

Definition 1.3.3. Social choice function f is anonymous if f(RN , A) =

f(R′
N , A) for all A ∈ F(U) and preference profiles RN , R

′
N ∈ R(U)n such

that there is a permutation π : N → N with R′
i = Rπ(i) for all i ∈ N .

Similar can be required for the alternatives as well: by renaming them,
the outcome has to change, but according to the respective permutation.

Definition 1.3.4. Social choice function f is neutral if π(f(RN , A)) =

f(R′
N , B) for all A,B ∈ F(U) and RN , R

′
N ∈ R(U)n such that there is a

bijection π : A → B with (xRiy) ⇔ (π(x)R′
iπ(y)) for all i ∈ N and x, y ∈ A.

It will be detailed in Section 1.4 that neutrality is too strong in some
cases. However, the independence of irrelevant alternatives provides a way to
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weaken it. It only requires that if a set of alternatives is ordered the same
way by every player in both preference profiles, then the winner of that set
should be the same as well.

Definition 1.3.5. Social choice function f satisfies independence of irrele-
vant alternatives if for all A ∈ F(U) and RN , R

′
N it holds that the property

(∀i ∈ N : Ri|A = R′
i|A) implies f(RN , A) = f(R′

N , A).

There are properties related to the positions of alternatives in the prefer-
ence orderings. One of them is monotonicity. It can be a “fairness” assumption
if an alternative is among the winners and some players rank it higher in a
second preference profile, then it will stay in the winner set. More precisely,
we need the ranking of the rest of the alternatives remain unchanged and
only the selected alternative is rising in some of the players’ preferences in
the second profile.

Definition 1.3.6. Let RN and R′
N be such that there is some i ∈ N and

a ∈ U with ∀j ̸= i, Rj = R′
j, furthermore, ∀x, y ∈ U \ {a}, (aRiy ⇒ aR′

iy),
and (aPiy ⇒ aP ′

iy). A voting rule is monotonic if a ∈ f(RN , A) implies
a ∈ f(R′

N , A).

A stronger version of monotonicity is positive responsiveness, which re-
quires that a chosen alternative a ∈ f(RN) and Ri|A ̸= R′

i|A implies {a} =

f(Rn) with R and R′ as in the definition above. If postitive responsiveness
is satisfied, a is the single winner when a player ranks it higher.

Pareto-optimality

In some cases, there are alternatives that we do not want to choose if there is
a strictly better option. Pareto-optimality describes this property. Given RN

and x, y ∈ U then x Pareto-dominates y if xPiy for all i ∈ N . Alternative
z is called Pareto-optimal in A ⊆ U if not Pareto-dominated in A. A social
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choice function is Pareto-optimal, if whenever there is a Pareto-dominated
alternative y in A then it will not get selected, i.e. y /∈ f(RN , A). In other
words, if all voters prefer alternative x to y unanimously, then y will not be
a winner.

1.4 Impossibility results

It would be useful to combine the axioms listed above to get a voting rule
that can determine the socially preferred winners in a fair way. Such a voting
rule exists when there are no more than two alternatives, but unfortunately,
in general, it is not possible to create one. In the case of two alternatives,
a straightforward voting rule turns out to be the fairest: it is enough to
count the winner or the majority comparisons—equivalent to plurality for
two alternatives—also called the majority rule.

Theorem 1.4.1 (May). The majority rule is the only social choice function
on two alternatives that satisfy anonymity, neutrality and positive responsive-
ness. For two alternatives and an odd number of voters, majority rule is the
unique resolute, anonymous, neutral and monotonic social choice function.

Condorcet, May, and Arrow proved important impossibility results for
more than two alternatives.

Theorem 1.4.2 (Condorcet, May). No anonymous, neutral and positive re-
sponsive social choice function is rationalisable when m ≥ 3 and n ≥ 3.

The rest of the section reviews the results when some of the axioms from
the above theorem are weakened. Arrow showed that the nonexistence still
holds if weakened versions are used but it requires the choice function to be
rationalisable by a transitive relation, which is stronger than the one in the
theorem of Condorcet and May.
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A way to weaken anonymity is with the help of a dictatorship: if there is
a dictator, their favourite alternative will be the single winner, regardless of
how other players vote.

Definition 1.4.3. A social choice function f is dictatorial if there exists i ∈
N such that for all A,R and x ∈ A (∀y ∈ A \ {x} : xPiy) ⇒ f(R,A) = {x}.

If the social choice function is anonymous, it follows that there is no dic-
tator. Arrow’s following theorem shows that using non-dictatorship instead
of anonymity is still a too strong requirement.

Theorem 1.4.4 (Arrow). No social choice function satisfies independence
of irrelevant alternatives, Pareto-optimality, non-dictatorship and transitive
rationalisability when m ≥ 3.
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Chapter 2

Well-known voting rules and their

properties

The main focus of this chapter is on specific voting rules and their properties.
Firstly, in Section 2.1, six well-known voting rules are introduced; these will
be referred to in later chapters. Real-life examples show that most of these
voting rules are used in politics. However, the voting rules can output multiple
winners which is not fitting for many applications, therefore tie-breaking is
mentioned in Section 2.2. Sections 2.3 and 2.4 present broader classes of
voting rules, namely the scoring rules and Condorcet extensions and their
properties. Finally, Section 2.5 considers the possibility of manipulating the
voting: players might not vote according to their real preferences if they can
achieve a better result by giving fake preferences or not voting. Results about
voting rules being prone to manipulation are summarised in the section.

2.1 Well-known voting rules

This section will introduce some of the most important voting rules. The
resulting collective decisions can differ depending on which rules we apply
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4 3 2

a c b
b b c
c a a

Table 2.1: Example of different outcomes for a given preference profile

in each case for a given preference profile. One of the famous examples is
the profile shown with the help of Table 2.1, which was detailed in the book
Computational Social Choice by F. Brandt, V. Conitzer and U. Endriss [9].
Similarly to the earlier example of a preference profile, the first row of the
table shows the number of players. In this case, nine voters are participating,
four of whom rank the three possible alternatives in the order of preferring
a to b to c.

In the example, three different ways are shown how to determine winners
and one can argue in favour of any of these voting rules, depending on the
situation in which one would like to apply them. Firstly, if we consider only
the first-ranked alternatives, let the winner be the one with the most votes.
In this case, alternative a wins with four players ranking it first. However,
one can say that this rule is not the fairest, since for more voters—for five
of them—a is not only not the first-ranked alternative but it is in the last
place and any other alternative would be more preferred by the majority of
the players.

As another approach, we can assign a value to each ranking, namely, the
first-ranked alternatives get two points from each voter who chose them, the
second-ranked ones get one point and the last ones none. Applying this rule
(Borda’s rule), alternative a gets 8 points, b gets 4+3+2 · 2 = 11 and lastly,
c gets 8 points, which leads to a different result with b being the new winner.

Alternatively, we can start by deleting the alternatives that we do not
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want to declare as a winner. These would be the ones that are ranked first by
the least number of players. In this case, alternative b is ranked first by only
two players, therefore we delete it first. After removing b from the game, five
voters have c ranked first and the four other players still have a as their most
preferred option. This means that the next alternative to eliminate would be
a, resulting in c winning the voting.

In the following part, the above-mentioned and some new voting rules will
be detailed. These are the most commonly used voting rules in the literature.
The following are structured based on the lecture notes of Brandt [7].

2.1.1 Plurality

The first voting rule mentioned in the above example is called the plurality
rule.

Plurality

Plurality rule considers only the first-ranked alternatives of each voter
and chooses the ones that are ranked first by most voters.

In plurality (and most of the other voting rules) there can be a tie if the
same number of players rank two or more alternatives first and those win.

One can check that plurality satisfies some of the above axioms, including
anonymity, neutrality and monotonicity. It is also Pareto-optimal: if all voters
prefer a to b then b will not be among the first-ranked alternatives, therefore,
it cannot be chosen.

This voting rule is often used in real elections, for example, it is part of the
German parliamentary elections. The German Bundestag (the Parliament of
the Federal Republic of Germany) consists of at least 598 members, half
of which, 299 members, are elected directly by Germany’s constituencies
and the other half by party lists in Germany’s sixteen Länder (states) [3].
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The two-stage elections are the following. In the first stage, voters have to
vote for one person from the list of candidates in their constituency and the
one who obtains the most votes gets elected to the Bundestag as the local
representative of the constituency. Then voters have a second vote to cast for
a party from the party list to allocate the seats proportionate to the votes
each party get. The second half of the seats are given out based on these
votes and additional “balance seats” are created to ensure the right ratio
of the parties in the Bundestag. The first stage is a real-life application of
the plurality rule. The only difference is an additional rule setting a lower
limit on the number of seat parties can get: they have to gain at least three
constituency seats in the first stage or more than five percent of the second
votes to participate in the distribution of the seats.

2.1.2 Borda’s rule

The second voting rule in the example was Borda’s rule.

Borda’s rule

Borda’s rule has a pointing system: the first-ranked alternative out of
the m gets m − 1 points, the second-ranked alternative gets m − 2

points, and so on, until the last but one alternative gets 1 point, while
the last one gets 0. The points are calculated for all players’ preferences
and the alternative with the highest total score wins.

Borda’s rule also satisfies anonymity, neutrality, monotonicity and Pareto-
optimality.

Borda’s rule or similar scoring rules are used in real life as well. Scor-
ing rules are a more general version of Borda’s rule. They allow a broader
range of scores and will be detailed later on in Section 2.3. The Eurovision
Song Contest applies a scoring rule very similar to Borda’s rule: the jury of
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five music industry professionals and the audience of each country allocates
the scores (12, 10, 8, 7, 6, 5, 4, 3, 2, 1) to the ten performers that are the most
popular according to the audience.

2.1.3 Sequential majority comparisons

Sequential majority comparison provides a different approach to choosing a
winner alternative.

Sequential majority comparisons

Sequential majority comparisons consist of a fixed sequence of pairwise
majority comparisons of the alternatives where the winner gets to the
next round. The output is the winner of the last majority comparison.

These comparisons have a tree structure where the leaves are given in
advance and the rest of the nodes are filled with the winner of the respective
pairwise comparison. The pairwise winners are determined by the majority
rule: the alternative preferred by the majority of the voters wins. Figure 2.1
is an example of the visualisation of the structure: first, alternative a and b

will be compared and the majority winner will be written in the empty node
and compared to c and then the next winner to d. Figure 2.2 shows another
example tree where the leaves are given and the rest of the nodes are filled
out with the majority comparison winners based on the preference profile
from Table 2.2.

Sequential majority comparison satisfies anonymity and monotonicity,
just like the previous rules, however, it fails to satisfy neutrality and Pareto-
optimality.

Preference profile 2.2 from Lecture notes [7] shows an example of failing
both properties. Let this profile be RN and π be such that it leaves a and
b unchanged but maps c to d and d to c. When using the tree from Figure

17



a b

c

d

Figure 2.1: Tree for the sequential majority comparison

2.1, we compare a and b first, then compare the winner with c and then
with d. In this case, the winner will be alternative d and by applying π, we
get π(f(RN)) = π(d) = c. If we want to calculate the other side from the
definition of neutrality, we have to use the same tree but with R′

N , where c

and d are swapped. This leads to f(R′
N) = d and therefore a counter-example

for neutrality.
Moreover, in the above preference profile RN , alternative c is Pareto-

dominated by b. By using the tree from Figure 2.2, where the order of com-
paring c and d is swapped—hence it is equivalent to R′

N and the first tree
from the previous example—alternative c turns out to be the winner. This
shows that Sequential Majority Comparison is not Pareto-optimal.

2.1.4 Instant runoff

Instant runoff applies the method of repeatedly deleting “unpopular” alter-
natives.

18



c

d

a

a b

d

c

Figure 2.2: Sequential Majority
Comparison—leaves are given in
advance and the rest of the nodes
are filled out with the pairwise ma-
jority winner.

1 1 1

a d b
b a c
c b d
d c a

Table 2.2: Sequential majority
comparison does not satisfy neur-
tality.

Instant runoff

Alternatives ranked first by the lowest number of players get deleted in
every round. The rounds are repeated until no more alternatives can
be deleted.

The properties satisfied by instant runoff will be detailed in the next
section, together with plurality with runoff.

Instant runoff may seem more complicated to apply in real life than other
voting rules, however, it is used in parliamentary elections in Australia [4].
The House of Representatives is one of the two houses of the Australian
Federal Parliament, the other being the Senate. Each Member of the House of
Representatives represents an electoral division of Australia. At the elections,
voters of each constituency get a ballot paper with the list of the candidates
and have to write numbers from 1 to m next to each of the m alternatives to
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indicate their order of preference, one being the highest-ranked alternative.
When counting the votes, first only the first-ranked alternatives are taken
into account. If an alternative reaches the absolute majority, it is the winner.
Otherwise, the candidate with the lowest first votes gets eliminated and some
lower-ranked alternatives are considered too. These steps continue until an
alternative with an absolute majority is found, which is equivalent to the
instant runoff.

2.1.5 Plurality with runoff

Plurality with runoff has only two rounds, which are the following.

Plurality with runoff

In the first round, the two alternatives ranked first by most voters are
selected for the second round, which is a majority comparison.

Instant runoff and plurality with runoff satisfy anonymity, neutrality and
Pareto-optimality, but not monotonicity, for which Table 2.3 provides an
example. In the first preference profile, b and c are ranked first by the lowest
number of players—five players rank them first while a has 7 first ranks—
and will be deleted according to the rules of instant runoff. After this round
only a will be left, and therefore is the winner. We get the second preference
profile by a rising in the preference of the player in the second column. This
way, even more voters ranked a first, however, a will no longer win. In the
first round, b will be deleted, therefore c gets four “extra” votes in the second
round, getting a total of nine, while a has only eight votes.

Plurality with runoff is often used in presidential elections of democratic
countries, for example, Austrian and French presidential elections are real-
life examples, moreover, France uses a similar method at their legislative
elections as well to determine the members of the parliament [2, 1]. In the
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7 1 4 5

a b b c
b a c a
c c a b

7 1 4 5

a a b c
b b c a
c c a b

Table 2.3: Instant runoff and plurality with runoff are not monotonic

first round of the presidential elections, voters have a single vote to cast for
their most preferred candidate of the list of all candidates. If none reaches
an absolute majority, i.e. more than half of the votes, a second round is held
four weeks after the first in Austria, while in France there are only two weeks
between the two rounds. The two candidates with the two highest number
of votes are competing in the second round and voters have one vote again
to cast to their most preferred alternative.

2.1.6 Copeland’s rule

Copeland’s rule returns the alternatives that win the pairwise majority com-
parison against the most alternatives.

Copeland’s rule

Copeland’s rule f(RN , A) = argmaxx∈A |{y ∈ A : xPmy}|, where xPmy

means that y is majority dominated by x.

It is easy to see that Copeland’s rule satisfies anonymity, neutrality, mono-
tonicity and Pareto-optimality as well. For example, monotonicity is satisfied
because when a (winning) alternative is moved higher in a voter’s preferences,
the number of alternatives majority dominated by it will not decrease and
the majority relations between the rest of the alternatives do not change.
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Anonymity Neutrality Monotonicity
Pareto-

optimality

Plurality ✓ ✓ ✓ ✓

Borda’s rule ✓ ✓ ✓ ✓

SMC ✓ ✗ ✓ ✗

Instant runoff ✓ ✓ ✗ ✓

Plurality w. runoff ✓ ✓ ✗ ✓

Copeland’s rule ✓ ✓ ✓ ✓

Table 2.4: Properties satisfied by the voting rules.

2.1.7 Summary of the properties

Table 2.4 summarises the properties satisfied by the above voting rules.

2.2 Tie-breaking

The above voting rules exemplify how different methods can be designed to
determine winners. It depends on the given situation which rule is the most
suitable. These six rules also show how most of the axioms can fail. However,
most of the above rules satisfy neutrality. In the cases mentioned above, it
is possible to have multiple winners. If one has to guarantee a single winner,
then tie-breaking rules can be applied. A commonly used tie-breaker is the
alphabetical tie-breaking when the alphabetically first alternative wins out of
the ones in the tie. This rule takes into account the names of the alternatives,
thus it makes the voting rules fail neutrality.
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2.3 Scoring rules

Some of the above voting rules can be generalised using a family of voting
rules, namely the scoring rules. Given a feasible set of alternatives A, a score
vector is a vector s = (s1, . . . , s|A|) of real numbers. If a player ranks an
alternative at position i, then the alternative gets si points. The scoring rule
chooses the alternative with the highest total score. The following notation
is needed for the formal definition: si denotes a score vector of dimension i.
One gets the chosen alternatives with the following sum:

f(RN , A) = argmax
x∈A

∑
i∈N

s
|A|
|y∈A:yRix|.

In other words, each voter’s scores for each alternative are summed up and
then the one with the maximum value is chosen.

Some of the voting rules mentioned above belong to the family of scoring
rules. It is easy to see that Borda’s rule is a scoring rule with the score
vector s|A| = (|A| − 1, |A| − 2, . . . , 0). Plurality has an even simpler score
vector s|A| = (1, 0, . . . , 0). Another voting rule that is easy to describe as a
scoring rule is anti-plurality with score vector s|A| = (1, . . . , 1, 0). It can be
interpreted as voters voting against their least favourite alternative and the
one with the least votes against wins, which is equivalent to the score vector
above where every alternative but the least preferred one is assigned scores.

Equivalent formulations of the same voting rule lead to an important
theorem about scoring rules. The following claim characterises the properties
that have to be satisfied for score vectors to describe the same voting rule.

Claim 2.3.1. Scoring rules are invariant under component-wise positive
affine transformations of the score vectors, in other words, score vectors s and
t represent the same social choice function if for all i it holds that ti = αsi+β

with α > 0.
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Some of the axioms can be proven generally for all scoring rules. We
saw that both Borda’s rule and plurality satisfy monotonicity and there is
a simple characterisation of monotonic scoring rules shown in the following
claim.

Claim 2.3.2. A scoring rule with score vector s is monotonic if and only if
s1 ≥ s2 ≥ . . . ≥ s|A|.

A short proof can be given using contraposition.

2.4 Condorcet extensions

Another way of categorising voting rules is through the family of Condorcet
extensions. One can look at all the pairwise majority comparisons between
the alternatives and if there is one that wins against all the other options,
then it is a good candidate for the winner. This alternative is called the
Condorcet winner. For the formal definition, let Rm be the majority relation.

Definition 2.4.1. Alternative x is a Condorcet winner in A if xPmy for all
y ∈ A \ {x}.

If there exists a Condorcet winner, then it is unique. A famous example
of not having a Condorcet winner is shown in Table 2.5. In this preference
profile, one can look at the pairwise majority comparisons and see that the
roles of all alternatives are symmetric and no one wins against all the others: a
wins when compared to b by one more player voting for the former. Similarly,
when b and c are compared, b is more preferred, and from c and a, c ranked
first the most. These pairwise comparisons can be illustrated on a directed
graph by drawing a directed edge from the nodes representing one alternative
to another if the first alternative wins the pairwise majority comparison over
the second. This is called the majority graph. For the above example, Figure
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1 1 1

a c b
b a c
c b a

Table 2.5: Preference profile where
there is no Condorcet winner

a b

c

Figure 2.3: Directed graph rep-
resentation of pairwise majority
comparisons

2.3 shows the directed graph representing the pairwise majority comparisons
of the preference profile from Table 2.5.

A social choice function f is a Condorcet extension if it chooses the
Condorcet winner as the unique winner of f whenever there is one, i.e.
f(RN , A) = {x} where x is the Condorcet winner in A according to RN .

A frequently used example of a Condorcet extension is Copeland’s rule.
As mentioned in Section 2.1.6, this rule returns the alternatives that win the
pairwise majority comparison against the most alternatives i.e. f(RN , A) =

argmaxx∈A |{y ∈ A : xPmy}|. If there is a Condorcet winner, it will have the
highest number of wins and therefore will be the unique winner.

Condorcet studied the relations between Condorcet extensions and Borda’s
rule which led to an interesting observation about the scoring rules failing to
choose the Condorcet winner in certain cases.

Theorem 2.4.2. No scoring rule is a Condorcet extension when m ≥ 3.

Lecture notes [7] provide a short proof with the help of three preference
profiles that show that the Condorcet winner is not the scoring rule winner.
Black’s rule tries to provide a solution for combining scoring rules and Con-
dorcet extensions by the rule of choosing the Condorcet winner whenever it
exists and the Borda winner when there is none.

25



2.5 Strategic manipulation and abstention

In some cases, players can get a better result for themselves if they do not
vote according to their real preferences but lie about them or not participate
at all. This section summarises strategic manipulation and abstention.

If a player misrepresents their preferences and this way can make an alter-
native better for them to win, then the voting is not strategyproof. It can be
formulated more precisely as follows. If there exists RN , R

′
N , A and i such that

R′
N = (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rn), R′

i ̸= Ri and f(R′
N , A)Pif(RN , A),

then f is prone to strategic manipulation.
The other possibility to manipulate a voting rule is by not participating.

If a voter can achieve a strictly better result by staying away from the voting,
then participation is not satisfied. Formally, f suffers from strategic abstention
if there exist RN , A and i such that f(RN−i

, A)Pif(RN , A), where RN−i
=

(R1, . . . , Ri−1, Ri+1, . . . , Rn), in other words the preference profile without
i participating. In both cases, it is required to have a single winner to be
able to compare the chosen alternatives before and after misrepresenting the
preferences.

3 2 1

b a c
c b a
a c b

((a)) Real preferences of the voters.

3 2 1

b a a
c b c
a c b

((b)) Misrepresented preferences.

Table 2.6: Plurality does not satisfy strategyproofness.

As an example, plurality is not strategyproof but resistant to strategic
abstention. Preference profile 2.6 shows that plurality is not strategyproof,
with the real preferences in part (a) and the misrepresented ones in part (b).
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3 2 3

b a c
c b a
a c b

Table 2.7: Plurality with runoff does not satisfy participation.

Suppose we use alphabetical tie-breaking: if two alternatives get the same
number of votes and the voting would result in a tie, then the winner will
be the alternative appearing earlier in the alphabet. By voting according to
the players’ real preferences, alternative b is declared the winner. However,
b is the worst possible option for the last player and they can make a bet-
ter alternative win if they misrepresent their preferences. They are the only
one placing alternative c at first place, therefore it cannot win, but by swap-
ping c and a, alternative a will receive three votes and with the help of the
tie-breaking rule, will win, which is better for the player than the original
winner b.

Plurality with runoff (with alphabetical tie-breaking) is an example of
a voting rule that does not satisfy participation. Let preference profile 2.7
be the preferences of the voters before a player abstains. If all players vote
according to their real preferences, alternative a gets eliminated in the first
round, therefore b gets two more votes for the second, which leads to it win-
ning. However, suppose two voters from the third column abstain because b is
their least preferred option. In that case, a will be the winner by eliminating
c in the first round and then in the second round, a receives one more vote,
which puts the remaining two alternatives in a tie and results in a winning
the tie-breaking.

27



2.5.1 Strategyproofness

The following theorem provides a short overview of the cases where voting
rules are strategyproof. It turns out that most of the "reasonable" resolute
social choice functions can be manipulated. By that, we mean that every
alternative can be a winner with an appropriate preference profile, there
are no irrelevant alternatives that can never win. A social choice function f

with this property is called non-imposing, i.e. if for all x ∈ A there exists
RN such that f(RN) = {x}. Gibbard and Satterthwaite [13, 18] studied
the relationship between non-imposing resolute social choice functions and
strategyproofness and proved the following theorem independently of each
other.

Theorem 2.5.1 (Gibbard, Satterthwaite). Every non-imposing, strategyproof,
resolute social choice function is dictatorial when there are at least 3 alter-
natives.

The above theorem is a generalization of the negative result concerning
the Condorcet extensions, namely that no resolute Condorcet extension is
strategyproof when n,m ≥ 3.

2.5.2 Participation

For some voting rules, voters may be better off not participating if "too
many" others are already participating. This is called the No-Show paradox.
Condorcet extensions under the following conditions are an example of this.

Theorem 2.5.2 (Brandt et al. [11]). No resolute Condorcet extension satis-
fies participation when n ≥ 12 and m ≥ 4.

When n ≤ 11 or m ≤ 3, there exist social choice functions that satisfy
participation.
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Strategyproof Participation

Plurality ✗ ✓

Borda’s rule ✗ ✓

SMC ✗ ✗

Instant runoff ✗ ✗

Plurality w. runoff ✗ ✗

Copeland’s rule ✗ ✗

Table 2.8: Properties satisfied by the voting rules.

2.5.3 Summary of the strategic manipulation

Table 2.8 summarises which of the voting rules mentioned above satisfy strat-
egyproofness or participation for all n,m, using lexicographic tie-breaking.
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Chapter 3

Weighted voting

This chapter introduces the so-called null players and different voting game
variants where null players can appear. Firstly, Section 3.1 provides an overview
of special cases of cooperative games—simple and weighted voting games to
see the similarities to the weighted committee games which are discussed in
Section 3.2. Lastly, Section 3.3 introduces the null players and studies the
connected literature.

3.1 Simple and weighted voting games

In Section 2.1, the main focus of the voting rules was to choose one alternative
out of multiple possible options. In politics and other real-life cases, a much
simpler version of voting is often used: there is a single option—for example,
a new proposition—and the players have to vote about accepting it or not,
therefore there are only two options. To model this, one can use simple games
which constitute a special case of cooperative games. In this section, cooper-
ative games and simple games will be introduced and afterwards, generalised
for a weighted version.
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3.1.1 Cooperative games

In cooperative games, players can form coalitions and make binding agree-
ments to maximise their utility and then share it among the members of the
coalition. Cooperative games are usually given in a characteristic function
form (N, v), where N is the set of players and v : 2N → R is the worth of the
possible coalitions, the value they can obtain by working together. Cooper-
ative games can be divided into classes, as detailed in the lecture notes [8],
which was used for writing this paragraph. When coalitions are formed, one
can consider the stability and the fairness of distributing the payoff between
the members. The stability is measured by the so-called core and the Shapley
value defines a fair payoff.

3.1.2 Simple games

A simple game is a special case of a cooperative game (N, v), where N is the
set of players as earlier and v : 2N → {0, 1} tells us if a coalition S ⊆ N is
winning or losing. If v(S) = 1, then S is called a winning coalition and if
v(S) = 0, S is losing. It can be interpreted as if the members of the coalition
S vote for the new proposition, the rest of the players vote against it, and if
it gets accepted, then S is a winning coalition, otherwise not. Simple games
were characterised by von Neumann and Morgenstern in 1953 [17]. In general,
it is required that (i) v(∅) = 0, i.e. the empty coalition is losing, (ii) v(N) = 1,
in other words, the grand coalition is winning and (iii) v is monotonic, which
means that if T ⊆ S, then v(T ) ≤ v(S). To put it differently, if no one votes
in favour of the proposition, it will not be accepted and similarly, if everyone
supports it, then the new laws will be adopted. The last condition ensures
that if a coalition can make a proposition be accepted by only them voting
for it, then if more players join to support them, it will not result in declining
the proposition—as it is usually expected at elections. A coalition S is called
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a minimal winning coalition if S is winning but every proper subset of S is a
losing coalition. A player i is called a vetoer if they are part of every winning
coalition, formally, v(S) = 0 ∀S ⊆ N \ {i}.

3.1.3 Weighted voting games

Simple games can be extended to weighted voting games where the vot-
ers have non-negative weights and a coalition has to reach a given quota
to win. It can be seen as the players having multiple votes: for example,
at an international event, countries can have votes proportional to their
population. Formally, it can be represented by the quota q and weights
w = (w1, . . . , wn) ∈ Nn. We assume that w1 ≥ w2 ≥ . . . ≥ wn ≥ 0. A
coalition is winning, i.e. v(S) = 1 if and only if

∑
i∈S wi ≥ q. A special case

is the majority game, when a simple majority is needed for winning, formally,
qmaj =

∑
i∈N wi

2
+1 if the sum of the weights is even and qmaj =

∑
i∈N wi+1

2
if it

is odd. It is also assumed that the quota q ≥ qmaj, otherwise there could be
multiple coalitions reaching the quota. Another special case is the unanimity
rule where q =

∑
i∈N wi, therefore every player has to agree on the votes

and everyone has a veto power. To avoid extremities, one can consider the
admissible games where every weight 1 ≤ wi ≤ q − 1, in other words, no
player has zero votes and there is no dictator.

3.2 Weighted committee games

The voting rules for Section 2.1 can be extended to weighted versions, analo-
gously to the above-mentioned simple voting games. Players can hold multi-
ple votes in case of the previously described voting rules. We can model these
with the weighted committee games which Kurz et al. studied [14]. They fo-
cused on the equivalence classes of weight distributions for plurality, Borda’s
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rule, antiplurality and Copeland’s rule for m ≥ 3 alternatives.
In the following sections, we will consider anonymous and resolute (with

appropriate tie-breaking) voting rules f . Let w = {w1, . . . , wn} ∈ Nn be the
weights that voters i = 1, . . . , n have. This means that the input of a voting
rule f is the weighted preference profile—taking each preference ordering Pi

the corresponding weight wi times. We denote the weighted committee game
with voting rule f and weight vector w with f ◦ w.

If weight vector w is chosen to be the uniform weights 1 then f ◦ w is
reduced to the original voting rule w. This shows that if f violates a property,
for example, monotonicity, then f ◦ w is violating too.

Participation is also determined for the weighted committee game by the
underlying social choice function as stated in [14]. Voter i can be better off
with a lower weight w′

i ≤ wi, i.e. f ◦w is worse for i than f ◦w′, where w′
i < wi

and w′
j = wj if j ̸= i, if and only if f suffers from the No-Show paradox.

3.3 Null players

In the Council of Ministers of the European Economic Community, the quota
for approving a proposition was 12 votes out of 17 between 1958 and 1972.
The number of votes was allocated proportionate to the population and there-
fore Luxembourg held only one vote while all the other countries had an even
number of votes: Belgium and the Netherlands held 2 votes each, while Ger-
many, Italy and France had 4 votes each. This meant that Luxembourg was
not able to make any difference in the voting process [5]. This real-life exam-
ple shows that a positive weight at the elections does not necessarily mean
a positive share of power. When a player can vote but there is no setting
when their vote can change the election result, they are called a null player
or dummy player. This section focuses on the literature about null players.

The above story is the textbook example of a real-life null player, however,
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according to Mayer [16], there were ways out of Luxembourg being a null
player in the mentioned scenario. It will be detailed in Section 3.3.3 that the
real voting rule might have been slightly different, resulting in Luxembourg
not being a null player anymore.

Definition 3.3.1 defines the null player formally in the more general case
than the example of Luxembourg in the EEC. Null players can occur when
using weighted voting rules, not only in the case of weighted voting games.
However, most of the literature on null players analyses the weighted voting
games only which will be detailed in Section 3.3.2.

Definition 3.3.1. For an anonymous voting rule f and non-negative weight
vector w ∈ Rn

≥0, player i is a null player if f ◦w(P ) = f ◦w(P ′) for all P and
P ′ preference profiles that differ only in coordinate i, i.e. Pj = P ′

j if j ̸= i.

It means that it does not matter how player i orders their preference list,
they cannot change the winner of voting rule f with the given weights w.

3.3.1 The case of weighted voting games

In the case of the weighted voting games introduced in Section 3.1 there is a
simpler way to define a null player.

Definition 3.3.2. A player i ∈ N in game (N, v) is called a null player if
for all S ⊆ N it holds that v(S) = v(S ∪ {i}).

This definition means that the null player i does not contribute to any
coalition—there is no scenario where a coalition cannot make a proposition
be accepted but with player i joining them, they can make a change. It follows
that the null player cannot be part of any minimal winning coalition.

Authors often make no difference between the terms null player and
dummy player, however, originally they were slightly different.
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Definition 3.3.3. A player i ∈ N in game (N, v) is called a dummy player
if for all S ⊆ N \ {i} it holds that v(S ∪ {i}) = v(S) + v({i}).

This definition of a dummy player includes null players but not only them:
dummy players can either be null players or dictators. Null players were first
used by von Neumann and Morgenstern [17] but the name ‘null player’ was
created later. Dummy players were defined by Shapley [19].

Since it is possible to have positive weight but no power over changing
the result of the voting, one can be interested in how much voting power a
given player has in influencing the elections. There are different power indices
to measure voting power, the most prominent ones and mainly used in the
papers cited in the rest of the chapter are the Shapley-Shubik index (SSI)
and the Penrose-Banzhaf index (PBI).

A power index is a family of functions which map a game (N, v) to a
vector f(N, v) = (f1(N, v), . . . , fn(N, v)) ∈ Rn where fi(N, v) indicates the
voting power of player i. The Shapley-Shubik and the Penrose-Banzhaf in-
dices measure the players’ marginal contributions to all possible coalitions
while considering the probability of the occurrence of different coalitions.
The difference between the two is the assumption made about the probabili-
ties. The below function fi is the formal definition of the two power indices.

fi(N, v) =
∑

S⊆N\{i}

piS(v(S ∪ {i})− v(S))

For the Shapley-Shubik index, the probability is defined as piS = s!(n−s−1)!
n!

,
assuming that all coalitions size s are equally likely to occur and any coalition
of the given size are equally likely. The Penrose-Banzhaf index chose piS to be

1
2n−1 , which assumes that every coalition occurs with the same probability.
The term v(S ∪ {i}) − v(S) is called the marginal contribution of player
i to coalition S. In the case of voting games, it can be either 1 or 0. If the
contribution of player i is 1, it means that S is losing, but when i joins, S∪{i}
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is winning, therefore i is in a minimal winning coalition. If v(S∪{i})−v(S) =

0 then player i does not contribute to the coalition—it stays winning or losing
with i too—and if the value is 0 for all coalitions, i is a null player. It follows
that fi is 0 if and only if i is a null player, since if i is part of a minimal
winning coalition, at least one marginal contribution will be positive and the
probabilities are positive as well.

Properties of null players

In this section, some observations about null players in weighted simple games
are collected from the work of Barthelemy [5].

Suppose that player j is a null player. Then player k > j is also a null
player as we assumed that w1 ≥ w2 ≥ . . . ≥ wn ≥ 0. If there is no dictator, i.e.
w1 ≤ q−1, then the first and second players are not null players, furthermore,
if q = qmaj, then the third player cannot be a null player as well.

3.3.2 How common is it to have a null player?

We have seen a real-life example when there was a null player at elections,
and the question arises of how common it is to have them and how to find
the null players. The literature focuses on finding null players in weighted
voting games but not in weighted committee games.

Barthelemy et al. studied the first question in the case of small weighted
voting games [5] of 3 to 5 players and then extended it to larger ones [6], up
to 15 players. They analysed the probability of having a null player as the
function of the quota under the assumption that every admissible weighted
voting game is equally likely to occur. They found that this probability is
sensitive to the choice of the quota and can be very high.

Within the case of the small number of players, having only three players
is considerably easier than having four or five voters. Barthelemy et al. char-
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acterised the probability of having a null player as a function of the quota
and the sum of the weight and established a lemma about the existence of
null players.

Lemma 3.3.4 (Barthelemy et al.). In a 3-player weighted voting game, there
is a null player if and only if w1 + w3 ≤ q − 1 and w1 + w2 ≥ q.

Since the weights are in non-decreasing order if w1 + w3 ≤ q − 1, then
the third player will not be able to win by being in a coalition with only the
second player either. The second condition means that the first and second
voters can form a winning coalition, therefore the coalition of the three players
is not a minimal winning coalition and player 3 is a null player. The other
direction can be proven by starting with the observation that only the third
player can be a null player and formulating the conditions needed for it.

Since the four- and five-player cases are more complex, the authors only
studied the probabilities of having at least one null player when the sum of
the weights tends to infinity.

Zick et al. [20] mostly studied algorithmic issues related to quota manipu-
lation. They listed several hard questions, one of which is deciding whether a
quota maximizes or minimizes an agent’s Shapley-Shubik power index which
is coNP-hard. However, the authors gave quotas to maximise or minimise
the voting power of given players as a function of their weights. They also
provided a heuristic algorithm for minimising a player’s power, which takes
into account the overall weight distribution. Another focus of the paper was
the special case of the above-mentioned hard problem, which is checking if
the quota maximises the power of the player with the smallest weight or
minimises the power of the largest player. Both questions can be reduced to
checking if all players have equal voting power, which they found polynomial-
time solvable.

Zuckerman et al. [21] also studied how the voting power of players changes
if the quota is modified in weighted voting games. They analysed both the
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Shapley-Shubik and Banzhaf indices. Suppose that a manipulator wants to
minimise a specific player’s power, in other words, making them a null player.
In this case, it is useful to know if the manipulator can succeed or how much
they can change a player’s voting power. The authors provided tight worst-
case bounds on the difference between the powers before and after changing
the quota. They also focused on the algorithmic aspects of the problem of
manipulating the quota and gave an efficient algorithm to compute if there
is a value of the quota when a given player becomes a null player.

However, there are some negative results regarding finding the null play-
ers. Matsui and Matsui [15] showed that calculating the Banzhaf power index
and the Shapley–Shubik power index for weighted majority games are NP-
complete and checking if a given player is a null player for a fixed quota is
coNP-complete.

3.3.3 Ways out of being a null player

As mentioned in Section 3.3, there was a real-life example of a null player,
namely, Luxembourg formally being one in the European Economic Commu-
nity. Mayer [16] analysed the scenario from an economic point of view since
it seemed unlikely that a country had no power in the Council of Ministers
for nearly fifteen years without anyone noticing it.

He identified two possibilities which might have allowed Luxembourg to
have positive voting power.

The Council’s rules for voting Mayer studied the different voting rules
that were used in the Council and were defined by the EEC Treaty. He found
that the weighted voting with the quota of 12 votes was not the only rule
but, depending on the type of the proposal, the Council made most of the
decisions by simple majority voting and for decisions in policy areas that
did not require an initial proposal, the so-called double majority rule was
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applied. In the latter two rules, Luxembourg has a positive voting power.
Mayer claims that the voting rule when Luxembourg was a null player was
not used often.

The double majority rule could be a way out of having no power, since
with a small additional rule to the original one, it ensures that there are
no null players in the new voting game. The first version of the weighted
voting rule was [12; 4, 4, 4, 2, 2, 1] which means that the quota was 12 and the
larger counties (Germany, Italy and France) had 4 votes, the Netherlands
and Belgium 2 and Luxembourg had 1 vote. The double majority rule keeps
the above-mentioned part but adds another criterion: the proposition gets
accepted if the votes reach the quota of 12 and at least 4 counties vote in
favour of it. With this addition, Luxembourg is not a null player anymore: the
three big counties can reach the quota together but they would still miss a
vote from a fourth country which can be Luxembourg. This shows a minimal
winning coalition with Luxembourg participating in it.

Formally, this new voting rule is an intersection of two weighted voting
games, one of them being the original rule [12; 4, 4, 4, 2, 2, 1] and the second
is the game with the quota of 4 and equal weights [4; 1, 1, 1, 1, 1, 1]. In the
intersection of two games, a coalition S wins if and only if it is winning in
both games. However, the double majority has a simpler form, it is equivalent
to the game [10; 3, 3, 3, 2, 2, 1]. This example shows that a null player can have
positive power in the new voting game by slightly changing the quota and
the weights.

The Benelux Union For the second escape route, Mayer considered the
historical background of the Benelux countries. In the twentieth century,
there were numerous agreements signed by the countries to strengthen a good
economic relationship such as the Union Economique Belgo-Luxembourgeoise
which founded an economic union in 1922, the Benelux Customs Union
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Treaty in 1944 and then the 1958 Treaty establishing the Benelux Economic
Union for the next 50 years. Mayer assumes that the three countries worked
closely together in the Council of Ministers as well and agreed to act as a
block and vote together.

He analysed the game where the Benelux countries made a prior decision
and then acted as a single player in the EEC Council. This escape route can
be modelled by the composite games. The composite games consist of two
stages, in the first one, blocks of players decide on a common standpoint
and then in the second phase where every player takes part, they are bound
to vote according to the first decision. Formally, N1, . . . , Nk are non-empty
and disjoint subsets of N , moreover, N =

⋃k
j=1Nj. Let (N1, v1), . . . , (Nk, vk)

describe simple games with the respective player sets and (K, v) is a simple
game over set K = 1, . . . , k. Mayer defined the characteristic function of
the composite game as u(S) = v(j : vj(S ∩ Nj) = 1) where the so-called
v-composition is denoted by u = v[v1, . . . , vk].

In the case of the EEC and Benelux Union, the blocks besides the Benelux
Union are the three big counties as separate blocks where the only voters are
Germany, France and Italy. In the first stage, one can consider the weights
of the Netherlands, Belgium and Luxembourg, however, it can be reduced to
a simple majority voting, since any two countries form a winning coalition
both in the weighted and unweighted cases. The second phase is a four-
player simple game with the Benelux counties, Germany, France, and Italy
as players. The weighted version [12; 5, 4, 4, 4] is again equivalent to the simple
game with four players in this specific case: the three big counties still form a
winning coalition, and since the small ones are in a block, the Benelux Union
and two of the big counties are also winning.

Consider the coalition consisting of Germany, Italy, the Netherlands and
Luxembourg. This is a minimal winning coalition in the composite game
since the Netherlands and Luxembourg are the majority in the block stage,
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therefore Belgium will also support them in the second phase. By adding the
block system to the original voting game, Luxembourg is not a null player in
the composite game—it is part of minimal winning coalitions.
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Chapter 4

Null Player Out

Null players were introduced in Section 3.3 in Definition 3.3.1: player i is
a null player if f ◦ w(P ) = f ◦ w(P ′) for voting rule f , weight vector w

and preference profiles P and P ′ that differ only in coordinate i. It means
that player i cannot influence the winner with their votes. The question
arises if they cannot change the results by voting, should null players even
participate? This chapter focuses on whether null players can influence the
elections by staying away from voting or if they can be left out without
any changes. Section 4.1 gives a brief overview of the literature about the
null player out property in cooperative games. Section 4.2 is concerned with
leaving out null players from weighted committee games. So far, very little
attention has been paid to this area, therefore, the main focus of the section is
to analyse the different weighted voting rules from the perspective of leaving
out the null player. Firstly, some examples are shown where the null player
out property is unsatisfied. Afterwards, some positive results will follow about
the well-known voting rules.

42



4.1 NPO in cooperative games

If eliminating a null player from a cooperative game does not affect the
payoff of the other players then the game satisfies the Null Player Out (NPO)
property.

Derks and Haller [12] investigated the null player out property in game
theory. In cooperative games, the null player axiom assigns zero utility to null
players, however, the rest of society can still be affected by the absence of
the null player. They gave an example when that is the case. In their paper,
Derks and Haller studied the necessary and sufficient conditions for the NPO
property. They found that removing null players from cooperative games with
transferable utilities does not affect the payoff of the other players.

4.2 NPO in weighted committee games

The null player out property for weighted committee games means that for
null player i in voting rule f and weights w it holds that f ◦ w(P ) = f ◦
w−i(P−i) for all P where P−i is the preference profile obtained by leaving out
the preferences of player i and w−i is the new weight vector.

4.2.1 Counterexamples

Most weighted committee games satisfy the NPO property, however, not all
of them, as the following two voting rules demonstrate.

Voting rule I.

Suppose that n players participate and let k ∈ N be s.t. 1 < k < n.
Let player n mod k be the dictator, i.e. that player’s first choice will
be the winner.
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In this case, everyone except for the dictator is a null player. Yet if player
l > k stays away from voting, the dictator will change in the new scenario.
The two dictators can have different alternatives ranked first, if that is the
case, the winner will change after leaving out a null player.

Voting rule II.

Suppose that there are n players. Let the winner be the n’th alternative
modulo m.

These voting rules do not consider the weights of the players but simi-
lar rules can be constructed using the weight vector w instead of just the
number of voters. Although these rules most likely will not have any real-life
application, they prove that we have to be careful when deleting null players,
as it might change the winner.

4.2.2 Sufficient conditions

In many cases, null players can be eliminated from the game without any
changes. For instance, every weighted scoring rule satisfies NPO.

Claim 4.2.1. Let f be a non-trivial weighted scoring rule with score vector
s and minimum score smin = 0. Furthermore, let w ∈ Nn be a weight vector.
Player i is a null player if and only if f◦w(P ) = f◦w−i(P−i) for all preference
profiles P .

Proof. First, suppose that f ◦w(P ) = f ◦w−i(P−i) holds for some player i and
all profiles P . We need to show that i is a null player, i.e. f ◦w(P ) = f ◦w(P ′)

for all profiles P and P ′ that differ only in the preferences of i.
We use the assumption f ◦w(P ) = f ◦w−i(P−i) for P and P , besides the

observation that P−i = P ′
−i, therefore f ◦ w−i(P−i) = f ◦ w−i(P

′
−i). We get

f ◦ w(P ) = f ◦ w−i(P−i) = f ◦ w−i(P
′
−i) = f ◦ w(P ′), (4.1)
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which holds for all P , P ′, therefore i is a null player.
For the other direction, suppose that player i is a null player. Let s′(x)

denote the sum of the weighted scores of alternative x given by all players
except for i, formally

s′(x) =
∑

j∈N,j ̸=i

wjs
|A|
|y∈A:yRjx|. (4.2)

The total score of alternative x is

s(x) =
∑
j∈N

wjs
|A|
|y∈A:yRjx| = s′(x) + wis|y∈A:yRix|. (4.3)

Suppose that x = f ◦w(P ) = f ◦w(P ′) where P and P ′ differ only in the
preferences of null player i. Alternative x = argmaxy∈A s(y) is the scoring
rule winner and i is a null player, equivalently,

s′(x) + wisk ≥ s′(y) + wisℓ ∀y ̸= x, ∀sk, sℓ pair. (4.4)

The inequality holds in the special case when i gives the lowest score to x

and it still wins.

s′(x) + 0wi ≥ s′(y) + wismax ∀y ̸= x, (4.5)

where smax is the highest possible score. If player i does not vote, then x

has score s′(x). By inequality 4.5, s′(x) > s′(y) for all alternatives y since
the scoring rule is non-trivial, i.e. smax > 0. Therefore x is the scoring rule
winner of f ◦ w−i.

After seeing that scoring rules have the NPO property, one can study the
more general case of the voting rules that satisfy participation.

Claim 4.2.2. If a voting rule is resistant to strategic abstention, then it also
satisfies NPO.
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Proof. Let player i be a null player and f ◦ w(P ) = f ◦ w(P ′) = x for all
P, P ′ preference profiles which differ only in i. Suppose that leaving out i,
alternative y wins instead, i.e. f ◦w−i(P−i) = y. Since the preferences of the
null player do not affect the winner x, we can assume that yPix. In this case,
the player can achieve a better result by strategically staying away from the
voting, therefore the voting rule would not satisfy participation.

However, the opposite direction does not hold: a voting rule that satisfies
NPO is not necessarily strategyproof, therefore the two definitions are not
equivalent. The proof for this statement will follow in the next section.

4.2.3 Voting rules satisfying the NPO property

This section shows that most of the voting rules mentioned in Chapter 2
satisfy the null player out property. The following claim shows that plurality
with runoff, a voting rule that suffers from strategic abstention, satisfies NPO
and thus proves the above statement from the previous section.

Claim 4.2.3. Weighted plurality with runoff satisfies NPO.

Proof. Suppose that player i is a null player and alternative a = f ◦ w(P )

is the winner independently of how i votes. Since i is a null player, a still
wins if player i ranks it as the least preferred alternative. Suppose there is a
preference profile P such that if null player i does not vote, then alternative
a is no longer the winner but b would win instead. We can assume that there
are at least three alternatives, otherwise, the voting would be equivalent to
a scoring rule, and that bPia and xPib for all x ̸= a, b alternatives.

In all cases when i votes, a is selected for the second round and wins
it. If i stays away, then alternatives a and b get the same number of first
rankings as with P as well as the other alternatives except for max(Pi, A)

which gets wi times less votes. It follows that if b wins, then a and b must be
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selected for the second round both in f ◦w(P ) and f ◦w−i(P−i). However, the
second round is a majority comparison which a wins even if player i votes for
b, therefore if the other players do not change their votes and i stays away
and b gets less votes and cannot win. This leads to a contradiction, hence
plurality with runoff satisfies NPO.

Similarly, null players can stay away from voting without any changes in
instant runoff too.

Claim 4.2.4. Weighted instant runoff satisfies NPO.

Proof. Suppose that i is a null player of weighted instant runoff f ◦ w and
alternative b wins if the null player does not participate. Let P be such that
bPix for all alternatives x ̸= b, which can be chosen this way since i is a
null player and it does not affect the winner. Our goal is to show that the
same alternatives get eliminated in each round when we apply the weighted
instant runoff to P and P−i, therefore the winner has to be the same as well.

Alternative b is the winner of the smaller game, therefore it cannot be the
one with the lowest number of first ranks in either of the rounds. Suppose
that it is alternative x1 in the first round. Since all alternatives get the same
number of votes in f ◦ w and f ◦ w−i except for b which gets wi extra votes
when i is playing, x1 has to have the lowest score in the original game too and
be the one eliminated in the first round. The alternatives and the rankings in
the next round stay the same in both cases except for b having wi votes more
in one of them. Similarly, suppose the same alternatives are eliminated in the
first k−1 rounds. In that case, the number of first rankings stays the same in
f ◦w and f ◦w−i except for alternative b which gets more if i plays, hence if
alternative xk is the one to be deleted in round k of the game without player
i then it will be the same with them as well. The same alternatives being
deleted in every round leads to the same winner, namely b = f ◦ w(P ).
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Other well-known voting rules that do not satisfy participation are the
resolute Condorcet extensions when n ≥ 12 and m ≥ 4 according to Theorem
2.5.2: the No-Show paradox. They can be candidates for further rules where
null players cannot be left out. However, this is not the case for well-known
Condorcet extensions like Copeland’s rule’s weighted version.

Claim 4.2.5. The weighted Copeland’s rule satisfies NPO.

Proof. Let f ◦w be the weighted Copeland’s rule. The output is calculated as
f ◦w(PN , A) = argmaxx∈A |{y ∈ A : xPmy}|. Suppose, the winner alternative
is x when the input preference profile is PN and player i is a null player. It
follows, that f ◦ w(PN) = x in the special case too when the null player i’s
preferences are yPix for all y ̸= x. By leaving out the null player, the number
of alternatives that are majority-dominated by x does not change since x was
ranked to the last place by i, i.e. |{y ∈ A : xPmy}| = |{y ∈ A : x(P−i)my}|.
The values of other alternatives do not increase, which means that x is the
argument of the maxima and therefore the winner.

However, as the following counter-example shows, not all Condorcet ex-
tensions satisfy the null player out property.

Voting rule III.

If a Condorcet winner exists, then it is selected as a winner, otherwise,
apply voting rule I.

Voting rule III. is a Condorcet extension, but similarly to voting rule I.,
it does not satisfy the NPO property.

4.2.4 Strategyproofness

Strategyproofness and the NPO property do not imply each other in any
direction, for which the following two voting rules serve as examples.
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The NPO property does not necessarily hold if a voting rule is strate-
gyproof. An example of this is voting rule I, which is strategyproof: there is
a dictator whose first alternative will win, therefore they do not need to mis-
represent their preferences, while the other voters cannot change the result
of the voting by any ranking of the alternatives. However, it was shown that
voting rule I. does not satisfy the null player out property.

Similarly, plurality is a counter-example for the other direction: NPO
property does not imply strategyproofness since the null player can be left
out without affecting the results, but plurality is not strategyproof.
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