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Introduction

In recent years, the field of generative modelling has witnessed remarkable advancements, fu-

elled by the relentless pursuit of understanding and modelling complex data distributions. At

the forefront of this endeavour lies the domain of diffusion models, a family of stochastic pro-

cesses that offer a compelling framework for generating intricate and high-dimensional data

distributions.

Diffusion Models were first proposed by Sohl-Dickstein et al. [23] in 2015, inspired by

non-equilibrium statistical physics. They are a type of generative model that has been used

in several popular deep-learning models, such as DALL-E 2 [17], Stable Diffusion [18], Google

Imagen [21], and GLIDE [14]. Not only do they possess the ability to produce diverse and high-

quality samples, but they also exhibit flexibility and tractability, rendering them invaluable tools

in various domains.

The primary purpose of diffusion models is to map training data to a latent space using a

Markov chain. This process gradually adds noise to the data, resulting in an asymptotically

transformed image that is Gaussian distributed in nature. Our goal is to learn the reverse of

the Markov process, enabling us to generate new data by producing a Gaussian image and

traversing the reverse process. Diffusion models have a wide range of applications, including

text simplification, question generation, text-to-image generation, paraphrasing, and more.

The purpose of this project is to apply diffusion models to computer vision tasks, namely

image segmentation. By leveraging the principles of diffusion models and their inherent capa-

bilities, we aim to explore their efficacy in the context of image segmentation, a fundamental

problem in computer vision with numerous real-world applications. The practical application

of these models is demonstrated through their implementation on the COVID-QU dataset, a

comprehensive collection of medical images specifically curated for COVID-19 research. This

dataset provides a unique opportunity to evaluate the performance of diffusion models in real-

world medical scenarios, particularly in the segmentation of lung and infection regions, which

are critical for accurate diagnosis and treatment planning. Through theoretical investigation,

empirical analysis, and practical implementations, this research endeavour seeks to advance our

understanding of diffusion models and their applications in computer vision, contributing to

the broader landscape of generative modelling and paving the way for innovative solutions to

complex data modelling challenges.

Structure of the Thesis

In the first chapter, we provide a detailed overview of different types of diffusion models, starting

with the fundamentals of Denoising Diffusion Probabilistic Models (DDPMs) and extending

to more complex variants such as Noise Conditioned Score Networks, Stochastic Differential

Equation (SDE)-based models, Brownian Bridge Diffusion Models (BBDMs), and Denoising

Diffusion Implicit Models (DDIMs). The purpose of this section is to establish the theoretical

foundations for the subsequent chapters and offer a comprehensive understanding of the nature
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of this class of models.

The next chapter focuses on the practical applications of diffusion models in image synthesis.

Specifically, it covers the implementation of these models on the COVID-QU dataset, detailing

the process of training DDPMs, discussing the architecture of the models, and presenting

the results of image synthesis. This chapter aims to demonstrate the practical viability and

effectiveness of diffusion models in generating high-quality images.

In the third chapter, the focus remains on practical applications but shifts to conditional

image synthesis. Here, we explore the use of diffusion models for conditional image synthe-

sis, particularly in the context of image segmentation. The chapter thoroughly examines the

architecture of the models, segmentation quality metrics, and results for lung and infection

segmentation, showcasing the versatility and precision of diffusion models in medical image

analysis.

So far, the practical chapters have focused on DDPMmodels. The fourth chapter specifically

addresses the application of Brownian Bridge Diffusion Models (BBDMs) for image segmenta-

tion tasks, presenting detailed results for lung and infection segmentation on the COVID-QU

dataset.

In the fifth chapter, we shift our focus to latent space models. This chapter delves into

models such as VQ-GANs and compares different downsampling rates and the performance of

Latent Diffusion Models (LDMs) and Latent Brownian Bridge Models. This exploration into

latent space representations aims to enhance the efficiency and scalability of diffusion processes

in high-dimensional image generation and segmentation tasks.

The final two sections summarize the key findings, contributions, and potential future direc-

tions of this research. Through this comprehensive exploration, this thesis aims to contribute

to the growing body of knowledge in the field of generative models, providing valuable insights

into their application in medical image analysis and beyond.
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1 Diffusion Models

Diffusion Models represent a powerful paradigm within generative modelling, offering a system-

atic framework for generating complex data distributions. Rooted in principles of stochastic

processes, diffusion models have emerged as versatile tools with wide-ranging applications span-

ning fields such as computer vision, and audio processing. Their aim is to map an unknown

data distribution to a known distribution and back. This mapping to the latent distribution

is done by gradually adding noise to our original data. Our goal is to learn to reverse this

process, this way we can generate images by first sampling from the latent distribution and

passing it through the estimate of the reverse process, obtaining a data point from the unknown

distribution.

In this chapter, we embark on a journey through the theoretical foundations of three pivotal

variations of Diffusion Models: Denoising Diffusion Probabilistic Models, Noise Conditioned

Score Networks, and Stochastic Differential Equation Diffusion Models. While these models

have proven adept at unconditional data synthesis tasks, the realm of conditional image syn-

thesis poses distinct challenges. Most image-to-image translational computer vision tasks fall

under this category, necessitating additional architectural complexities and encountering uncer-

tain convergence when adapting existing frameworks. To address these challenges, Li et al.[11]

introduced Brownian Bridge Diffusion Models, offering promising avenues for conditional syn-

thesis tasks, as detailed in Section 1.3. Despite these advancements, one persistent obstacle in

diffusion-based models remains their sluggish inference time. In response, two directions have

proven to be successful in speeding up sampling. Song et al. [24] introduce Denoising Diffu-

sion Implicit Models, where they define a new kind of non-Markovian inference process that

shares the same marginals with DDPMs, while making sampling more efficient, their results are

presented in Section 1.4. Rombach et al.[18] pioneered latent diffusion models, which conduct

the diffusion process within the latent space of pre-trained autoencoders. Section 1.5 delves

into the intricacies of Latent Diffusion Models, shedding light on their innovative approach to

expediting inference. Moreover, to provide a comprehensive understanding of Latent Diffusion

Models, Subsection 1.5 also elucidates the architecture of the foremost autoencoders employed

in conjunction with these models. By unravelling the theoretical frameworks and practical

implementations of these diverse diffusion models, we aim to illuminate their potential to rev-

olutionize the landscape of generative modelling, enabling the creation of intricate and lifelike

data distributions across various domains.
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1.1 Denoising Diffusion Probabilistic Models

This subsection aims to give a theoretical formulation for the Denoising Diffusion Probabilistic

Model (DDPMs) framework and builds heavily upon Ho et al. [9]. DDPMs were first introduced

by Ho et al. [9] and are the first kind of diffusion models that could produce high-quality

samples, while achieving state-of-the-art sample quality results. Although the idea of DMs has

existed before, models before had no practical use, therefore most scholars regard Ho et al.’s

formulation of diffusion models as the foundation of most DMs today. For this reason, we will

present this article’s main ideas in detail.

Figure 1: The forward and reverse processes of DDPMs [9]

As seen in Figure 1 DDPMs contain two main parts, the forward (or noising) and reverse

process. In the case of DDPMs, the noising process is a Markov chain, which evolves according

to

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

Where x0 is our original sample, x1, . . . , xT are the latent variables during each step of the

inference process, and β1, . . . , βT is a variance schedule. Under good settings of T and β1, . . . , βT ,

q(xT ) is nearly Gaussian. This is crucial since our ultimate goal is to learn the translation

between the data distribution and the Gaussian distribution.

Not getting into the calculations too much (all ideas in this chapter are discussed in detail

by Ho et al. [9]), sampling at a given t can be simplified by writing

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

where αt = 1− βt, and αt =
t∏

s=1

αt.

Using Bayes’ theorem it can be proven that the q(xt−1|xt, x0) posteriors are also Gaussian [7]:

q(xt−1|xt, x0) = N (xt−1, µ̃(xt, x0), β̃tI),

with a mean that depends on the data x0. This means that the reverse transitions depend on

the whole data distribution, and so we must estimate them in order to take samples from the

data distribution. So to sample from q(x0), first we would have to sample from q(xT ) (which

is essentially Gaussian) and then using the estimated reverse transitions we can take steps on

the reverse process until we reach x0.

Now that we have laid down the goal of the training process, let us introduce how we model

the reverse transitions q(xt−1|xt, x0). Let our model that estimates the reverse transitions

6



pθ(xt−1|xt) be of the following form:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

where µθ(xt, t) and Σθ(xt, t) are a class of neural networks indexed by θ. The goal of training is

to find such weights for these neural networks, which maximize the log-likelihood of our training

data. The model is trained by minimizing the negative log-likelihood of the training data.

Eq(− log pθ(x0)) =

∫
− log pθ(x

(0))q(x(0))dx(0)

Using this as a loss function is not optimal, so instead we aim to obtain an upper bound that

we can easily and efficiently calculate.

∫
− log pθ(x

(0))q(x(0))dx(0) =

∫
− log

[ ∫
pθ(x

(T ))
T∏
t=1

pθ(x
(t−1)|x(t))

q(x(t)|x(t−1))
·

q(x(1...T )|x(0))dx(1...T )
]
q(x(0))dx(0)

≤
∫

− log
[
pθ(x

(T ))
T∏
t=1

pθ(x
(t−1)|x(t))

q(x(t)|x(t−1))

]
·

q(x(0...T ))dx(0...T ) (3)

In line (3) Jensen’s inequality was applied. In the end, we got a bound on the log-likelihood,

commonly called the Evidence Lower Bound (ELBO). By applying ELBO for the inference and

reverse distributions, we get one step closer to obtaining a tractable loss function.

E [− log pθ (x0)] ≤ Eq

[
− log

pθ (x0:T )

q (x1:T | x0)

]
= Eq

− log p (xT )−
∑
t≥1

log
pθ (xt−1 | xt)

q (xt | xt−1)

 =: L.

Further deconstructing L into a sum of divergences.

L = Eq

[
− log

pθ (x0:T )

q (x1:T | x0)

]

= Eq

− log p (xT )−
∑
t≥1

log
pθ (xt−1 | xt)

q (xt | xt−1)


= Eq

[
− log p (xT )−

∑
t>1

log
pθ (xt−1 | xt)

q (xt | xt−1)
− log

pθ (x0 | x1)

q (x1 | x0)

]

= Eq

[
− log p (xT )−

∑
t>1

log
pθ (xt−1 | xt)

q (xt−1 | xt,x0)
· q (xt−1 | x0)

q (xt | x0)
− log

pθ (x0 | x1)

q (x1 | x0)

]

= Eq

[
− log

p (xT )

q (xT | x0)
−
∑
t>1

log
pθ (xt−1 | xt)

q (xt−1 | xt,x0)
− log pθ (x0 | x1)

]

With the derivations above we got a loss function containing terms of Kullback-Leibler (KL)

divergences, an asymmetrical distance of probability measures. Fortunately, the KL divergence

has a closed form for Gaussian distributions. Also, let us fix Σθ(xt−1, t) = σtI, Ho et al. [9] did
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not find any benefit by training Σθ(xt−1, t) in their experiments as well as this simplifies the

calculation of the objective function.

Eq[DKL (q (xT | x0) ∥p (xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

]

As mentioned before the reverse posteriors depend on the original data, specifically they can

be calculated as
q (xt−1 | xt,x0) = N

(
xt−1; µ̃t (xt,x0) , β̄tI

)
,

where µ̃t (xt,x0) :=

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt,

and β̃t :=
1− ᾱt−1

1− ᾱt
βt.

By applying the closed form of KL divergence for Gaussian distributions, the Lt−1 term reduces

to an easily computable form.

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t (xt,x0)− µθ (xt, t)∥2
]
+ C.

Since xt(x0, ε) =
√
αx0 +

√
(1− α)ε, where ε ≈ N (0, I), and using the definition of µ̃t(xt, x0),

we can rewrite the above term as:

Lt−1 − C = Ex0,ϵ

[
1

2σ2
t

∥∥∥∥µ̃t

(
xt (x0, ϵ) ,

1
√
αt

(
xt (x0, ϵ)−

√
1− ᾱtϵ

))
− µθ (xt (x0, ϵ) , t)

∥∥∥∥2
]

= Ex0,ϵ

[
1

2σ2
t

∥∥∥∥ 1
√
αt

(
xt (x0, ϵ)−

βt√
1− ᾱt

ϵ

)
− µθ (xt (x0, ϵ) , t)

∥∥∥∥2
]

We can see that µθ(xt, x0) has to approximate 1√
α

(
xt(x0, ε) − βt√

1−α
ε
)
. Let’s reparametrize

µθ(xt, x0) the following way:

µθ (xt, t) = µ̃t

(
xt,

1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt, t)

))
=

1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
Now we have a much simpler loss term where our model only needs to approximate the noise.

Ex0,ε

[
β2
t

2σ2
tαt(1− αt)

||ε− εθ(
√
αtx0 +

√
1− αtε, t)||2

]
.

Ho et al.[9] also found that it’s more beneficial to modify the weighing term in the previous

loss. The final loss function is defined below, where t is sampled according to the uniform

distribution on 1, . . . , T .

Lsimple(θ) = Ex0,ε,t

[
||ε− εθ(

√
αtx0 +

√
1− αtε, t)||2

]
.

Finally, they gave a model architecture for εθ(xt, t). It is a variation of U-Net, that shares

parameters across time. The Transformer sinusoidal position embeddings of t are added at
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Figure 2: Training and sampling algorithm for DDPMs by Ho et al. [9]

each layer, thus specifying t to the network. This is defined as follows, where k is the size of

the embedding.

PE(t, 2i) = sin

(
t

100002i/k

)
PE(t, 2i+ 1) = cos

(
t

100002i/k

)
Additionally, the network contains self-attention at resolution 16× 16.

To give some context to this section’s dense theoretical results, and to make these ideas

more easily digestible, we have included the summarized training and sampling algorithms in

Figure 2.

1.2 Noise Conditioned Score Networks and SDE-based Diffusion

Models

In addition to the Denoising Diffusion Probabilistic Models presented in the previous section,

there are multiple alternative frameworks of diffusion models, which might be worth mentioning.

In this short subsection, we delve into the foundational principles of two important variations

of DMs. Noise Conditioned Score Networks and SDE based Diffusion Models provide a dif-

ferent interpretation of the meaning of the DDPM framework and hopefully give us a deeper

understanding of them.

Noise Conditioned Score Networks (NCSNs) represent a pioneering approach within the

realm of generative modelling, leveraging the concept of score matching to learn complex data

distributions. Unlike traditional generative models, which directly parameterize the data distri-

bution, NCSNs focus on learning the score function (a gradient of the log-density) of the data

distribution. By conditioning this score function on a noise source, NCSNs facilitate the genera-

tion of high-quality samples while providing enhanced flexibility and tractability. This paradigm

shift not only enables the generation of diverse and realistic data but also allows for efficient

inference and training. As mentioned before, Noise Conditioned Score Networks [25] aim to es-

timate the gradient of the data density. Formally, σ1 < σ2 < . . . < σT is a sequence of Gaussian

noise scales, pσ1(x) ∼ q(x0) (the data density), pσT
(x) ∼ N (0, I), and pσt(xt|x) ∼ N (xt;x, σtI).

Their aim is to estimate ∇xtpσt(xt), we know that ∇xtpσt(xt|x) =
xt − x

σt

, so they minimize the
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following loss function, where sθ(xt, σt) is a neural network.

1

T

T∑
t=1

λ(σT )Eq(x)Ext∼pσt (xt|x)||s(xt, σt)−
xt − x

σt

||

The estimated gradient is then used to iteratively denoise a sample from N (0, I), given the

timestep. Namely, the sampling algorithm is the Langevin dynamics algorithm [25] described

in Figure 3.

Figure 3: Langevin dynamics sampling algorithm [25]. Figure by Croitoru et al. [5]

Stochastic Differential Equations [26] based data synthesis is another interesting approach.

Just like the previous two methods, here the data is also transformed into noise. However, the

diffusion process is considered to be continuous, and it is defined to be the solution of an SDE.

The SDE describing the diffusion process is the following,

∂x

∂t
= f(x, t) + σ(t)ωt ⇐⇒ ∂x = f(x, t) · ∂t+ σ(t) · ∂ω,

where ωt are standard normal variables, σ is a time-dependent function that computes the

diffusion coefficient, and f computes the drift coefficient. To have a diffusion process as a

solution, the drift coefficient should be designed such that xt gradually becomes pure noise.

Now the aim is just like before, to reverse this process. The reverse is defined as,

∂x = [f(x, t)− σ(t)2 · ∇x log pt(x)] · ∂t+ σ(t) · ∂ω̂,

where ω̂ is the time reversed Brownian motion. The job of our neural network is to learn

∇x log pt(x), just like before. To this end, we train the following objective, which is a version

of the NCSN loss function adapted for the continuous case.

L∗
dsm = Et

[
λ(t)Ep(x0)Ept(xt|x0)∥sθ (xt, t)−∇xt log pt (xt | x0) ∥22

]
Here λ(t) is a weighing function for t ∼ U(0, T ). It is important to mention that with an

affine drift coefficient f the log gradients of the data density can be easily calculated and score
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matching can be used, otherwise one can fall back to sliced score matching [27]. For sampling,

we can use any numerical SDE solver. One such solver is the Euler-Maruyama algorithm, which

is described in Figure 4.

Figure 4: The Euler-Maruyama numerical SDE solving algorithm [25]. Figure by Croitoru et
al. [5]

Both NCSNs and DDPMs can be regarded as a discretization of an SDE that fits the

framework defined before. First, the NCSNs transitions are equivalent to the following Markov

chain, where z ∼ N (0, I), I being the identity matrix, and σt ∈ {σi}Ni=1.

xt = xt−1 +
√
σt − σt−1zt−1

Which can be regarded as the discretization of the SDE

dx =
d[σ2(t)]

dt
dω.

For DDPMs, as they evolve according to 2, the corresponding Markov chain is

xt =
√

1− βtxt−1 + βtzt−1.

And if we let N → ∞, it converges to the following SDE

dx = −1

2
β(t)xdt+

√
β(t)dω.

So far we have introduced three formulations of Diffusion Models and have demonstrated the

connections between them. In the remaining part of the thesis we won’t deal with NCSN and

SDEs, but with the help of them we were able to better understand the nature of DDPMs and

other DMs. Also, in the last couple of years, DDPMs have been researched extensively, while

other formulations like NCSNs and SDEs have not. Future research on these two underexplored

areas might help to overcome the weaknesses of DDPMs. This chapter is heavily built upon
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Croituru et al. [5].

1.3 Brownian Bridge Diffusion Models

The usual approach for dealing with image-to-image translational tasks, which is the ultimate

goal of this thesis, is to formulate them as a conditional image generation problem. In condi-

tional image synthesis, we aim to generate data from the conditional densities of our dataset.

With DDPMs, this is usually achieved by adding the information about the conditioning to

the noise estimating model, which will be in the form of εθ(x, y, t). While some models could

achieve relative success by formulating DMs this way, the models generally suffer from poor

generalization and there’s no theoretical guarantee that the model will truly estimate the de-

sired conditional distributions [11]. The only tasks where these models could achieve success

were ones where the conditioning and modelled domain were relatively similar.

Figure 5: Comparison of BBDM and DDPM architectures by Li et al. [11]

In this section, we present Brownian Bridge Diffusion Models (BBDMs). They were first

introduced by Li et al. [11] in 2023 for image-to-image translational tasks, and they aim to

learn the mapping between two distinct image domains, A and B. Their name comes from the

stochastic processes called Brownian Bridges, which are continuous-time stochastic processes

where the transitional distribution during the diffusion process is conditioned on both the

starting and ending states. The distribution of the middle steps of a Brownian Bridge process

starting from point x0 sampled from qdata(x0) at t = 0, and ending at point xT at t = T , can

be expressed as:

p(xt|x0, xT ) = N
(
(1− t

T
)x0 +

t

T
xT ,

t(T − t)

T
I

)
(4)

This formulation illustrates that the process is anchored at both ends with x0 and xT , creating

a bridge between them. The forward process of the BBDM is a Brownian Bridge, defined as,

qBB (xt | x0,y) = N (xt; (1−mt)x0 +mty, δtI)

x0 = x, mt =
t

T
,

12



where T is the number of steps, mt =
t
T
, and δt = 2s(mt−m2

t ). The schedule δt is designed such

that the maximum variance doesn’t make the model untrainable, the scaling parameter s also

serves this purpose. Additionally, x0 is sampled from distribution A, while y is sampled from

distribution B. Applying the previous definition for xt and xt−1, one can obtain transitional

probabilities for qBB, where δt|t−1 = δt − δt−1
(1−mt)2

(1−mt−1)2
.

qBB (xt | xt−1,y) = N
(
xt;

1−mt
1−mt−1

xt−1

+
(
mt − 1−mt

1−mt−1
mt−1

)
y, δt|t−1I

)
In the case of conventional diffusion models, the reverse process initiates with pure noise

drawn from a Gaussian distribution and progressively removes the noise, revealing the under-

lying clean data distribution. To accommodate the modelling of the conditional distributions,

current approaches [18, 1] incorporate the condition as an extra input for the noise estimating

neural network during the reverse diffusion process. Different from this approach, Brownian

Bridge Diffusion models start directly from the conditional input and iteratively transform it

to the desired data. Similar to DDPMs the reverse transitions are estimated in the form of

pθ(xt−1|xt, y) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (5)

where µθ(xt, t) and Σθ(xt, t) are both also estimated by some neural network and most impor-

tantly xT = y which is sampled from distribution B. After sampling from distribution B one

can sample from distribution A by repeatedly applying the reverse transitions.

To train a BBDM, one must minimize the Evidence Lower Bound(ELBO), which bounds

the negative log likelihood. For the BBDM transitions, the ELBO takes the following form,

much similar to the DDPM loss function.

ELBO =− Eq(DKL(qBB (xT | x0,y) ||p (xT | y))

+
T∑
t=2

DKL(qBB (xt−1 | xt,x0,y) ||pθ (xt−1 | xt,y))

− log pθ (x0 | x1,y))

By applying Bayes’ theorem and the chain rule, one can calculate the qBB (xt−1 | xt,x0,y)

transitions. Which are also Gaussian with some mean dependent on x0, y and xt.

qBB (xt−1 | xt,x0,y) =
qBB (xt | xt−1,y) qBB (xt−1 | x0,y)

qBB (xt | x0,y)

= N
(
xt−1; µ̃t (xt,x0,y) , δ̃tI

)
By writing µ̃t (xt,y,x0) in the following form, a possible parametrization of µθ (xt,y, t) be-

comes apparent.

µ̃t (xt,y, x0) = cxtxt + cyty + cϵt

(
mt (y − x0) +

√
δtϵ
)
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Figure 6: Summary of the BBDM sampling and training algorithm by Li et al. [11]

cxt =
δt−1

δt

1−mt

1−mt−1
+

δt|t−1

δt
(1−mt−1)

cyt = mt−1 −mt
1−mt

1−mt−1

δt−1

δt

cϵt = (1−mt−1)
δt|t−1

δt

Now our neural model only needs to estimate
(
mt (y − x0) +

√
δtϵ
)
instead of the whole mean.

µθ (xt,y, t) = cxtxt + cyty + cϵtϵθ (xt, t) .

Finally, by applying this parametrization to the loss function, it is reduced to the following

form

Ex0,y,ϵ

[
cϵt

∥∥∥mt (y − x0) +
√
δtϵ− ϵθ (xt, t)

∥∥∥2] .
To summarize, we describe the final training and sampling algorithm, which can also be seen

in Figure 6 in a consice form. During training, one first samples a pair x0 and y from both the

A and the B distributions. Then with a random t which is uniformly sampled from a given

set, we apply the forward process with some ε. Finally, we take a gradient step on the loss

defined before. As for the sampling process, we first sample from the B distribution, let’s say

y. Then we apply our trained model to estimate
(
mt (y − x0) +

√
δtϵ
)
. With the estimate we

can obtain xt−1, we repeat this process until we reach x0.

1.4 Denoising Diffusion Implicit Models

One drawback of DMs is that they require thousands of denoising steps during sampling, which

drains a lot of computational resources and makes them much slower compared to GANs.

Song et al. [24] propose a new sampling method for DDPMs, which is 10 to 50 times faster

than the standard sampling procedure with minimal losses in sample quality, called Denoising

Diffusion Implicit Models (DDIM). Since the DDPM loss function Lsimple introduced by Ho
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et al. [9], only depends on the marginals, this raises the question of whether one can find a

family of inference distributions that has an equivalent loss function to DDPMs, but require

less steps than them during sampling. Motivated by this, Song et al. [24] define a family of

non-Markovian inference processes that have the same marginals and loss function as DDPMs,

but the intermediate transitions differ from them. In addition to their theoretical results, their

experiments have demonstrated that DDIMs achieve comparable results to DDPMs, but with

higher efficiency. Their results presented in the paper [24] have proven to be so impactful,

that DDIMs have become the standard sampling algorithm in most applications of DDPMs.

In this section, we aim to present the theoretical background of DDIMs, as later in the thesis

our models will incorporate them.

As stated previously, DDPMs aim to approximate the inverse of the inference process. Song

et al. [24] studied the forward process to reduce the number of iterations demanded by the

backwards model. Their primary observation is that the DDPM objective, solely relies on the

marginal distributions of the variables at each step (denoted as q(xt|x0)), rather than directly

on the joint distribution q(x1:T |x0). Given that numerous inference distributions (joint distri-

butions) share identical marginals, they explore alternative inference approaches that deviate

from the Markovian framework. These non-Markovian inference methods yield an equivalent

objective function to that of DDPMs, that we demonstrate in this section.

First, let’s define the non-Markovian inference process introduced by Song et al.[24]. Let

qσ (x1:T | x0) := qσ (xT | x0)

T∏
t=2

qσ (xt−1 | xt,x0)

be the family of inference distribution considered, where qσ (xT | x0) = N
(√

αTx0, (1− αT ) I
)
,

σ ∈ RT
≥0 and for all t > 1,

qσ (xt−1 | xt,x0) = N
(√

αt−1x0 +
√

1− αt−1 − σ2
t ·

xt −
√
αtx0√

1− αt
, σ2

t I

)
. (6)

It can be shown, that the qσ (xt | x0) = N
(
xt;

√
αtx0, (1− αt) I

)
marginals match the DDPM

marginals. The forward process can be derived from Bayes’ rule:

qσ (xt | xt−1,x0) =
qσ (xt−1 | xt,x0) qσ (xt | x0)

qσ (xt−1 | x0)
,

As we can see the forward transitional densities now depend on x0, so it is not Markovian. The

σ parameter sets the variance of the forward distribution. Just like in the case of DDPMs, we

can train a model ε
(t)
θ (xt) that estimates εt given xt in the following equation,

xt =
√
αtx0 + (1− αt)εt,

this relationship derives from the transitional probabilities 2. Therefore, using the trained

model, we can get an estimate for x0 from xt based on the previous equation.

f
(t)
θ (xt) :=

(
xt −

√
1− αt · ε(t)θ (xt)

)
/
√
αt. (7)
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Figure 7: Graphical representation of the accelerated forward and backward process by Song
et. al. [24]

Based on this, we can define an estimated forward process, where the initial distribution is

pθ (xT ) = N (0, I).

p
(t)
θ (xt−1 | xt) =

N
(
f
(1)
θ (x1) , σ

2
1I
)

if t = 1

qσ

(
xt−1 | xt, f

(t)
θ (xt)

)
otherwise,

(8)

Just like in the case of DDPMs, we want to minimize the Evidence Lower Bound. With similar

calculations, we get the following loss function.

Jσ (ϵθ) := Ex0:T∼qσ(x0:T ) [log qσ (x1:T | x0)− log pθ (x0:T )]

=Ex0:T∼qσ(x0:T )

[
log qσ (xT | x0) +

T∑
t=2

log qσ (xt−1 | xt,x0)−
T∑
t=1

log p
(t)
θ (xt−1 | xt)− log pθ (xT )

]

A major result by Song et al. [24] is that this objective is equivalent (for all σ) with minimizing

Lsimple, the reweighted loss function, defined by Ho et al. [9]. Therefore, by training εθ(xt) with

Lsimple we get an estimated forward process for multiple non-Markovian inference processes.

From the definition of the reverse transitions 6 and the x0 estimate 7, we get that xt evolves

according to the following formula during the sampling process.

xt−1 =
√

αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

”predicted x0 ”

+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt)︸ ︷︷ ︸

”direction pointing to xt”

+ σtϵt︸︷︷︸
random noise

.

The special case when σt is set to 0 yields a deterministic process, where if we sample xT from

N (0, I) despite the transitions being deterministic (except for t = 1), the marginals match the

desired distributions, they call this process DDIM. Additionally, this deterministic process can

be seen as a mapping between the data and latent spaces, which can be used to interpolate

between data points.

A key observation of Song et al. [24] for speeding up the generative process is that Lsimple

only depends on the marginals, what happens during the transitions does not matter. Therefore,

by fixing an increasing subset of steps τ ⊂ {0, 1, . . . , T}, and defining transitions between

them like 2, one can obtain a non-Markovian forward process that matches the marginals

on {0, 1, . . . , T} (a graphical representation is shown in Figure 7). Formally, the inference
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distribution is the following

qσ (x1:T | x0) := qσ (xτS | x0)
S∏

i=1

qσ
(
xτi−1 | xτi ,x0

)∏
t∈τ

qσ (xt | x0)

The corresponding generative process only uses the steps of τ during sampling and the transi-

tions between them defined in 8, therefore greatly reducing the computational demand of the

inference procedure.

pθ (x1:T ) := pθ (xT )
S∏

i=1

pθ
(
xτi−1 | xτi

)
︸ ︷︷ ︸

”used for sampling”

∏
t∈τ

pθ (x0 | xt) .

Once again, it can be shown that the ELBO objective is equivalent to Lsimple. Therefore, by

training a model on many T steps with Lsimple, we obtain the generative process for the above

non-Markovian process as well.

In conclusion, Song et al. show that by training a diffusion model on the Lsimple loss, we can

obtain a family of generative processes with the same marginals. With this family of processes,

we are able to speed up sampling by 10 to a 100 times. For speeding up BBDM sampling, a

similar procedure can also be defined [11], built upon similar ideas.

1.5 Latent Diffusion Models and Latent Brownian Bridge Models

A paper by Rombach et al. [18] presents the current state-of-the-art of Diffusion Models.

One major limitation of DMs is their high computational demands. This reason prevented

them from being applied to high-resolution images. Latent Diffusion Models [18] solved this

problem by training DDPMs in a latent space obtained by a pre-trained autoencoder. This

simple method significantly improved the training and sampling efficiency of denoising diffusion

models without degrading their quality. Rombach et al. [18] used the DDPM framework, but

Li et al. [11] have discovered that Brownian Bridge Diffusion Models also benefit from a latent

autoencoder.

Figure 8: High level architecture of LDMs. Figure by Rombach et al. [18].
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Latent Diffusion Models essentially partition the training algorithm into two phases. In

the first phase, we train our autoencoders. Here, the high-frequency details are learned by

the encoder and removed from the compressed latent space. Thus, during the next phase, the

underlying Diffusion Model can focus on learning the semantic and conceptual composition

of the data. This partitioning of the training process makes it computationally more efficient

while keeping performance the same or potentially improving it.

The models, used for latent compression, are made up from an encoder E and a decoder

D part. The encoder downsamples the input data while keeping the spatial structure of the

image. Previous methods relied on a 1D ordering of the latent space and lost much of the

spatial information encoded. The decoder takes an element of the latent space and maps it to

the original distribution. Many different kinds of models would fit this general framework, but

Rombach et al. [18] found VQGANs and a Kullback-Leiber regularized Variational Autoencoder

trained in an adversarial manner to be the most successful. In fact, most works dealing with

Latent Diffusion Models exclusively use VQGANs. During our experiments in the latter parts

of the thesis, we will only deal with VQGANs, since they seem to be the standard latent model

used. Therefore, in the remaining part of the section we will present the concept of Generative

Adversarial Networks (GANs), Vector Quantization (VQ) and the VQGAN model used by

Rombach et al. [18].

Figure 9: High level architecture of BBDMs. Figure by Li et al. [11].

The general Generative Adversarial Networks (GANs) framework was introduced by Ian

Goodfellow and his colleagues [8] in 2014. The core idea of GANs revolves around a minimax

game between two neural networks: a generator G and a discriminator D. Let x denote real

data samples and z denote random noise vectors sampled from a prior distribution p(z). The

generator G takes z as input and outputs synthetic samples G(z), attempting to mimic the

distribution of real data. The discriminator D receives both real samples x and generated

samples G(z), aiming to differentiate between the two by assigning high probabilities to real

samples (D(x) ≈ 1) and low probabilities to fake ones (D(G(z)) ≈ 0). The training process is
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formulated as a minimax optimization problem

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))],

where pdata(x) represents the true data distribution. This objective function encourages the

generator to produce samples that are indistinguishable from real data while pushing the dis-

criminator to become more accurate in distinguishing between real and fake samples. Of course,

our version of GAN is a bit different. Since our aim is not to generate diverse samples but to

learn a latent space that is perceptually equivalent to the original image space, the prior dis-

tribution p(x) is the latent distribution obtained by passing the original images through the

encoder E . As suggested by the definition, GANs have been created for the same kind of tasks

as Diffusion Models and were the state-of-the-art generative framework until Nichol et al. [13]

could reach results that beat GANs. This result has introduced a paradigm shift to generative

models, since GANs have many weaknesses, such as instability during training and mode col-

lapse. Although DMs are the preferred generative model nowadays, GANs have not become

obsolete, they are still used to generate highly realistic data samples across various domains,

ranging from images to text and beyond, with applications in image synthesis, style transfer,

and data augmentation, among others.

The architecture of VQ-GANs integrates Vector Quantization into the traditional GAN

setup. In a typical GAN, a generator network creates images from random noise, while a dis-

criminator network evaluates the authenticity of these images. In contrast, VQ-GANs introduce

a discrete latent space by quantizing the continuous feature map produced by the encoder. This

quantization process involves mapping the continuous vectors to discrete codes from a trained

codebook of fixed size, resulting in a more structured representation of the data. The discrete

representation facilitates more efficient training and generation processes, leading to faster con-

vergence and improved sample quality. In the model used by Rombach et al., the VQ layer is a

part of the decoder. To decode a latent image first, a convolutional layer is applied to it. Here,

each pixel is represented by a vector. The VQ layer looks up the nearest neighbour of every

such vector in the codebook and replaces it with accordingly, the rest of the architecture is a

standard convolutional model with residual connections. The encoder part of the VQGAN is a

simple convolutional model with residual connections.
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2 Image Synthesis on the COVID-QU dataset

As a first step towards other, more complex computer vision tasks, we have to implement

DDPMs for their original function, which is unconditional image synthesis. In this section, we

are going to present some technical details about the implementation of DDPMs. As well as

introduce the COVID-QU dataset, the dataset analysed in the remaining parts of the thesis.

Additionally, a sketch of the model architecture used by us is presented, before the results of

the first experiments in image synthesis are shared.

2.1 Implementing Diffusion Models

Throughout our experiments, we used a training pipeline written by the Computer Vision group.

The pipeline allows us to easily define hyperparameters and automate the experimentation

process. The first task was to implement DDPMs and BBDMs. Our approach was the following.

Take the logic written for DDPMs by Rombach et al. [18] and for BBDMs by [11] and implement

them into the framework using wrapper classes without changing the base code too much. Since

Diffusion Models have a fundamentally different training algorithm compared to classical neural

networks, employing wrapper classes was necessary and changing the pipeline couldn’t always be

avoided. During the making of this thesis, newer and newer functionalities were implemented,

like LDMs, measuring the performance of the models, logging sample images, and many more.

Our repository can be found here.

2.2 The COVID-QU Segmentation Dataset

In all the experiments, the COVID-QU [2] dataset was used. The dataset contains 33,920 chest

X-rays of which 11,956 have COVID-19, 11,263 have non-COVID infections (Viral or Bacterial

Pneumonia), and 10,701 are X-rays of normal lungs. Additionally, the whole dataset includes

segmentation masks for lungs. The infection dataset is a smaller subset of the data, it contains

1,456 Normal and 1,457 non-COVID-19 chest X-rays with corresponding lung masks, plus 2,913

COVID-19 chest X-rays with corresponding lung mask from the COVID-QU-Ex [2] dataset and

corresponding infection masks from the QaTaCov19 [6] dataset.

Since training and sampling diffusion models is a memory-heavy process, all the training

and sampling in the experiments were done on images of size 64× 64× 1.

2.3 Training DDPMs and results

The first experiments where we tested the image synthesis capabilities were not carried out in

the experimentation pipeline. With default settings, we tested and measured the generative

capabilities of LDMs and Guided Diffusion by Baranchuck et al. [3]. With these experiments,

we got a good idea about the capabilities of such models. Motivated by the success of these

experiments, we tested the implemented non-latent DDPMs with the pipeline on the COVID-

QU dataset. Some generated images can be seen in Figure 10. Although in image synthesis
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Figure 10: Synthetic Images of Chest X-Rays Generated from a Diffusion Model

measuring the synthesized images’ diversity and fidelity is important, it goes beyond the scope

of this thesis, therefore they were not measured. Despite this, we obtained valuable experience

in training practices and hyperparameter settings through these experiments. Some of these

parameters are shared in the next subsection, where we introduce some details about the model

architecture used in most of our experiments.

2.4 Model Architecture

During training, the model used 1000 diffusion steps. A linear noising schedule was employed

with β0 = 0.0001 and β1000 = 0.02, this controls how much noise we add at each diffusion step.

These hyperparameters have remained fixed throughout our experiments. During sampling, we

used the DDIM [24] approach with 50 steps.

The model architecture described below is based on Rombach et al. [18] with the exception

that we didn’t use a latent encoder or decoder and that the input and output channels of the

U-Net were fit to our dataset. The input of the noise-predicting U-Net model is an image of

size 64 × 64 with one channel and the timestep embedding. The output is a denoised image

of size 64 × 64 with one channel. First, the input image is transformed with a convolutional

layer to an image of the same spatial size, but with 192 channels. After the first step, the input

passes through the three segments of the U-Net [20], an encoder, a middle, and a decoder part.

To define the architecture, one must first describe the two other major building blocks of our

U-Net: Residual Blocks and Linear Attention.
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Figure 11: U-Net Architecture, Figure by Ronneberger et al. [20]

A Residual Block has two inputs, an image, and the timestep embedding. Given a

timestep t, first, a sinusoidal positional embedding is calculated, it is a vector of size 192, and

then it is transformed with linear layers and SiLU activation to a vector of size 4 · 192. Then,
the input image is normalized using Group Normalization, and it is passed through a SiLU

activation. If the Residual Block is used for down or upsampling, average pooling or nearest

interpolation is applied to the output of the previous step. The output is then passed through

a convolutional layer. Then the timestep embedding is passed through SiLU and a linear layer

and added together with the output of the previous step, the output is then passed through

a Group Normalization layer, a SiLU activation, and a convolutional layer. The output of

the Residual Block is the sum of the previous step and the original input that was down or

upsampled so the shapes fit.

A Linear Attention Layer first flattens the spatial dimensions of the input. After nor-

malizing the input, Q, V,K matrices are calculated with a one-dimensional convolutional layer.

Then the rows of the matrices are cut up to equal pieces of size 64. After this the following

formula is calculated: softmax(QKT
√
D
)V , where Q, V,K are now the submatrices and D is a

scaling parameter, the outputs are then concatenated and transformed back to the shape of

the input. Finally, the output is given by the sum of the input and the output of the previous

step. With this approach, pairwise correlations of different image regions can be modelled.

Now we can define the Encoder. The encoder has multiple levels, and each level has two

Residual Blocks and a downsampling Residual Block. The first Residual Block grows the image

channels, the second keeps the image dimensions the same, and the third RB downsamples the

image spatial dimensions by a factor of two. The number of channels on each level is controlled

by the channel mult hyperparameter. In our case, the first level has 192, then 2× 192, 3× 192,

and finally 4 × 192. Additionally, Attention layers are applied at levels of spatial resolution:
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32× 32, 16× 16, 8× 8, after each non-downsampling Residual Block.

The Middle part of the U-Net is made up of two Residual Blocks and a Linear Attention

Layer in the middle. These Residual Blocks keep the channel size constant.

The structure of the Decoder part matches the encoder, but instead of downsampling on

each level, the Residual Block upsamples by a factor of two, and the input of each level is the

concatenation of the output of the level of the Encoder with the same spatial resolution and the

output of the previous Decoder level. The final output is then obtained by passing the output

of the Decoder through a Group Normalization Layer, a SiLU activation, and a convolutional

layer which transforms the image back to its original shape.

Figure 12: Example of an image and the image after adding noise and passing it through the
U-Net. As you can imagine, one U-Net pass has removed some noise. During vanilla sampling,
1000 passes would be completed.
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3 Conditional Image Synthesis using DDPMs

In conditional image synthesis, we aim to generate data from the conditional densities of our

dataset. With diffusion models, this is usually achieved by adding the information about

the conditioning to the noise estimating model, which will be in the form of εθ(x, y, t). One

major architectural question is how we should add information about the conditioning. A usual

approach is to simply concatenate, add it to the input of the U-Net, or use cross-attention to add

it to intermediate levels of the U-Net. In the latter part of this section, we are going to present

the results of our experiments which have compared the effectiveness of the first two methods.

This area of Diffusion Model research seems underexplored thus, future experimentation might

be useful.

3.1 Diffusion Models in Image Segmentation

Image segmentation is a crucial task in computer vision that involves dividing an image into

multiple segments or regions, each representing a different object or part of an object. From a

technical perspective, it involves assigning a label to each pixel, such that pixels with the same

label belong to the same kind of object. The goal is to simplify or change the representation of

an image into something more meaningful and easier to analyse. This technique is widely used

in various applications such as medical imaging, autonomous driving, and object detection,

where precise delineation of objects is essential. Advanced segmentation methods often employ

deep learning algorithms, but classical computer vision approaches like edge detection can be

used as well. State-of-the-art methods include U-Net [20], or DeepLab [4] based models, to

achieve high accuracy and efficiency, enabling detailed analysis and interpretation of complex

visual data.

Diffusion models can also be used for such tasks. Amit et al. [1] tackle image segmentation as

a conditional image synthesis task. Here they perform the diffusion steps on the segmentation

masks and condition the noise estimating U-Net on the original image. With this method they

have been able to achieve state-of-the-art results on the Cityscapes validation set, the Vaihingen

building segmentation benchmark, and the MoNuSeg dataset. Baranchuk et al. [3] show that

the intermediate activations of the denoising U-Net capture semantic information well. They

use a classifier on the upsampled activations to obtain a segmentation mask. Pinaya et al. [16]

detect and segment anomalies on MRI data. First, they train a Diffusion Model on a healthy

dataset. Using an anomalous image as an input will result in large loss values at anomalous

regions. With an appropriate threshold, they can create a segmentation mask.

Our approach resembles Amit et al. [1]. We aim to generate segmentation masks conditioned

on the original image. One of the main questions of this approach is how we should supply

the original image to the denoising U-Net. In the last part of this section, we are going to

present results that compare different ways of conditioning to state-of-the-art results on the

COVID-QU segmentation dataset.
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3.2 Model Architecture

As mentioned previously, we tested two methods for adding the conditioning to the denoising

U-Net. These two are adding conditioning by concatenation, and adding the conditioning to

the image input of the U-Net. In both cases the conditioning, in this case the original image,

was transformed by a Residual in Residual Dense Block, used by Amit et al. [1].

A Residual in Residual Dense Block(RRDB) includes three Residual Dense Blocks

(RDB). A Residual Dense Block has 5 convolutional layers, after which each layer follows a

Leaky ReLU activation. Each of the 5 convolutional layers has the output of the previous layers

as input, finally, the input of the RDB and output of the last layer is added. The output of the

RRDB is obtained by passing the input through all the RDBs and combining it with the input.

In our case, the RRDB transforms the input from 64 × 64 × 1 to 64 × 64 × 16. According to

Amit et al. [1] increasing the number of RRDB blocks doesn’t affect the mIoU much, however,

not using a condition embedder yields significantly worse results.

The rest of the U-Net architecture used in our segmentation experiments is the same as in

Section 2.4 with the only difference that it has 16 or 17 input channels, depending on whether

we add the conditioning with addition or concatenation.

3.3 Segmentation Quality Metrics

One of the main disadvantages of diffusion models is their inference speed. Thus, evaluating

the performance of diffusion models becomes a slow task. For this reason, we calculate the

following metrics on a 10% validation split in each epoch, the random seed used for sampling

was the same across all measurements, so it makes sense to compare them. Amit et al. [1]

calculated the segmentation mask by inferring multiple times with the same conditioning and

averaging the mask. Because of the nondeterministic nature of their sampling method [24],

this approach yields more stable and accurate results, however because of the high inference

cost we decided to only evaluate each image one time. So we opted to use the DDIM sampling

method, which provides a deterministic mapping from the latent space to the mask space for

LDMs, increasing stability, and a deterministic mapping between image space and mask space

for BBDMs, eliminating any variance.

Image segmentation can be thought of as the classification of each pixel into various cate-

gories. In this project, we only concerned ourselves with the case of binary classification, we

used a confidence threshold of 0.5 on all of our experiments. We noticed that the models’

outputs are concentrated on 0 and 1, therefore exploring different confidence levels, was not

necessary. Throughout all the experiments, the following metrics are calculated from the confu-

sion matrix: DICE-index, Jaccard-index, Accuracy, Sensitivity, Specificity, Balanced Accuracy,

Precision, and Matthew’s correlation coefficient. The metrics are defined as follows.

• DICE-index or F-score: 2TP
2TP+FN+FP

, where TP is the number of true positives, TN is the

number of true negatives, FP is the number of false positives, FN is the number of true
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negatives. This can be interpreted as two times the intersection of the predicted positives

and real positives over the sum of the sizes of these two sets.

• Jaccard-index: TP
TP+FN+FP

. This can be interpreted as the area of intersection over the

union of predicted positives and real positives.

• Accuracy: TP+TN
TP+FN+FP+TN

Measures the ratio of correct classifications and the number of

total classifications.

• Sensitivity is the true positive rate. The proportion of actual positive values that have

been correctly classified.

• Specificity is the true negative rate. The proportion of actual negative values that have

been correctly classified.

• Balanced Accuracy is the mean of sensitivity and specificity.

• Precision measures what proportion of the total positive classifications are true positives.

• MCC(Matthew’s correlation coefficient) is the Pearson correlation coefficient for the two

binary variables, the predictions and the actual values.

3.4 Lung Segmentation on COVID-QU

The previous best result on the lung segmentation COVID-QU dataset achieved by the Com-

puter Vision Group is a 0.99 DICE index with multiple variations of U-Net models.

Our diffusion models were trained for 100 epochs, around 4000 gradient steps, with a learning

rate of 0.003 and a batch size of 512. These hyperparameters were carefully optimized since the

training process would become unstable otherwise. Table 1 below summarizes our results. The

results were not vastly different between the two models, although Amit et al. [1] found that

addition should produce better results in most cases. One reason for not noticing a significant

difference between the two methods could be, that the complexity of the task is not high enough.

Our models also produce comparable results with the U-Net models.

3.5 Infection Segmentation on COVID-QU

The previous best results on the infection segmentation COVID-QU dataset achieved by the

Computer Vision Group are 0.86 with a U-Net model and 0.85 by the Res50AttUNet model.

Our diffusion models were trained for 2400 epochs and 8000 gradient steps, with a learning

rate of 0.003 and a batch size of 512. Here the produced results are like expected, supplying the

conditioning with addition has reached much better results than supplying it with concatena-

tion, see Table 2. The infection segmentation problem is a much more difficult task, therefore

differences in model performance are more noticeable. Also, the variance of the metrics was

high between batches. Although measuring the metrics is a time-consuming task, in the future I
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Lung

Addition Concatenation

DICE index 0.9529 0.9541
Jaccard index 0.9101 0.9123
Accuracy 0.9792 0.9793
Sensitivity 0.9455 0.9502
Specificity 0.9888 0.9878
Balanced Accuracy 0.9672 0.9793
Precision 0.9604 0.9581
MCC 0.9396 0.9408

Table 1: Metrics measured on the COVID-QU lung segmentation validation dataset at the final
epoch using DDPMs.

should let some experiments run for a longer time so we can get a clearer picture of the model’s

performance and reach a level where it can rival the U-Nets. The reason for the models’ subpar

performance compared to some U-Nets could be that the original purpose of diffusion models

is image synthesis, while we can get some acceptable results in image segmentation further

research is required to reach state-of-the-art results on multiple datasets.

Infection

Addition Concatenation

DICE index 0.6755 0.4708
Jaccard index 0.5105 0.3087
Accuracy 0.9183 0.8967
Sensitivity 0.6687 0.3646
Specificity 0.9550 0.9736
Balanced Accuracy 0.8119 0.6691
Precision 0.6838 0.6674
MCC 0.6293 0.4431

Table 2: Metrics measured on the COVID-QU infection segmentation validation dataset at the
final epoch using DDPMs.
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Figure 13: Example of generated lung segmentation mask (left) and the original mask (right),
the conditioning was supplemented via concatenation (top) and addition (bottom)

4 Image Segmentation using BBDMs

In earlier sections, Image Synthesis was approached as a conditional image synthesis task, where

given an input image (an X-ray), the goal was to model the conditional densities, namely the

segmentation masks. However, as discussed in section 1.3, this approach has several limitations.

To address these shortcomings, we introduced BBDMs. The primary objective of BBDMs is

to model the mapping between two distributions using Brownian Bridges. While BBDMs have

been successfully applied to various image-to-image translational tasks in the past, such as

semantic synthesis, style transfer, and sketch-to-photo conversion, to our knowledge, they have

not been utilized for semantic segmentation tasks.

In this section, we leverage BBDMs to segment images from the COVID-QU dataset, focus-

ing on both lung segmentation and infection segmentation. Similar to DDPMs, implementing

BBDMs required extensive hyperparameter optimization and data preprocessing. Without

careful tuning, BBDMs failed to produce satisfactory results. Contrary to DDPMs, we found

that reducing the learning rate and batch size contributed to improved performance with BB-

DMs. In contrast, DDPMs typically require a larger batch size to stabilize the learning process.

Despite these adjustments, BBDMs still yielded subpar results, prompting the need for more

significant changes.

Recognizing that normalizing X-ray images is a standard practice in medical image process-

ing, we explored the use of the Contrast Limited Adaptive Histogram Equalization (CLAHE)

algorithm as a preprocessing step. This adjustment was aimed at enhancing the quality and

contrast of the X-ray images, potentially improving the performance of BBDMs in segmenting
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lung and infection regions accurately. CLAHE (Contrast Limited Adaptive Histogram Equal-

ization) normalization is an image processing technique used to improve the contrast in images.

It is a variant of Adaptive Histogram Equalization (AHE), which adjusts the contrast of an

image by redistributing the lightness values based on the local neighbourhood of each pixel.

CLAHE enhances this method by limiting the contrast amplification to avoid noise amplifica-

tion, which can be an issue in AHE. By using CLAHE on the X-ray images, the BBDM was

able to learn the segmentation masks and produce acceptable results. Also, CLAHE has proven

to be so beneficial, that in all the remaining experiments it was employed.

BBDM

Lung Infection

DICE index 0.8411 0.5152
Jaccard index 0.7268 0.3577
Accuracy 0.9281 0.8851
Sensitivity 0.8459 0.5359
Specificity 0.9522 0.9333
Balanced Accuracy 0.8990 0.7346
Precision 0.8397 0.5341
MCC 0.7959 0.4625

Table 3: Metrics measured on the COVID-QU infection segmentation validation dataset at the
final epoch using Brownian Bridge Diffusion Models.

4.1 Lung Segmentation

For segmentation tasks utilizing BBDMs, the noise-estimating U-Net was designed with the

same architecture as employed in DDPMs. The U-Net architecture is widely recognized as

a versatile model in the field of computer vision, and it has been meticulously optimized for

diffusion models by previous researchers [9, 18]. Given this optimization, we determined that

altering the architecture was unnecessary. Specifically for lung segmentation, we trained our

models for 200 epochs with a batch size of 8. During training, we observed that the loss function

often plateaued, prompting us to implement a linear learning rate scheduler. This scheduler

began with a learning rate of 10−5 and gradually reduced it to 10−7 by the end of the training.

We utilized 1000 diffusion steps during the training process. In the context of BBDMs, a

sampling procedure analogous to the DDIM framework can be defined. For our experiments,

we employed this sampling algorithm using 200 steps.

The outcomes of our experiments are summarized in Table 3. When comparing the perfor-

mance metrics of BBDMs to those of DDPMs, we found that BBDMs consistently underper-

formed across all measured metrics. Figure 15 illustrates a comparison between a generated

segmentation mask and the corresponding original mask.

29



4.2 Infection Segmentation

For the task of segmenting infections, we largely employed the same hyperparameters and

model architecture as described previously. However, there were a couple of key differences

in our approach. First, we extended the training duration significantly, training the models

for 1500 epochs instead of the earlier configuration. Second, we utilized a different learning

rate scheduler for this task. The new scheduler was designed to automatically reduce the

learning rate whenever the optimizer detected that the training had reached a plateau, thereby

attempting to enhance model performance through finer adjustments in learning rates.

Despite these adjustments, the performance of BBDMs remained inferior to that of DDPMs

across all evaluated metrics. Despite these results, it might be worth exploring latent training.

Since the U-Net has to estimate more aggressively in the case of BBDMs, latent training in an

appropriate latent space might be beneficial.
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5 Latent Models

As previously discussed, training within an appropriate latent space can significantly simplify

the task of the noise-estimating U-Net. According to Rombach et al. [18], latent encoders such

as VQ-GANs effectively capture low-frequency signals from the data, thereby allowing the U-

Net to focus on modelling high-frequency details. This insight opens up intriguing possibilities

for leveraging this characteristic in both Denoising Diffusion Probabilistic Models (DDPMs)

and Brownian Bridge Diffusion Models (BBDMs).

In this section, we delve into the specifics of the training procedures and the implementa-

tion of the latent models used, specifically VQ-GANs. Additionally, we present a comparative

analysis of Latent Diffusion Models (LDMs) and Latent Brownian Bridge Diffusion Models

(LBBDMs), experimenting with various downsampling rates. In this case, the downsampling

rate means the ratio between the input spatial dimensions and the latent spatial dimension.

This comparison is conducted using the COVID-QU dataset to highlight the potential advan-

tages and differences between the two frameworks.

5.1 Training VQ-GANs

Training LDMs and BBDMs requires the creation of several latent models, specifically VQ-

GANs in our case. Both the conditioning input (X-ray images) and the segmentation masks

must be mapped into a latent space with the same dimensionality. To achieve this, we train

separate models for each data type. Thus, for a fixed downsampling rate, we end up training

three distinct models: one for X-ray images, one for lung segmentation masks, and one for

infection segmentation masks.

Given that we work with images of size 64× 64, we confined our training to downsampling

rates of 4 and 8, while growing channel size from 1 to 3 and 4. We hypothesized that further

compression would reduce spatial dimensions excessively, compromising the functionality of

the diffusion models. Additionally, higher downsampling rates posed significant challenges in

training the VQ-GANs.

Integrating GAN training algorithms, which differ fundamentally from traditional deep

learning approaches, was the first challenge we addressed. We tackled this by defining wrapper

classes to accommodate the unique characteristics of GANs. We then adopted the VQ-GAN

implementation from Rombach et al. [18], making slight modifications to integrate it into our

pipeline.

For training the VQ-GANs, we utilized two architectures, one for each downsampling level.

Both architectures were previously used by Rombach et al. [18] with LDMs. During training,

we had to adjust certain hyperparameters related to the loss function and the discrimina-

tor models. Achieving equilibrium between the discriminator loss and the reconstruction loss

proved challenging, as the training process was volatile and convergence was not guaranteed.

Each model required multiple training attempts with different random seeds to achieve con-

vergence. After numerous runs, we successfully obtained models with discretized latent spaces
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and satisfactory reconstruction capabilities. Examples of these reconstructions are illustrated

in Figure 16.

5.2 Comparison of Downsampling rates

To assess the effects of downsampling on the performance of our segmentation models, we

trained LDMs and LBBDMs using the pretrained autoencoders obtained in the previous section.

Specifically, we utilized VQ-GANs with 4x and 8x downsampling rates.

For LDMs, the U-Net architecture remained largely unchanged from its original design in

DDPMs. However, we had to adjust the model to accommodate the different dimensionalities

of the latent spaces, including modifying some parameters of the diffusion process accordingly.

Detailed hyperparameters for the trained LDMs, LBBDMs, and VQ-GANs are provided in

Appendix 5.3. The results of these experiments are summarized in Table 4. By comparing

the outcomes across various downsampling rates with those for no downsampling, as shown in

Table 2 and Table 1, it becomes evident that Latent Diffusion Models (LDMs) do not show

performance improvements with downsampling. However, downsampling significantly reduces

both training and inference times. Additionally, since LDMs require sampling from the stan-

dard normal distribution during inference, this introduces some variance in the segmentation

performance metrics. To obtain more interpretable results, multiple trials for each experiment

and exploration of various downsampling rates would be necessary. Unfortunately, due to the

high costs associated with inference, we were unable to conduct these additional trials.

For LBBDMs, the architecture and training parameters were consistent with those used

for BBDMs, except for necessary adjustments to match the latent space dimensionality. The

outcomes of our experiments with LBBDMs are shown in Table 5. Comparing Table 3 and

Table 5, it is evident that 4x downsampling produced the most accurate results for lung seg-

mentation, with 8x downsampling and the vanilla model following. For infection segmentation,

the latent models performed comparably, surpassing the vanilla model. This indicates that

BBDMs benefit from using latent encoders. However, more aggressive downsampling does not

necessarily enhance performance. Further experimentation with larger image sizes and varying

downsampling rates is required to explore this concept in greater depth.

5.3 Comparison of LDMs and Latent BBDMs

In this subsection, we compare the performance of the BBDM and DDPM frameworks across

various downsampling rates. Figure 17 illustrates this comparison. In the lung segmentation

task, both models exhibited similar scaling across the downsampling rates, with LBBDM show-

ing slight improvements at 4x downsampling. However, in the infection segmentation task, the

differences are more pronounced. The LDM framework experiences a significant reduction in

performance when latent models are applied, whereas LBBDMs improve with the application

of latent encoders and show minimal performance degradation even at 8x downsampling. This

suggests that BBDMs can utilize the encoded information from latent models more efficiently.
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Lung Infection

LDM-f4 LDM-f8 LDM-f4 LDM-f8

DICE index 0.9533 0.8992 0.3299 0.4696
Jaccard index 0.9115 0.8206 0.2008 0.3133
Accuracy 0.9792 0.9535 0.7357 0.8649
Sensitivity 0.9511 0.9218 0.5039 0.4880
Specificity 0.9873 0.9630 0.6710 0.9260
Balanced Accuracy 0.9424 0.9301 0.6383 0.7070
Precision 0.9558 0.8798 0.2549 0.5003
MCC 0.9400 0.8702 0.2101 0.4087

Table 4: Measured metrics on the COVID-QU segmentation validation dataset from the last
epoch.

Lung Infection

LBBDM-f4 LBBDM-f8 LBBDM-f4 LBBDM-f8

DICE index 0.8921 0.8565 0.5775 0.5768
Jaccard index 0.9115 0.7494 0.4068 0.4074
Accuracy 0.9512 0.9352 0.8963 0.9015
Sensitivity 0.8916 0.8568 0.5311 0.5087
Specificity 0.9686 0.9580 0.7405 0.9613
Balanced Accuracy 0.9301 0.9074 0.7419 0.7350
Precision 0.8927 0.8565 0.6358 0.6759
MCC 0.9400 0.8147 0.5225 0.5313

Table 5: Measured metrics on the COVID-QU segmentation validation dataset from the last
epoch.
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Figure 14: Example of generated infection segmentation mask (left) and the original mask
(right), the conditioning was supplemented via addition (top) and concatenation (bottom)

Figure 15: Example of generated segmentation mask (left) and the original mask (right) for
lung segmentation (top) and infection segmentation (bottom) via BBDM model
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Figure 16: Examples of CLAHE normalized VQ-GAN reconstructions

Figure 17: Comparison of LDMs and LBBDMs across multiple downsampling rates.

35



Conclusion

In this thesis, we have explored the theoretical background, applications, and effectiveness of

diffusion models, particularly focusing on image segmentation tasks. Through comprehensive

experimentation, we have demonstrated the versatility and potential of these models, specifi-

cally Denoising Diffusion Probabilistic Models (DDPMs) and Brownian Bridge Diffusion Models

(BBDMs), in handling complex computer vision problems such as lung and infection segmen-

tation in medical images.

The application of DDPMs and BBDMs to the COVID-QU dataset demonstrated their

effectiveness in segmenting lung and infection regions with satisfactory accuracy. Although

DDPMs generally achieved better performance, this does not diminish the value of BBDMs

for image segmentation. BBDMs simplify implementation and optimization by eliminating the

need for complex conditioning mechanisms. Furthermore, BBDMs are a relatively new concept

compared to LDMs and have not been extensively researched. Investigating their potential is

essential for advancing image translation tasks.

Latent Diffusion Models (LDMs) and Latent Brownian Bridge Diffusion Models (LBBDMs)

were assessed across various downsampling rates. The results indicate that while downsam-

pling significantly reduces training and inference times, LDMs struggled to efficiently use the

information encoded by the latent models and showed decreased performance. At the same

time, LBBDMs even showed mild improvements compared to no downsampling, particularly at

4x downsampling. This indicates LBBDMs’ superior performance in processing latent repre-

sentations. Also, the results imply that for some image translation tasks, where inference time

is crucial, using LBBDMs is more efficient.

Future Directions

The field of diffusion models has shown remarkable advancements, not only in image synthesis

but other various and complex computer vision tasks. However, there remain numerous promis-

ing avenues for future research that can enhance the capabilities and broaden the impact of

diffusion models. The following directions are proposed that build upon the results of this

thesis and other current advancements.

During our experiments, a significant limiting factor was the substantial resources and

time required for training diffusion models. On average, a single training run took about

80 hours. Consequently, only a limited number of experiments could be conducted for each

instance. Future research should aim to repeat these experiments multiple times to better

understand the variance in the results. Additionally, due to technical constraints, we were

restricted to operating on images of size 64×64 pixels. Increasing the spatial resolution of the

images would enable us to explore a broader range of downsampling rates and derive more

meaningful conclusions. Addressing these limitations should be a key focus in the continuation

of this thesis.
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Another limitation of our experiments was the constraint of using only one dataset and

focusing on a single computer vision task. To gain a more comprehensive understanding of

the model’s capabilities and performance, future research should aim to benchmark multiple

datasets across various computer vision tasks. This broader approach will help to understand

the differences between DDPMs and BBDMs, as well as the effect of different downsampling

rates.

In recent years, Transformers [28] have surged in popularity, originating from natural lan-

guage processing and becoming integral to many state-of-the-art models such as BERT and

GPT. This architecture’s success has extended beyond NLP, with numerous computer vision

models now incorporating Transformers into their frameworks, achieving remarkable results.

Transformers have increasingly supplanted traditional convolutional networks as the leading

approach in various computer vision tasks, establishing themselves as versatile, general-purpose

models. In the realm of diffusion models, there have been efforts to replace the noise-estimating

U-Net with alternative models. Notably, Peebles et al. [15] demonstrated the effectiveness of

substituting the U-Net backbone with Transformers in their work on scalable diffusion models.

This influential paper has led to the widespread adoption of Transformers in diffusion-based

models. Given that BBDMs require learning the mapping between two distributions directly,

the backbone must capture richer representations than what is typically required in conditional

DDPMs. We propose using a Transformer backbone with BBDMs to leverage the Transformer’s

capability for learning rich representations. To the best of our knowledge, this approach has

not been previously explored, and it holds the potential to enhance the performance of BBDMs

significantly.

By pursuing these future directions, researchers can continue to advance the field of diffusion

models, uncovering new applications and improving the efficiency of these powerful generative

models. The ongoing development and refinement of these models hold great potential for

transforming the field of computer vision.
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Appendix

Hyperparameter Value

image size 64
in channels 1
out channels 1
model channels 192
attention resolutions (8, 4, 2)
num res blocks 2
channel mult (1, 2, 3, 4)
use spatial transformer false
num head channels 64
resblock updown true
dropout 0.0

Table 6: Hyperparameters of the UNetModel

Hyperparameter Value

num timesteps 1000
mt type linear
max var 1.0
eta 1.0
sample type linear
sample step 200
objective grad
image size 64
in channels 1
condition key nocond

Table 7: Hyperparameters of the BrownianBridgeDiffusionModel
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Hyperparameter Value

timeteps 1000
beta schedule linear
image size 64
channels 1
log every t 100
linear start 0.0001
linear end 0.02
cosine s 0.008
original elbo weight 0.0
v posterior 0.0
l simple weight 1.0
given betas null
parameterization eps
ddim true
ddim num timesteps 50
is conditional true
cond stage trainable true
data key mask
concat mode true
addition mode false
cross attn mode false

Table 8: Hyperparameters of the DDPM Model

Hyperparameter Value

embed dim 3
n embed 8192
double z false
z channels 3
resolution 64
in channels 1
out ch 1
ch 128
ch mult (1, 2, 4)
num res blocks 2
attn resolutions null
dropout 0.0
lr g factor 1.0
sane index shape false
normalize latent false

Table 9: Hyperparameters of the VQModel-F4
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Hyperparameter Value

image key mask
embed dim 4
n embed 16384
double z false
z channels 4
resolution 64
in channels 1
out ch 1
ch 128
ch mult (1, 2, 2, 4)
num res blocks 2
attn resolutions 32
dropout 0.0
lr g factor 1.0
sane index shape false
normalize latent false

Table 10: Hyperparameters of the VQModel-F8
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