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1 Introduction

The aim of this work is to investigate egalitarian orientation problems of graphs under the additional
constraint that the orientation shall be acyclic. We put special emphasis on the following acyclic ori-
entation problems, in which the indegree vector of an optimal orientation is required to be “smooth”,
“equitable” or “egalitarian”.

Problem 1 (dec-min (decreasingly minimal) acyclic orientation) Our goal is to find an acyclic
orientation of a given graph G = (V,E) in which the indegree vector sorted in non-increasing order is
lexicographically minimal.

Problem 2 (inc-max (increasingly maximal) acyclic orientation) Our goal is to find an acyclic
orientation of a given graph G = (V,E) in which the indegree vector sorted in non-decreasing order is
lexicographically maximal.

Problem 3 (min
∑
v∈V h(%(v)) acyclic orientation) Let us be given a graph G = (V,E) and a discrete

strictly convex function h : Z+ → R (i.e. h(z+2)+h(z) > 2h(z+1) holds for every z ∈ Z+). Our goal is
to find an acyclic orientation of G minimizing

∑
v∈V h(%(v)), where %(v) denotes the indegree of v ∈ V .

The non-acyclic counterparts of these problems are called egalitarian orientations in the literature,
see [6, 12, 13], and they will be further discussed in Section 2.

The following orientation problem is significantly different from the previous egalitarian problems,
since, instead of only focusing on the indegree vector, the optimal acyclic orientation minimizes the
difference between the indegree vector and outdegree vector, in a certain sense. It can be seen as an
acyclic version of the Eulerian and almost-Eulerian orientations, in which the difference of the indegree
and outdegree of each vertex is at most 1.

Problem 4 (max
∑
v∈V %(v)δ(v) acyclic orientation) Let us be given a graph G = (V,E). Our goal

is to find an acyclic orientation of G which maximizes
∑
v∈V %(v)δ(v), where %(v) and δ(v) denote the

indegree and the outdegree of v, respectively.

It is important to note that each acyclic orientation problem above can be equivalently rephrased
as a vertex ordering problem. Instead of acyclic orientations, we search an order of the vertices, and
replace the indegrees % with the left degrees ~d, and the outdegrees δ with the right degrees ~d in the
definition of the problems above. An order is optimal to the vertex ordering problem obtained this way
if and only if the acyclic orientation obtained by orienting each edge from left to right is optimal to the
original acyclic orientation problem. To see this, we need to observe that the indegree (and outdegree)
vector of an acyclic orientation is the same as the left degree (and right degree) vector of its topological
orderings. Throughout this work, we do not make a distinction between the acyclic orientation and the
vertex ordering problems, although we mostly work with the vertex-ordering versions.

Now, we describe the structure of this work. In the rest of this section, we give some motivating
applications to egalitarian orientation problems. After that, we give a brief summary of our work, and
introduce the used notations. Section 2 summarizes related orientation problems, dealing with both
acyclic and not necessarily acyclic orientations. First, we describe the known complexity results for
finding an indegree-bounded acyclic orientation [18]. Then, we move on to the problem of minimizing
the maximum (weighted) indegree in an orientation and in an acyclic orientation, which is the first step
towards finding an egalitarian orientation of a graph. After that, we present the path-reversal algorithm
from [6] for finding a not necessarily acyclic egalitarian orientation and briefly describe the more general
framework introduced in [12, 13], which contains many different egalitarian orientation problems as
special cases. Section 2.4 investigates the polyhedral characterization of the indegree vectors of (acyclic)
orientations. After this review of related problems, we move on to the main topic of this work. From
that point, we only consider the acyclic egalitarian orientation problems introduced at the beginning of
Section 1. Section 3 considers lexicographically optimal acyclic orientation problems. In Section 3.1, we
analyze the dec-min and inc-max acyclic orientation problems (Problem 1 and 2, respectively) even in the
case when the indegrees are bounded by k, and in the unbounded case. In Section 3.2, we introduce the
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inc-min and dec-max problems, as the natural counterparts of these problem. In Section 4, we move on
to minimizing

∑
v∈V hv(%(v)) of an acyclic orientation (Problem 3), and we put special emphasis on the

special case of minimizing the square-sum of the indegrees in Section 4.2. Then, we analyze the problem
of finding an acyclic orientation maximizing

∑
v∈V

~d(v)~d(v) (Problem 4) in Section 5. In the end, we
mention some open questions.

1.1 Motivation

Now, we show some applications of egalitarian orientation problems that we defined above. The first two
problems are applications of egalitarian orientation problems without the acyclicity condition, and the
routing protocol is an application of the egalitarian acyclic orientation problems (Problems 1- 3).

Road maintenance As the first motivating example, consider cities connected with roads to be main-
tained. We want to assign each road to one of the two cities it connects. The goal is to distribute the
roads between the cities as evenly as possible. This problem is exactly an egalitarian orientation problem:
Consider the graph G = (V,E) in which the vertices correspond to the cities and the edges correspond to
the roads. A road-distribution can be represented as an orientation. The road represented by the edge
e is maintained by the city towards which the edge e is oriented. Therefore, the indegrees represent the
number of roads maintained by the same city. Since we are searching for a fair distribution, the goal is
to find an egalitarian (not necessarily acyclic) orientation of the graph.

Scheduling on a smart grid Another example comes from a scheduling problem described in [7].
They considered an offline scheduling problem in which customers send in unit time power requests and
a set of time slots during which their requests can be served. For each time slot, the electricity cost is
measured by a convex function of the load. The goal is to minimize the total electricity cost.

More formally, let us denote the set of unit time jobs by J = {j1, . . . , jn}. The time is divided into
unit time time slots T = {t1, . . . , tm}, and each job ji has a corresponding set of feasible time slots
Ti ⊆ T . The number of requests assigned to a time slot tk is called the load of tk, and it is denoted by
`(tk). There is given a convex cost function h, and our goal is to minimize

∑
t∈T h(`(t)).

This problem can be rephrased as an egalitarian orientation problem, on the following bipartite graph
G = (V,E). Let V = J ∪ T and add an arc jitk if tk ∈ Ti, that is, if the job ji can be processed at
the time slot tk. Consider an orientation of this bipartite graph, in which the outdegree of each job is
equal to one (equivalently, the indegree of the vertex corresponding to the job ji is equal to (|Ti| − 1)).
In such an orientation, the indegree of the vertex corresponding to a time slot is equal to the load of that
time slot (and the indegree of any other vertex, corresponding to a job, is fixed). Therefore, finding an
optimal schedule is equivalent to finding an orientation of G with indegree prescription on the vertices
corresponding to the jobs which minimizes

∑
v∈V h(%(v)), which is an obvious generalization of Problem 3.

For this problem a polynomial-time algorithm is given in [12], which is further discussed in Section 2.3.2.

Up-down routing The previous two examples were applications of egalitarian orientations without
the acyclicity condition, but the next routing protocol is a practical application of the egalitarian acyclic
orientation problems. In a routing problem, there is given an undirected graph called network. The
vertices of the network represent switches with input buffers and the edges represent links. We want to
send some packets between given start and end destinations. The goal is to give an efficient method to
determine a route for every packet. In a wormhole routing, each packet is broken into small pieces, called
flits. The first and last pieces are called heather flit and tail flit, respectively. The heather flit contains the
routing information of the packet (for example the start and end destinations). The flits corresponding
to one packet are routed continuously, this means that the heather tail reserves every reached buffer, and
the buffer only works on the flits of that packet, until the tail flit arrives and frees the buffer. In a general
step, every switch forwards the current flit from their input buffer to the next switch in the packet’s route
provided that the input buffer of that switch is not full. Such networks can suffer from deadlock, when
there are several flits waiting along a cycle. An example for a deadlock is shown in Figure 1.
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Figure 1: A deadlock with four packets.

The goal is to determine a route for each packet without causing a deadlock. It is known that
deadlocks can be prevented by the following method called up-down routing [23, 24, 27]: Choose an
acyclic orientation of the network, and forbid the packets to go through the sub-paths formed by any two
edges directed into the same vertex.

Clearly, the number of forbidden sub-paths at a vertex only depends on the indegree of that vertex.
Therefore, if we want to minimize the number of forbidden sub-paths, in some sense, then we have to
choose the acyclic orientation in the up-down routing carefully. For example, if we choose a dec-min
acyclic orientation then we can minimize the maximum number of forbidden sub-paths at any vertex.
Similarly, considering a min

∑
v∈V %(v)2 acyclic orientation minimizes the total number of forbidden sub-

paths. Moreover, if we only search for rooted-connected acyclic orientations then there exists a feasible
route between every two switches, where an orientation is rooted-connected if there exists a root vertex
from which any other vertex is reachable on a directed path in the orientation. Therefore, in the real life
applications they always search for a rooted-connected acyclic orientation.

1.2 Our work

Section 3.1 considers the dec-min and inc-max acyclic orientation problems in the case when the indegrees
are bounded by k, and in the unbounded case. We show that the optimal solutions for the dec-min
and inc-max acyclic orientation problems differ from each other in the unbounded case, but in the
case of indegree bound two, the optimal solutions for the two problems coincide. The dec-min acyclic
orientation problem is known to be NP-hard in the case of indegree bound k for any odd k ≥ 5, and in
the unbounded case [6]. We extend this result for any k ≥ 3, and prove the NP-hardness of the inc-max
acyclic orientation problem in case of indegree bound k for any k ≥ 3, and in the unbounded case. We
introduce the natural counterparts of these problems, the inc-min and dec-max orientation problems,
and prove that they are NP-hard both in case of acyclic and arbitrary orientations. Section 4 introduces
the min

∑
v∈V h( ~d(v)) ordering problem, which is equivalent to the min

∑
v∈V h(%(v)) acyclic orientation

problem, where h : Z+ → R is a discrete strictly convex function. As one of our main results, we prove
the NP-hardness of the problem for loop-free multigraphs for any discrete strictly convex function h.
We show that the more general version of the problem, when a function hv is given for each v ∈ V
instead of a single function h, is polynomial-time solvable if either each function hv is linear or we allow
non-acyclic orientations. Then, in Section 4.2, we consider the special case of this problem in which
we want to find an order minimizing the square-sum of the left degrees. We extend the NP-hardness
proof even for simple graphs, and analyze the approximation ratio of a simple greedy algorithm. After
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that, we give an exact dynamic programming algorithm for the more general problem of finding an
order minimizing

∑
v∈V hv(

~d(v)) for some given (not necessarily convex) functions hv : Z+ → R, for all
v ∈ V . If the hv functions can be evaluated in polynomial time, then the running time of the algorithm
is O(2|V |poly(|V |, |E|)). In Section 5 we examine the max

∑
v∈V

~d(v)~d(v) ordering problem (which is
equivalent to the max

∑
v∈V %(v)δ(v) acyclic orientation problem). First we use the results of [5, 16]

to show that the problem is NP-hard, even for simple graphs with maximum degree at most four and
it is polynomial-time solvable for simple graphs with maximum degree at most three. After that, we
analyze the expected approximation ratio of a random order of the vertices for multigraphs, and give a
deterministic algorithm achieving the same approximation guarantee.

1.3 Notations

Throughout this work, G = (V,E) denotes an undirected simple graph or multigraph. Since we consider
acyclic orientations a multigraph is assumed to be loop-free, unless stated otherwise. The degree of a
vertex v is denoted by dG(v) or simply by d(v), which counts the incident loops once. The maximum
degree in G is denoted by ∆(G). The subgraph of G = (V,E) induced by the subset V ′ ⊆ V is denoted
by G[V ′], and the degree of v ∈ V restricted to the vertices in V ′ is denoted by d(v, V ′). Similarly,
D = (V,A) denotes a digraph. The indegree of the vertex v is denoted by %D(v) or simply by %(v). The
outdegree of a vertex v is denoted by δD(v) or simply by δ(v). We often denote an order of the vertices by
σ = σ1, . . . , σn, which means that the vertex σi ∈ V is at the ith position in the order. We denote the set
of all permutations of the vertex set V by SV . The left degree of the vertex v = σi in the order σ is equal
to d(v, {σ1, . . . , σi}), and it is denoted by ~dσ(v) or simply by ~d(v). Similarly, the right degree of the vertex

v = σi in the order σ is equal to d(v, {σi+1, . . . , σn}), and it is denoted by ~dσ(v) or simply by ~d(v). A

vertex order is called k-bounded for some fixed integer k if ~d(v) ≤ k, that is, the left degree of each vertex
v is at most k in the order. The minimal number k for which G has a k-bounded order is denoted by
~dmin(G), this is called the degeneracy of G. We denote the set of non-negative integers and non-negative

real numbers by Z+ and R+. Let [z]+ denote max{z, 0}, and let 1A denote the indicator of the statement
A, which is equal to one if A is true and equal to zero otherwise. Let χU denote the characteristic vector
of the subset U ⊆ V . In case of a single-element subset U = {v}, we use the simplified notation χv.

2 Related problems

Orientation problems of graphs have been studied extensively in the literature, see [6, 11, 12, 13]. This
section gives a summary about orientation problems related to egalitarian acyclic orientation, covering
both acyclic and non-acyclic orientation problems.

2.1 Acyclic orientations with degree constraints

In [18], the authors considered the problem of finding an acyclic orientation with a given lower bound f(v)
for the indegree of v and a given lower bound g(v) for the outdegree of v for each vertex v. More formally,
they introduced the following problem: Let us be given a graph G = (V,E) and two functions f : V → R+

and g : V → R+ with f(v) + g(v) ≤ d(v) for each v ∈ V . The goal is to decide whether G has an (f, g)-
bounded acyclic orientation, where an orientation is called (f, g)-bounded if f(v) ≤ %(v) ≤ d(v) − g(v)
for each v ∈ V . As the definition suggests, the problem with lower bounds given for the indegree and
outdegree of each vertex is essentially the same as finding an acyclic orientation with given lower and
upper bounds for the indegrees of each vertex.

They proved that finding such an acyclic orientation is NP-hard in general. However, if there are
only lower bounds given for the indegrees (i.e. g(v) = 0 for each v ∈ V ), then it can be decided in
polynomial time whether a feasible acyclic orientation exists, by a greedy algorithm which searches for
the topological order of such an orientation and fixes the vertices from left to right. They do not consider
the natural generalization of this problem in case of weighted graphs, but it is easy to see that the natural
generalization of this greedy approach also works if there is a weight function w : E → R+ and the lower
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bound f : V → R+ is given for the weighted indegree of the vertices. Later, in Section 2.2.2 we are
going to show a similar algorithm, for finding an acyclic orientation minimizing the maximum weighted
indegree. The authors of [18] identified other polynomial-time solvable cases. They proved that we can
find an (f, g)-bounded acyclic orientation if f(v)g(v) = 0 for each v ∈ V , that is, we can find an acyclic
orientation with given indegree bounds, if for each vertex either only a lower or only an upper bound is
given. Another solvable special case was the problem with f(v) = d(v)− g(v), which is the problem with
strict prescription for the indegree of each vertex. They also observed that the (f, g)-bounded acyclic
orientation problem with f(v) = g(v) = 1 for each v ∈ V \{s, t} is equivalent to the so called s-t numbering
problem [10]. In this problem, we are given a graph and two vertices s and t, and the goal is to find an
order of the vertices in which the first vertex is s, the last vertex is t and all other vertices have at least
one edge going to the left and at least one edge going to the right. The s-t numbering problem is known
to be polynomial-time solvable [10]. However, the slightly more general case of the (f, g)-bounded acyclic
orientation problem with bounds f(v) = g(v) = 2 for each v ∈ V \ {s, t} was proven NP-complete [18].

2.2 Minimizing the maximum (weighted) indegree

When someone thinks about egalitarian orientations, the first property that comes to mind is to minimize
the maximum indegree of the vertices. This optimization problem was extensively studied in the past,
see [3, 8, 9, 26].

2.2.1 Minimizing the maximum (weighted) indegree over orientations

In case of not necessarily acyclic orientations, the problem was proven polynomial-time solvable in
three different articles [3, 9, 26]. The main idea of the algorithm is that it begins with an arbitrary
orientation, and reverses directed paths which reduce the indegree of a vertex with maximum indegree.
Later in Section 2.3.1, we present essentially the same algorithm and the proof of a stronger theorem
from [6] which also implies that the orientation given by the algorithm minimizes the maximum indegree.

Consider the natural generalization of this problem for weighted digraphs, when we are given a graph
G = (V,E) and a non-negative weight functions w : E → R+ on the edge set. Our goal is find an
orientation that minimizes the maximum weighted indegree of the vertices.

Unlike the unweighted case, this problem is NP-hard. We give a simple proof of the NP-hardness
if parallel edges are allowed, and after that we present the proof given in [2] which also shows the NP-
hardness in case of simple graphs.

Theorem 5 Let us be given a multigraph G = (V,E) and a non-negative weight functions w : E → R+

on the edge set. It is NP-hard to find an orientation that minimizes the maximum weighted indegree of
the vertices.

Proof: The proof is by reduction from the partition problem, which is known to be NP-complete [17].
In the partition problem, we are given m items with weights a1, . . . , am. Let A =

∑
i∈{1,...,m} ai denote

the sum of the weights. Our goal is to decide whether there exists a set of indices I ⊂ {1, . . . ,m} such
that

∑
i∈I ai = A

2 .
Let a1, . . . , am be an instance of the partition problem. Construct the weighted graph G = (V,E) az

follows: Let G contain two vertices u and v, and m parallel uv arcs denoted by e1, . . . , em. Let the edge
weights be w(ei) = ai for i ∈ {1, . . . ,m}. Figure 2 shows the construction.

It is easy to see that the instance of the partition problem is solvable if and only if there exists an
orientation of G in which the maximum weighted indegree is equal to A

2 : First, if the set of indices I is
a solution to the partition problem, then consider the orientation obtained by orienting the edge ei from
u to v if i ∈ I and from v to u is i /∈ I. Second, if there exists an orientation with maximum weighted
indegree A

2 , then let I denote the indices of those edges that are oriented from u to v. This is a solution
to the partition problem. �
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Figure 2: The graph constructed to the instance of the partition problem with weights a1, . . . , am in the
proof of Theorem 5.

Note that in [3], the authors give a reduction to the partition problem which also proves the NP-
hardness in case of simple bipartite planar graphs. Since the partition problem is weakly NP-complete,
this only proves weak NP-hardness. However, in [2] the authors proved this problem to be strongly
NP-hard, by the following reduction.

Theorem 6 (Asahiro, Jansson, Miyano, Ono, Zenmyo [2]) Let us be given a graph G = (V,E)
and a non-negative weight functions w : E → {1, k}, for any fixed k ≥ 2. It is NP-hard to find an
orientation that minimizes the maximum weighted indegree of the vertices.

Proof: The proof is by reduction from the 3-SAT(2L) problem. In this problem, we are given conjunctive
normal form (CNF) formula in which each clause contains at most 3 literals and each literal (not variable)
occurs at most 2 times; and our goal is to decide whether it is satisfiable. The NP-hardness of this problem
follows from [14].

Let us be given an instance of the 3-SAT(2L) problem with variables v1, . . . , vn and clauses c1, . . . , cm,
and construct the weighted graph G = (V,E) as follows.

• For each variable xi (i ∈ {1, . . . , n}), let G contain two vertices xi and xi corresponding to the
literals of the variable xi, and an edge xixi with weight w(xixi) = k.

• For each clause cj (j ∈ {1, . . . ,m}), let G contain a vertex cj , and for every literal xi (or xi) which
is in cj , let G contain an edge cjxi (or cjxi) with weight w(cjxi) = 1 (or w(cjxi) = 1).

• Moreover, let G contain a cycle of length min{3, k}, denoted by Cmin{3,k}, with edge weights equal

to k, and connect the vertex cj corresponding to the jth clause with (k + 1 − #{ literals in cj})
different vertices of this cycle.

Figure 3 illustrates the construction.
We prove that the given instance of the 3-SAT(2L) problem is satisfiable if and only if G has an

orientation in which the maximum weighted indegree of the vertices is at most k.
First, consider a satisfying truth assignment of the variables. For i ∈ {1, . . . , n} if the variable xi is

true, then orient the edge xixi from xi to xi, otherwise, orient it to the other direction. For j ∈ {1, . . . ,m},
choose a literal xi (or xi) set to true contained in cj and orient the edge cjxi (or cjxi) towards xi (or
xi). Orient the remaining k edges incident to cj towards cj . Orient the cycle Cmin{3,k} cyclically. In this
orientation, each vertex xi (or xi) corresponding to a literal set to true has indegree at most 2, because
each literal occurs in at most 2 clauses; and each vertex xi (or xi) corresponding to a literal set to false
has weighted indegree equal to k. Each vertex cj corresponding to a clause has weighted indegree equal
to k, and each vertex of the cycle Cmin{3,k} has also weighted indegree equal to k. So the maximum
weighted indegree is k in this orientation.

Second, consider an orientation of G with maximum weighted indegree at most k. For each index
i ∈ {1, . . . , n}, consider the edge xixi. If it is oriented towards xi, then assign false to the variable xi,
otherwise, assign true to the variable xi. Note that each vertex, corresponding to a false literal has already
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x1 x2 x3x1 x2 x3

c1 c2 c3

. . .

Cmin{3,k}

k − 1

k − 2

k − 1

Figure 3: Example for the graph constructed in the proof of Theorem 6 for the CNF formula (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3). The thin edges have weight 1 and the thick edges have weight k.

indegree k, therefore, there are no other edges oriented towards these vertices. Observe that the edges of
the cycle Cmin{3,k} must be oriented cyclically; and all other edges incident to the vertices of Cmin{3,k}
must be oriented towards its other endpoint (which is a vertex cj corresponding to some clause). Each
vertex cj corresponding to a clause has degree k + 1, so they must have at least one edge oriented to its
other endpoint. This can only be a vertex corresponding to a true variable, because we already observed
that all other edges incident to cj have to be oriented towards the vertex cj . Therefore, each clause cj
contains at least one literal set to true, so the truth assignment satisfies the CNF formula. �

It also follows from the proof that we cannot decide whether the maximum weighted indegree is at
most k or at least k + 1. This implies the following theorem.

Theorem 7 (Asahiro, Jansson, Miyano, Ono, Zenmyo [2]) Let us be given a graph G = (V,E)
and a non-negative weight functions w : E → {1, k}, for a fixed k ≥ 2. There exists no pseudo-polynomial
time algorithm for finding an orientation minimizing the maximum weighted indegree of the vertices with
approximation ratio less than 1 + 1

k , unless P = NP.

Where an algorithm is pseudo-polynomial if it is polynomial in the numeric value of the input, but
not necessarily in the length of the input.

2.2.2 Minimizing the maximum (weighted) indegree over acyclic orientations

The previous section discussed the problem of finding an orientation minimizing the maximum indegree
of the vertices. It is natural to consider the analogous question in case of acyclic orientations. As we
already mentioned in Section 1, finding an acyclic orientation with some restrictions for the indegrees is
essentially the same as finding an order of the vertices with the same restrictions for the left degrees. So
throughout this section, the goal is to find an order of the vertices such that the maximum (weighted)
left degree of the vertices is minimized.

First, we consider the problem in case of unweighted graphs and describe a strongly related problem,
for which an algorithm solving our acyclic orientation problem is known. In [20], the authors introduced
the degeneracy number of graphs. A graph G = (V,E) is called k-degenerate if dG[V ′](v) ≤ k holds for

any induced subgraph G[V ′] of G and any v ∈ V ′. The degeneracy number of G denoted by ~dmin(G), is
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the smallest integer k, for which G is k-degenerate. They also observed that a graph is k-degenerate if
and only if there exists an order of the vertices in which the left degree of each vertex is at most k, these
orders are called k-bounded orders. From this follows that there exists an acyclic orientation of G with
maximum indegree at most k if and only if G is k-degenerate; and minimizing the maximum indegree
is the same as computing the degeneracy number of G. It is known that the degeneracy number can be
computed in linear-time, by constructing a ~dmin(G)-bounded order [21]. The algorithm constructs the
order by repeatedly removing vertices with minimum degree and putting them at the rightmost free place
in the order. Note that orienting each edge from left to right in such an order gives an acyclic orientation
minimizing the maximum indegree.

Now, we consider the analogous problem for weighted graphs: Let us be given a graph G = (V,E) and
a non-negative weight function w : E → R+ on the edge set. Our goal is to find an acyclic orientation
minimizing the maximum weighted outdegree, which is essentially the same as finding an order of the
vertices minimizing the maximum weighted left degree.

We give an algorithm for this problem, which is the natural generalization of the algorithm known for
the unweighted case [21].

Algorithm 1 Weighted smallest last ordering

1: V ′ := V ; n := |V |
2: Let σ1, . . . , σn denote the vertex order we are searching for
3: for i = n, . . . , 1 do
4: Choose σi ∈ arg min{v ∈ V ′ : dwG[V ′](v)}
5: V ′ := V ′ − σi
6: end for
7: output σ1, . . . , σn

Algorithm 1 fixes the vertices from right to left. In Line 4, a vertex with minimum weighted degree
in the graph induced by the non-fixed vertices is selected, and placed at the last free position. Now, we
show the correctness of Algorithm 1.

Theorem 8 Let us be given a graph G = (V,E) and non-negative weight function w : E → R+. Algo-
rithm 1 finds a vertex order minimizing the maximum weighted left degree.

Proof: Let σ = σ1, . . . , σn denote the order given by Algorithm 1, and let σ′ = σ′1, . . . , σ
′
n be an

arbitrary order of the vertices. We show that the maximum weighted left degree in σ is at most the
maximum weighted left degree in σ′. Let σi be a vertex with maximum weighted left degree in σ, so

σi ∈ arg maxv∈V
~d
w

σ (v). Consider the last vertex σ′j in the order σ′ from the vertices σ1, . . . , σi. This

means that {σ1, . . . , σi} ⊆ {σ′1, . . . , σ′j}. Observe that ~d
w

σ (σi) ≤ ~d
w

σ′(σ
′
j), because

~d
w

σ (σi) = dw(σi, {σ1, . . . , σi}) ≤ dw(σ′j , {σ1, . . . , σi}) ≤ dw(σ′j , {σ′1, . . . , σ′j}) = ~d
w

σ′(σ
′
j)

holds, where the first and last equations come from the definition of the weighted left degree. The first
inequality is true, because σ′j ∈ {σ1, . . . , σi} and the algorithm fixes σi from this set of vertices, which
means that σi is a vertex with minimum weighted degree in the subgraph induced by {σ1, . . . , σi}. The
second inequality follows because the weight function w is non-negative and {σ1, . . . , σi} ⊆ {σ′1, . . . , σ′j}.
This means that the weighted left degree of σ′j in the order σ′ is at least the weighted left degree of σi in
the order σ, which is the maximum weighted left degree in σ. This completes the proof. �

This proves that we can find an acyclic orientation which minimizes the maximum weighted indegree
of the vertices. In contrast, Theorem 6 states that the same problem is NP-hard in case of not necessarily
acyclic orientations.
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2.3 Egalitarian orientations without acyclicity

This section introduces the dec-min, inc-max, and max
∑
v∈V h(%(v)) orientation problems, which are

the same as Problems 1, 2 and 3, respectively, except that we do not require the orientation to be acyclic.
Throughout this section, we refer to the non-acyclic versions of the problems, unless stated otherwise.

2.3.1 Path-reversal algorithm

In this section, we present and analyze the path-reversal algorithm for finding a dec-min orientation. The
main idea of the algorithm for computing an orientation which minimizes the maximum indegree was
essentially given in [3, 9, 26]. The authors of [6] realized that with path-reversals, we can get a dec-min
orientation, which is a stronger property than just minimizing the maximum indegree.

Algorithm 2 Path-reversal algorithm

1: Let D be an arbitrary orientation of the input graph G = (V,E).
2: while there is a directed path P from u to v in D, with %(u) < %(v)− 1 do
3: Choose P such that %(u) is maximal.
4: Update D by reversing P .
5: end while
6: output D

First, we prove that the algorithm can be implemented in O(|E|2|V |) time, based on the argument
given in [6]. Consider an iteration in which the algorithm reverses a path from u to v with %(v) = `.
Before the reversal of this path, let Q denote the set of vertices of indegree strictly greater than `, and Q′

denote the set of vertices from which there exists a path to a vertex in Q. Observe that no vertex of the
path from u to v is in Q′, otherwise, the algorithm would reverse a different path ending in a vertex with
greater indegree. After reversing the path from u to v, Q is still the set of vertices of indegree strictly
greater than ` and Q′ is still the set of vertices from which there exists a path from u to v. This implies
that after we reverse any path in which the last vertex has indegree equal to `, the algorithm does not
reverse a path to a vertex with higher indegree. Therefore, we can divide the algorithm into at most k
stages, where k denotes the maximum indegree in the original orientation. In the (k − `)th stage, the
algorithm reverses paths in which the last vertex has indegree `. In a stage, there can be at most |V |
path reversals, and we can find a reversible path in linear time, for example, with depth-first search. This
implies that the running time of the algorithm is O(|E|2|V |).

Now, we give the proof from [6] which shows that Algorithm 2 finds a dec-min orientation.

Theorem 9 (Borradaile [6]) Let us be given a graph G = (V,E). Algorithm 2 finds a dec-min orien-
tation of G.

Proof: The proof is by showing that any dec-min orientation of G can be transformed into the output
given by Algorithm 2 without changing the indegrees, using the following two operations:

• Reverse the orientation of a directed cycle, this operation is called cycle reversal.

• Reverse the orientation of a directed path from u to v, with %(u) = %(v)−1, this operation is called
weak reversal.

Observe that neither of these two operations modifies the decreasingly ordered vector of the indegrees.
Therefore, any orientation which is reachable from a dec-min orientation using cycle reversals and weak
reversals is also a dec-min orientation.

Let DOPT denote a dec-min orientation of G and DPR denote the orientation given by the path-reversal
algorithm. The proof is by induction on α =

∑
v∈V |%DOPT

(v)− %DPR
(v)|.

If α = 0, then the indegree of each vertex v is the same in DOPT and in DPR. Consider the arcs of
DOPT that have the opposite orientation in DPR. Reversing these arcs transforms DOPT into DPR. Each
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connected component induced by these arcs forms an Euler tour, which means that we can reverse these
arcs using cycle reversals.

Otherwise, if α > 0, then there are some vertices which have different indegrees in the two orientations.
Let V6= denote the set of these vertices, so V 6= = {v ∈ V : %DOPT

(v) 6= %DPR
(v)}. Choose a vertex v from

V 6= for which %DOPT
(v) is maximal, and if there is a choice among many such vertices, then choose v such

that %DPR
(v) is maximal.

First, if %DOPT(v) > %DPR(v), then consider the set of vertices from which v is reachable in the
orientation DOPT, denoted by U . So U = {u ∈ V : there is a directed path from u to v in DOPT}.
Observe that ∑

u∈U
%DOPT

(u) ≤
∑
u∈U

%DPR
(u) (1)

holds, because
∑
u∈U %DOPT(u) is equal to the number of edges in G induced by U , and

∑
u∈U %DPR(u)

also counts these edges and there can be other edges that are entering U in DPR.
Notice that v ∈ U and %DOPT

(v) > %DPR
(v). This and the inequality (1) together imply that there

exists a vertex u ∈ U for which %DOPT
(u) < %DPR

(u) holds. Observe that the choise of v implies that
%DOPT

(u) < %DOPT
(v) holds. Moreover, %DOPT

(u) ≥ %DOPT
(v) − 1 holds, otherwise, reversing the path

from u to v would give a better orientation to the dec-min orientation problem, which contradicts the
optimality of the orientation DOPT. So %DOPT(u) = %DOPT(v) − 1 and there exists a weakly reversible
path from u to v in DOPT. Reversing this path reduces α by 2.

Second, if %DOPT
(v) < %DPR

(v), then consider the set of vertices from which v is reachable in the
orientation DPR, denoted by U . So let U = {u ∈ V : there is a directed path from u to v in DPR}.
Notice that

∑
u∈U %DOPT

(u) ≥
∑
u∈U %DPR

(u) holds. Since %DOPT
(v) < %DPR

(v) holds, there exists a
vertex u ∈ U for which %DOPT(u) > %DPR(u) holds. Moreover %DOPT(u) ≤ %DOPT(v) holds because of the
choice of v. These together imply that %DPR(u) < %DOPT(u) ≤ %DOPT(v) < %DPR(v), which means that
%DPR

(u) < %DPR
(v)− 1 and there is a directed path from u to v in DPR. This contradicts the fact that

DPR is an orientation given by the path-reversing algorithm. �

Claim 10 The correctness of Algorithm 2 implies that a dec-min orientation is optimal for any orienta-
tion problem in which

(1) the objective function only depends on the sorted sequence of the indegrees, and

(2) reversing a path from u to v, with %(u) < %(v)−1 in any orientation results a not worse orientation.
(Moreover, if it always results a strictly better orientation, then the optimal orientations are exactly
the dec-min orientations.)

Proof: Consider an orientation problem fulfilling (1) and (2). Begin the path reversal algorithm from
any optimal orientation. Observe that (2) implies that the dec-min orientation obtained by the path
reversal algorithm is also optimal for the problem. (Moreover, if any path reversal strictly improves, then
the optimal orientation itself was a dec-min orientation.) By (1), it follows that any dec-min orientation
is optimal to the considered orientation problem. �

For example, any dec-min orientation minimizes the difference of the largest indegree and the smallest
indegree, but the latter problem can have optimal orientations other than the dec-min orientations.
However, the optimal orientations for the problem of minimizing the difference of the largest indegree
and the smallest indegree, after that the difference of the second largest indegree and second smallest
indegree, and so on, are exactly the dec-min orientations.

Furthermore, Claim 10 also implies the following corollary which was already made in [13], because
the inc-max problem and the min

∑
v∈V h(%(v)) problem fulfill (1) and the stricter version of (2).

Corollary 11 (Frank, Murota [13]) The optimal orientations for the dec-min, for the inc-max, and
for the min

∑
v∈V h(%(v)) orientation problems are the same.

Later, in Section 3.1 we are going to give an example which shows that the optimal orientations to
the acyclic versions of the problems no longer coincide.
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2.3.2 Generalization to M-convex sets

In Section 2.3.1, we described the algorithm given in [6] for finding a dec-min orientation. In [12, 13], Frank
and Murota considered a generalization of this problem, in which the goal is to find a dec-min element
of an M-convex set. We need the following definitions before defining M-convex sets. Let S be a finite
non-empty ground set. For a vector x ∈ RS and a subset Z ⊆ S, we use the notation x̃(Z) =

∑
z∈Z x(z).

A set-function b : 2S → R ∪ {+∞} is called submodular, if b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) holds
for any X,Y ⊆ S. A submodular integer valued set-function b for which b(∅) = ∅ and b(S) is finite,
defines a base-polyhedron B = {x ∈ RS : x̃(S) = b(S), x̃(Z) ≤ b(Z) for every Z ⊂ S}. A base-polyhedron
is known to be an integral polyhedron. An M-convex set

...
B is the set of integer points of an integral

base-polyhedron, that is,
...
B = B ∩ ZS .

They noticed that Corollary 11 also holds in this more general framework.

Theorem 12 (Frank, Murota [13]) Let us be given an M-convex set (
...
B). The dec-min elements of

(
...
B), inc-max elements of (

...
B) and minm∈

...
B

∑
s∈S h(m(s)), elements of

...
B, for any h : Z → Z strictly

convex function, are the same.

So every statement given for the dec-min elements of an M-convex set also applies for the inc-max elements
and minm∈B̈

∑
s∈S h(m(s)) elements.

In [12], Frank and Murota gave the so called basic algorithm for finding a dec-min element of an
M-convex set

...
B. This basic algorithm runs in poly(|S|, b(S)) time, but it is not strongly polynomial in

general. In the graph orientation applications, S = V and b(S) ≤ |E|, therefore the basic algorithm
is polynomial in these cases. It is important to emphasize that they also gave a strongly-polynomial
algorithm for finding a dec-min element of an M-convex set

...
B, but we only focus on the simpler basic

algorithm, since it is also strongly polynomial in the orientation related applications. The main idea of
the basic algorithm is the same as in Algorithm 2. It starts from an arbitrary element m ∈

...
B and if

there exist coordinates s and t such that m(t) ≥ m(s) + 2 and m + χs − χt ∈
...
B, then we replace m by

m+ χs − χt and repeat the same procedure. They proved that if no such improvement exists, then the
current element m ∈

...
B is dec-min.

Frank and Murota also gave various applications of decreasing minimization on M-convex sets, see
in [12]. In what follows we focus on the extensions of the graph orientation problems.

Dec-min orientations First, observe that the indegree vectors of orientations form an M-convex set.
This follows from the well known Orientation lemma of Hakimi.

Lemma 13 (Hakimi [15]) Let G = (V,E) be an undirected graph and m : V → Z+ a vector with
m̃(V ) = |E|. G has an orientation with indegree vector m if and only if m̃(X) ≤ eG(X) for every subset
X ⊆ V , where eG(X) denotes the number of edges with at least one vertex in X.

It is known that eG : 2V → Z+ is a submodular function. This immediately implies that the indegree
vectors of orientations are the integer elements of the base-polyhedron B = {x ∈ RV : x̃(V ) = |E|, x̃(Z) ≤
eG(Z) for each Z ⊆ V }, hence they form an M-convex set. This implies that we can find a dec-min
orientation using the previously described basic algorithm. Observe that the basic algorithm applied to the
base-polyhedron B(eG), that is, for finding a dec-min orientation is essentially the same as Algorithm 2.

They also considered capacitated orientations. In this problem there is given a positive integer `(uv)
for each edge uv which denotes the number of parallel edges between u and v. Our goal is to get a
dec-min orientation, by orienting some of the edges between u and v towards u and the others towards
v. The algorithm given for the uncapacitated case is not strongly-polynomial if `(e) can be arbitrary
large, but they also gave a strongly-polynomial method for this problem. Moreover, they also gave a
polynomial-time algorithm for computing a cheapest dec-min element of an M-convex set with respect
to a given cost function c : S → R+. In case of orientations, this means that we can find a dec-min
orientation, minimizing

∑
v∈V c(v)%(v).
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Indegree-constrained dec-min orientations They also proved that the intersection of an M-convex
set and the set {x ∈ RS : f(s) ≤ x(s) ≤ g(s)} is also an M-convex set. This implies that we can compute
a dec-min element among the elements of an M-convex set fulfilling a given lower and upper bound
on each coordinate in strongly-polynomial time. As an application, we can solve the following indegree-
constrained orientation problem: Let us be given a graph G = (V,E) and lower and upper bound functions
f : V → Z+ and g : V → Z+. The goal is to find an orientation in which f(v) ≤ %(v) ≤ g(v) holds,
and the indegree vector is decreasingly minimal (or increasingly maximal, or minimizes

∑
v∈V h(%(v)) for

some strictly convex function h) among these orientations.
With the basic algorithm, we can find an indegree-constrained egalitarian orientation for a graph in

polynomial time by repeatedly reversing paths from a vertex u to a vertex v, such that %(v) > %(u) + 1
and %(u) < g(u) and %(v) < g(v). This algorithm can be applied to solve the scheduling problem from [7],
which we mentioned in Section 1.1.

Strongly connected orientations They also proved in [12] that the indegree vectors of strongly
connected orientations of 2-edge connected graphs form an M-convex set. This implies that, using the
basic algorithm, we can find a dec-min strongly connected orientation by repeatedly reversing paths
from a vertex u to a vertex v such that there are at least two edge-disjoint paths from u to v and
%(v) > %(u) + 1, until no such path remains. The same algorithm was first suggested in [6] for finding
dec-min strongly connected orientation, but they only proved that the resulting orientation minimizes the
maximum indegree. Later the authors of [28] gave a proof for the correctness using only graph-theoretical
concepts.

Moreover, Frank and Murota also considered (k, `)-edge-connected orientations (with respect to a root
node r0), that is, %(X) ≥ k whenever ∅ 6= X ⊆ V − r0 and %(X) ≥ ` whenever r0 ∈ X ⊆ V . They proved
that if a graph has (k, `)-edge-connected orientations then the indegree vectors of these orientations
form an M-convex set [12]. Therefore, we can also find a dec-min (k, `)-edge-connected orientation in
strongly-polynomial time.

2.4 The convex hull of the indegree vectors of (acyclic) orientations

As we previously mentioned in Section 2.3.2, the integral elements of the polyhedron B(eG) = {x ∈ RV :
x̃(V ) = |E|, x̃(Z) ≤ eG(Z) for each Z ⊂ V } are exactly the indegree vectors of the orientations of G.
Since it is known that all base-polyhedra are integral polyhedra, this also means that the corner solutions
of B(eG) are indegree vectors of orientations of G. Furthermore, it is a bounded polyhedron, therefore
it is the convex hull of the indegree vectors of the orientations of G. By personal communication with
András Frank, we get the following characterization of the corner solutions of B(eG).

Theorem 14 Let us be given a graph G = (V,E). The corner solutions of the base-polyhedron B(eG) =
{x ∈ RV : x̃(V ) = |E|, x̃(Z) ≤ eG(Z) for each Z ⊂ V } are exactly the indegree vectors of the acyclic
orientations of G.

Proof: B(eG) is known to be the convex hull of the indegree vectors of orientations of G. Therefore, it
is enough to prove that

(1) the indegree vector of every non-acyclic orientation can be written as a convex combination of other
indegree vectors, and

(2) the indegree vectors of acyclic orientations cannot be written as a convex combination of other
indegree vectors.

First, consider a non-acyclic orientation D of G with indegree vector x = (%(v1), . . . , %(vn)), where
v1, . . . , vn denote the vertices of G. We prove (1) by constructing orientations such that x can be written
as a convex combination of the obtained indegree vectors. Notice that D contains a directed cycle
C, and assume without loss of generality that the cycle C consists of the arcs v1v2, . . . , vk−1vk, vkv1

in this order. Construct k orientations D1, . . . , Dk as follows: Dj is the same as D, except that the
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jth arc of the cycle C is reversed for each j ∈ {1, . . . , n}. So in D1 the arc v1v2 is reversed, in D2

the arc v2v3, and so on, in Dk the arc vkv1 is reversed. Note that the indegree vector of Dj is xj =
(%(v1), . . . , %(vj−1), %(vj) + 1, %(vj+1)− 1, %(vj+2), . . . , %(vn)) for each j ∈ {1, . . . , k− 1}, and the indegree
vector of Dk is xk = (%(v1) − 1, %(v2), . . . , %(vk−1), %(vk) + 1, %(vk+1), . . . , %(vn)). Observe that x =
1
k

∑k
j=1 x

j holds, so the indegree vector of the non-acyclic orientation D can be written as a convex

combination of the indegree vectors x1, . . . , xk of D1, . . . , Dk.
Second, we prove (2) by induction on |V |. Suppose that for any graph G′ on (|V |−1) vertices, the in-

degree vectors of acyclic orientations cannot be written as a convex combination of other indegree vectors.
Consider an acyclic orientation D of the graph G = (V,E) with indegree vector x = (%(v1), . . . , %(vn)).
Let x be a convex combination of indegree vectors x1, . . . , xk of orientations D1, . . . , Dk, respectively. So
x =

∑k
j=1 λjx

j for some λ1, . . . , λk > 0,
∑k
j=1 λj = 1. We show that xj = x for j ∈ {1, . . . , k}.

Since D is an acyclic orientation, it has a vertex of indegree 0. We can assume without loss of generality
that this vertex is vn. Consider the graph G′ = G − vn and the orientations D,D1, . . . , Dk restricted
to G′. Let us denote these orientations by D′, D1′, . . . , Dk′ and the corresponding indegree vectors by
x′, x1′, . . . , xk

′
, respectively. Observe that D′ is an acyclic orientation of G′ and x′ =

∑k
j=1 λjx

j ′ holds,

because the vectors x′, x1′, . . . , xk
′

are the same as the first (n−1) coordinates of the vectors x, x1, . . . , xk

minus the vector (d(v1, vn), . . . , d(vn−1vn)), respectively. Therefore, xj
′

= x′ holds for each j ∈ {1, . . . , k},
because of the inductive hypothesis. Furthermore, this implies that xj = x for each j ∈ {1, . . . , k}. �

This characterization gives further motivation to consider egalitarian acyclic orientations, since finding
an optimal acyclic orientation to Problems 1- 3 is equivalent to finding a corner solution of the polyhe-
dron B(eG) which is decreasingly minimal, increasingly maximal or minimizes the objective function∑
v∈V h(%(v)). Furthermore, the previous theorem also implies that we can find a minimizer among the

indegree vectors of acyclic orientations for any linear objective function. Later in Theorem 32, we give a
simpler, more effective method for finding an acyclic orientation whose indegree vector minimizes a linear
objective function.

Moreover, we give another polyhedral characterization for the convex hull of indegree vectors for which
the method given in [22] can be used to find a dec-min orientation, even in the case of indegree-constrained
orientations.

Consider the incidence matrix of the following graph G′ = (V ′, E′): Let V ′ = V ∪ E and let E′

contain an edge between e ∈ V ′ ∩ E and v ∈ V ′ ∩ V if in the graph G = (V,E), v ∈ V is an endpoint of
e ∈ E. Consider the incidence matrix AG′ of the bipartite graph G′, and extend the rows corresponding
to vertices in V ′ ∩ V with −I |V |×|V |, which denotes the identity matrix of dimension |V | × |V | , and
each row corresponding to vertex in V ′ ∩ E with 0V . Denote the resulting matrix by A. Clearly, A
is a totally unimodular matrix. Let y ∈ RE′+ denote the variables corresponding to the columns of the
matrix AG′ and x ∈ RV+ denote the variables corresponding to the additional columns containing −1 and
0 coordinates. Let b = (0V , 1E). We claim the following.

Theorem 15 Consider the polyhedron P = {(y, x) ∈ RE′+ ×RV+ : A(y, x) = b, (y, x) ≥ 0}. The projection

of P on the variables x, that is, P |x = {x ∈ RV+ : (y, x) ∈ P for some y ∈ RE′}, is the convex hull of the
indegree vectors of orientations of G.

Proof: Observe that P and P |x are bounded polyhedra. Therefore, they are the convex hull of their
corner solutions. We show that every corner solution (y, x) of P corresponds to an orientation of G with
indegree vector x ∈ RV+, and for every corner solution x of P |x, there exists y ∈ RE′+ such that (y, x) is a
corner solution of P .

Observe that A is a totally unimodular matrix and b is an integral vector, this implies that the corner
solutions of P are integral vectors. Consider an integral vector (y, x) ∈ P . For any edge e = uv ∈ G, the
equality yeu+yev = 1 means that one of yeu, yev is equal to one and the other one is equal to zero. Orient
e towards u if yeu = 1, and towards v otherwise. Observe that the indegree vector of this orientation
is x, because of the equality xv =

∑
e=uv yev. So every corner solution (y, x) of P corresponds to an

orientation of G with indegree vector x.
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Consider a corner solution x ∈ Px. Suppose for contradiction that there exists no y ∈ RE′+ for which
(y, x) is a corner solution of P . Therefore, (y, x) can be written as a convex combination of some corner
solutions (y1, x1), . . . , (yk, xk) ∈ P \ {(y, x)}. But then x can be written as the same convex combination
of x1, . . . , xk ∈ P |x. Since x was a corner solution in P |x, this implies that x1 = x, . . . , xk = x. Therefore,
(y1, x1) = (y1, x) is a corner solution in P , which contradicts the indirect assumption.

This implies that P |x is the convex hull of the indegree vectors of the orientations of G, which was to
be shown. �

Notice that both P |x and the base-polyhedron B(eG) define the convex hull of the indegree vectors
of orientations of G. Therefore, Theorem 14 implies the following.

Corollary 16 The corner solutions of P |x are exactly the indegree vectors of the acyclic orientations.

Furthermore, it follows from the conditions that any integral vector in the convex hull is an indegree
vector of an orientation. This implies that the algorithm in [22] can be used to find a dec-min orientation.
This algorithm naturally solves a more general orientation problem, in which we are given a graph
G = (V,E) along with a discrete convex function hv : Z+ → R for each v ∈ V . The goal is to find
an orientation of G that minimizes

∑
v∈V hv(%(v)). Corollary 11 implies that we can solve the dec-min

problem when we set hv to the same strictly convex function h for every v ∈ V . But it is easy to see
that if the hv functions differ from each other, then the optimal solutions are not necessarily the dec-min
orientations anymore.

In the rest of this section, we give another polynomial-time method for the generalized problem of
finding an orientation of a graph G that minimizes

∑
v∈V hv(%(v)), where hv is a given strictly convex

function for each v ∈ V . We have to assume that the function hv can be evaluated in polynomial time.
We reduce this problem to the minimum cost flow problem, for which there exists a strongly-polynomial
algorithm [25].

Theorem 17 Let us be given a multigraph G = (V,E) and a discrete strictly convex function hv : Z+ → R
for each v ∈ V . We can compute an orientation minimizing

∑
v∈V hv(%(v)) in polynomial time provided

that the function hv can be evaluated in polynomial time for each v ∈ V .

Proof: We reduce this problem to the minimum cost integral flow problem [25]. Let G = (V,E)
denote the multigraph for which we want to find an optimal orientation. Let V = {v1, . . . , vn} and
E = {e1, . . . , em}. If hv(0) 6= 0, then we modify the function to h′v(z) = hv(z)−hv(0) for z ∈ Z+. Observe
that

∑
v∈V hv(%(v)) =

∑
v∈V h

′
v(%(v)) +

∑
v∈V hv(0) for any orientation, so the optimal orientations are

the same for the functions h′v and hv. Hence, we assume without loss of generality that hv(0) = 0 for
each vertex v ∈ V .

Construct the network D = (V ′, A) as follows. Let V ′ contain a source vertex s, a sink vertex t, a
vertex v′i for each i ∈ {1, . . . , n}, and also a vertex e′j for each j ∈ {1, . . . ,m}. Let D contain dG(vi)

parallel arcs a1
` , . . . , a

d(vi)
` from s to v′i for i ∈ {1, . . . , n}. Add an arc from v′i to e′j if ej is incident to

vi in G for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Finally, add an arc from e′j to t for every j ∈ {1, . . . ,m}.
Figure 4 illustrates the construction.

Let the capacity of each arc be 1. Set the cost c(ai`) of the arc ai` to (hvi(`) − hvi(` − 1)) for each
i ∈ {1, . . . , n} and each ` ∈ {1, . . . , d(vi)}. Let the cost c(a) be 0 for the rest of the arc. Observe that the
sum of the costs of the first z parallel sv′i arcs a1

` , . . . , a
z
` , for some vi ∈ V is

z∑
`=1

ai` =

z∑
`=1

(hvi(`)− hvi(`− 1)) = hvi(z)− hvi(0) = hvi(z).

We prove that the minimum cost of an integral s-t flow of amount |E| is equal to the
∑
vi∈V hvi(%(vi))

of an optimal orientation of G.
On the one hand, consider an optimal orientation, and construct an s-t flow f : A → Z+ of amount

|E| as follows. For all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, let f(ai`) = 1 if ` ≤ %(vi). Let f(v′ie
′
j) = 1
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Figure 4: The digraph D = (V,A) constructed in the reduction to the minimum cost flow problem. The
vertices v′1, . . . , v

′
n are corresponding to the vertices of G and the vertices e′1, . . . , e

′
m are corresponding to

the edges of G.

if ej ∈ E is oriented toward vi ∈ V in G. Set f(e′jt) = 1. For the remaining arcs, let f(a) = 0. The
resulting flow f is clearly feasible, and it uses the first %(vi) parallel sv′i arcs, therefore the cost of the
flow is equal to

∑
vi∈V hvi(%(vi)).

On the other hand, compute a minimum cost integral flow f : A → Z+ of amount |E|. Note that
f uses the arc e′jt for all j ∈ {1, . . . ,m}, therefore, each e′j ∈ V ′ has exactly one incoming arc with
f(v′ie

′
j) = 1. Orient each ej ∈ E towards the vertex vi ∈ V for which f(v′ie

′
j) = 1. Observe that the

indegree %(vi) of vi ∈ V is equal to the number of parallel sv′i arcs used in the flow, since the function
hvi is strictly convex, c(ai`) = hvi(`) − hvi(` − 1) < hvi(`

′) − hvi(`′ − 1) = c(ai`′) holds whenever ` < `′.
Therefore, the flow uses the first %(vi) parallel sv′i arcs for each i ∈ {1, . . . , n}. This implies that the cost
of the flow is

∑
vi∈V hvi(%(vi)), which is the objective value of the constructed orientation of G.

This means that we can find an orientation minimizing
∑
vi∈V hvi(%(vi)) in polynomial time by

computing a minimum cost integral s-t flow in the network constructed above. As the latter problem is
solvable in strongly-polynomial time, the theorem follows. �

3 Lexicographically optimal acyclic orientations

Now after the overview of related problems, we begin to investigate the egalitarian acyclic orientation
problems defined in Section 1. This section investigates the complexities of Problem 1 and 2, and related
problems of finding a lexicographically optimal acyclic orientation. First, we describe the dec-min and
inc-max ordering problems, which are essentially the same as Problem 1 and 2, respectively, and we prove
them NP-hard. After that, we introduce the inc-min and dec-max acyclic orientation problems as natural
counterparts of the dec-min and inc-max acyclic orientation problems.

3.1 The dec-min and the inc-max acyclic orientation problems

Let us be given a graph G = (V,E). A vertex order is optimal for the dec-min (decreasingly minimal)
problem if the sequence of the left degrees sorted in non-increasing order is lexicographically minimal.
Similarly, a vertex order is optimal for the inc-max (increasingly maximal) problem if the sequence of the
left degrees sorted in non-decreasing order is lexicographically maximal. An order is called k-bounded
if the left degree of each vertex is at most k. The dec-min or inc-max ordering problems are equivalent
to finding a dec-min or inc-max acyclic orientation of G, respectively. Corollary 11 states that without
acyclicity the dec-min and inc-max orientation problems are equivalent. So the question arises whether
these problems are also equivalent in the acyclic case. With a program, we found that the simple graph
on 9 vertices shown in Figure 5 is the smallest example for which the dec-min and inc-max ordering
problems are different.
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Figure 5: The smallest simple graph for which the dec-min and inc-max problems are not the same.

Claim 18 For the simple graph shown in Figure 5, the sets of the optimal orders for the dec-min and
the inc-max ordering problems are disjoint.

Proof: We claim that the non-increasingly ordered left degree sequence of an optimal order for the
dec-min problem is 3, 3, 3, 3, 2, 2, 1, 1, 0 and the non-decreasingly ordered left degree sequence of an inc-
max order is not worse than 0, 1, 2, 2, 2, 2, 2, 3, 4, hence the optimal orders are not the same. First, notice
that there exist 3-bounded orders for this graph, therefore, a dec-min order is also a 3-bounded order.
Furthermore, in any 3-bounded order, at least two vertices of {v5, v6, v7, v8, v9} have left degree 3, be-
cause in any 3-bounded order for their induced subgraph the last two vertices have left degree at least
3. Moreover in any 3-bounded order, the last two vertices can only be from {v1, v2, v3, v4}, because
only the vertices v2 and v3 have degree at most 3 and after deleting one of these vertices, the only
new vertex of degree at most 3 is v1 or v4. These imply that in any 3-bounded order, the last two
vertices among {v1, v2, v3, v4} have left degree 3 and at least two other vertices among {v5, v6, . . . , v9}
have left degree at least 3. Together with the fact that the first vertex has left degree 0, this im-
plies that the non-increasingly ordered degree sequence of a dec-min order is lexicographically at least
as big as 3, 3, 3, 3, 2, 2, 1, 1, 0. So the order v9, v8, v7, v6, v5, v4, v3, v1, v2 (which has non-increasingly or-
dered degree sequence 3, 3, 3, 3, 2, 2, 1, 1, 0) is optimal for the dec-min problem. Note that the order
v1, v4, v2, v3, v9, v5, v6, v7, v8 has non-decreasingly ordered left degree sequence 0, 1, 2, 2, 2, 2, 2, 3, 4, which
is lexicographically greater than the non-decreasingly ordered left degree sequence of a dec-min order
(that is 0, 1, 1, 2, 2, 3, 3, 3, 3). So for the graph shown in Figure 5, the dec-min and inc-max optimal orders
are not the same, moreover there is no common optimal solution for the dec-min and the inc-max ordering
problems. �

Notice that a dec-min order is always a ~dmin(G)-bounded order, but the previous example shows that
this is not necessarily true for the inc-max orders.

Now, we show that the dec-min k-bounded and inc-max k-bounded orders are the same for k = 2,
but the complexity of these problems remains open. After that, we examine the complexities of finding
a dec-min or inc-max k-bounded order, and prove them NP-hard for any k ≥ 3 and if there is no bound
on the left degrees. The NP-hardness of finding the dec-min k-bounded order was already proven for all
odd k ≥ 5 and in the case when there is no bound on the left degrees in [6]. We prove that the problem
is hard for all k ≥ 3. Then, we show that finding an inc-max k-bounded order is also NP-hard for any
k ≥ 3, and even if there is no bound on the left degrees.

Theorem 19 Let us be given a graph G = (V,E). For k = 2, the dec-min and inc-max k-bounded orders
are the same.

Proof: Notice that in any 2-bounded order, the left degree of every vertex is 0, 1 or 2, and the sum of
the left degrees is equal to |E|. The dec-min case is equivalent to finding a 2-bounded order minimizing
the number of vertices with left degree 2, and the inc-max problem is equivalent to finding a 2-bounded
order minimizing the number of vertices with left degree 0. Formally, let σ denote an order of the vertices
and let nσi denote the number of vertices with left degree equal to i. Then for any 2-bounded order
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Figure 6: The gadgets corresponding to v ∈ V for the proof of Theorem 20.

nσ1 = |V | − nσ0 − nσ2 and |E| = nσ1 + 2nσ2 = |V | − nσ0 + nσ2 holds. Consider two orders σ and σ′, then
|E| = |V | − nσ0 + nσ2 = |V | − nσ′0 + nσ

′

2 holds, therefore, nσ2 − nσ
′

2 = nσ0 − nσ
′

0 . This implies that an order
minimizes the number of vertices with left degree 2 if and only if it minimizes the number of vertices
with left degree 0, therefore, the inc-max and dec-min k-bounded orders are the same. �

Now we move on to the problems with larger bounds k. The dec-min k-bounded ordering problem
was already proven NP-hard for every odd k ≥ 5 parameters in [6]. The following theorem extends this
result for any k ≥ 3.

Theorem 20 For any integer k ≥ 3, it is NP-hard to find a k-bounded order that minimizes the number
of vertices with left degree exactly k, even for simple graphs.

Proof: First, we give the proof for multigraphs, then, we show how to eliminate parallel edges. The
proof is by a reduction from the vertex cover problem on 3-regular simple graphs, which is NP-hard [1].
The construction is slightly different depending on the parity of k. If k = 2`+ 1 for some ` ≥ 1, then let
H denote the gadget shown in Figure 6a; otherwise, if k = 2` for some ` ≥ 2, then let H be the gadget
shown in Figure 6b. For a given 3-regular instance G = (V,E) of the vertex cover problem, construct a
graph G′ = (V ′, E′) as follows. For each vertex v in G, add a disjoint copy Hv of H to G′. For every
edge uv of G, add a new edge to G′ between the vertices t1 ∈ Hu or t6 ∈ Hu, and t1 ∈ Hv or t6 ∈ Hv in
such a way that, in every gadget, exactly one and two new edges are incident to the vertices t1 and t6,
respectively. The wavy edges at the top of Figures 6a and 6b illustrate these new edges, which correspond
to the edges in G, and will be referred to as original (wavy) edges.

We show that the size of the smallest vertex cover in G equals the minimum number of vertices with
left degree k in the k-bounded orders of the vertices of G′. The construction given above was different
for odd and even k, but the rest of the proof is given for the two cases simultaneously.

Firstly, let X ⊆ V denote a minimum-size vertex cover in G. We construct a k-bounded order for G′

in which the number of vertices with left degree k is at most |X|. For each v ∈ X, remove t3 from the
gadget Hv in G′, and then recursively remove every vertex of degree smaller than k. Whenever a vertex
is removed, place it to the last free position in the order, from right to left. We prove that by the end
of the procedure, every vertex is removed, and hence an order of V ′ is obtained. Take a vertex v′ ∈ V ′,
and let v ∈ V denote the vertex for which v′ ∈ Hv. If v ∈ X, then the vertex t3 in Hv is removed from
G′, which also causes v′ to be removed by the construction of the gadgets. Otherwise, if v /∈ X, then any
edge uv ∈ E incident to v must be covered by its other endpoint, that is, u ∈ X. But then the gadget Hu

is removed, because its vertex t3 is removed, which means that all three original (wavy) edges incident
to Hu are removed. This means that all original (wavy) edges incident to Hv must be removed as well,
hence the whole gadget Hv is removed by its construction, including the vertex v′. Therefore, all vertices
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in G′ are removed, and hence we obtain an order of the vertices of G′. The left degree of every vertex is
at most k in this order, because the degree of any vertex is at most k when it is removed. The only way
a vertex of degree k can get removed is when t3 is removed from the gadget Hv in G′ for some v ∈ X,
therefore, at most |X| vertices have left degree k. This means that the order found by the procedure
above is a k-bounded order, and there are at most |X| vertices with left degree k.

Secondly, given a k-bounded order for G′, we construct a vertex cover X ⊆ V of G whose size is the
number of vertices with left degree k. Let the set X ⊆ V contain a vertex v ∈ V if and only if there
exists at least one vertex in Hv whose left degree is k in the k-bounded order. We prove that for any
uv ∈ E, if u /∈ X, then u′ precedes v′ in the k-bounded order, where u′v′ ∈ E′ is the only original (wavy)
edge connecting Hu and Hv. Note that u′ is either t1 ∈ Hu or t6 ∈ Hu, and v′ is either t1 ∈ Hv or
t6 ∈ Hv. The last two vertices among t1, . . . , t6 ∈ Hu in any k-bounded order must be t1 and t6, because
u /∈ X means that there is no vertex in Hu with left degree k, and the vertices t2, . . . , t5 ∈ Hu would have
degree at least k if they appeared as any of the last two vertices by the construction of the gadgets. The
only way t1 ∈ Hu and t6 ∈ Hu can have degree smaller than k is that the other endpoints of all incident
original (wavy) edges are later in the order, hence u′ must precede v′.

This immediately implies that X is a vertex cover, otherwise, there exists an edge uv ∈ E such that
u, v /∈ X, but then the previous argument implies that u′ precedes v′ and also that v′ precedes u′, where
u′ and v′ are the endpoints of the original (wavy) edge connecting Hu and Hv in G′, which is not possible.
Furthermore, the size of X is exactly the number of vertices with left degree k, which completes the proof
of the theorem for multigraphs.

Now, we modify the construction so that the resulting graph becomes simple. For ` ≥ 1 and k ∈
{2`, 2` + 1}, consider the corresponding gadget H shown in Figure 6. For any p ∈ {` − 1, `} and any
two distinct vertices ti, tj ∈ Hv, if the gadget H contains p parallel titj edges, then replace these edges
by the following graph: Take a clique Kk+1, select 2p distinct vertices of it, and connect p of them to
ti, the other p to tj , and delete a matching of size p induced by these 2p vertices from the clique. The
graph substituting the parallel edges is connected, the degree of the original vertices of the gadgets do
not change, and every newly added vertex has degree k. We show that an optimal order for this modified
graph has as many vertices with left degree k as an optimal order for the original graph (which contains
parallel edges): Consider an optimal order for the modified graph and delete the newly added vertices, this
clearly does not increase the number of vertices with left degree k. To see the reverse direction, consider
an optimal order for the original graph and insert each newly added vertex between the corresponding
vertices ti and tj (assume that ti precedes tj , otherwise, change the role of ti and tj): First the vertices
incident to ti, after them the remaining vertices that are not incident to tj and then the vertices incident
to tj . In the resulting order no newly added vertex has left degree equal to k and the degrees of the
original vertices do not change.

This implies that the problem of finding a k-bounded order minimizing the vertices with left degree
k is equivalent for the modified graph and for the original graph. �

Since the dec-min k-bounded orders minimize the number of vertices with left degree exactly k, the
previous theorem implies the following:

Corollary 21 For any integer k ≥ 3, finding a dec-min k-bounded order is NP-hard, even in case of
simple graphs.

Next, we prove the NP-hardness of the inc-max k-bounded ordering problem for any k ≥ 3, and after
that, the NP-hardness of the inc-max problem in the unbounded case.

Theorem 22 For any integer k ≥ 3, it is NP-hard to find a k-bounded order that minimizes the number
of vertices with left outdegree exactly 0, even for simple graphs.

Proof: First, we prove the theorem for multigraphs, then, we show how to eliminate the parallel edges.
The proof is by a reduction from the vertex cover problem on 3-regular simple graphs [1], just as in the
proof of Theorem 20.

18



t1 t2 t3

t4 t7

t6 t5 t8 t9

t10 t12 t11

`

` ` ` `

`

` `+ 1

`+ 2

`+ 1

`+ 1 `

`+ 2

`+ 1

` `

(a) The case k = 2`+ 1.

t1 t2 t3

t4 t7

t6 t5 t8 t9

t10 t12 t11

`

`− 1 ` `− 1 `− 1

`

` `

`+ 1

`+ 1

` `

`+ 1

`+ 1

`− 1 `− 1

(b) The case k = 2`.

Figure 7: The gadgets corresponding to v ∈ V for the proof of Theorem 22.

For a given 3-regular instance G = (V,E) of the vertex cover problem, we construct the graph
G′ = (V ′, E′) the same way as in the proof of Theorem 20, the only difference is that we use the gadget
H shown in Figure 7a if k = 2` + 1 for some ` ≥ 1, otherwise, if k = 2` for some ` ≥ 2, then the one
shown in Figure 7b. For every vertex v of G, extend G′ with a disjoint copy Hv of the gadget H, and for
every edge uv of G, add a new edge to G′ between the vertices t1 ∈ Hu, t2 ∈ Hu or t3 ∈ Hu and t1 ∈ Hv,
t2 ∈ Hv or t3 ∈ Hv in such a way that, in every gadget, exactly one of the three new edges is incident
to the vertices t1, t2 and t3. The wavy edges at the top of Figures 7a and 7b illustrate these new edges,
which correspond to the edges in G, and will be referred to as original (wavy) edges.

We show that the minimum number of vertices with left degree 0 in the k-bounded orders of the
vertices of G′ equals the size of the smallest vertex cover in G plus the number of vertices in G. The
construction of G′ is slightly different for odd and even k, but the proof is given for the two cases
simultaneously.

Firstly, let X ⊆ V denote a minimum-size vertex cover in G. We construct a k-bounded order for
G′ in which the number of vertices with left degree 0 is |X| + |V |. We construct the order by removing
vertices of degree at most k, and placing them to the last free position in the order of removal, from
right to left. First, for each v ∈ X, remove the vertices of the gadget Hv in G′ in the following order:
t12, t11, t10, t1, t2, . . . , t9. Then, for each u /∈ X, remove the vertices of the gadget Hu in G′ in the order
t1, . . . , t12. Clearly, the left degree of every vertex is at most k in the order obtained by this procedure.
Notice that in the resulting order, for each v ∈ X, only the vertices t6 ∈ Hv and t9 ∈ Hv have left degree
0. Furthermore, for each u /∈ X, only the vertex t12 ∈ Hu has left degree 0. This means that the order
found by the procedure above is a k-bounded order, and there are |X| + |V | vertices with left degree 0,
which was to be shown.

Secondly, given a k-bounded order for G′, we construct a vertex cover X ⊆ V of G whose size is at
most (#{v ∈ V : ~d(v) = 0}− |V |). Let the set X ⊆ V contain a vertex v ∈ V if and only if there exist at
least two vertices in Hv whose left degree is 0 in the k-bounded order. We prove that X is a vertex cover
by proving that for any uv ∈ E, if u /∈ X, then u′ precedes v′ in the k-bounded order, where u′v′ ∈ E′ is
the only original (wavy) edge connecting Hu and Hv. Note that u′ is one of t1, t2, t3 ∈ Hu, and v′ is one
of t1, t2, t3 ∈ Hv.

Suppose that v′ precedes u′ and consider the order of the vertices in the gadget Hu. Observe that in
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any k-bounded order, the last vertices of the 3-cycles t4t5t6 and t7t8t9 can only be t4 and t7, respectively,
and these vertices must precede t1, t2 and t3 (one of which is u′). If u′ is t2, then it has to precede t12,
otherwise, all of its neighbors would precede u′. Similarly, if u′ is t1 or t3 then it has to precede t10 or t11,
respectively, which has to precede t12. This means that t1, t2, t3 and t12 all succeed the 3-cycles t4t5t6
and t7t8t9. This implies that the first 6 vertices of the gadget Hu span a subgraph of Hu \ {t1, t2, t3, t12}
which is not connected. The first vertices of the components have left degree 0 in any order, hence the
gadget contains at least two vertices with left degree 0, contradicting u /∈ X. This immediately implies
that X is a vertex cover. Furthermore, in any k-bounded order, the first vertex of each gadget Hv has
left degree 0, because only t1, t2 and t3 have an incident edge going outside the gadget, and these vertices
cannot be the first (otherwise, the last vertex of the 3-cycle t4t5t6 would have left degree greater than

k). Therefore, the size of X is at most (#{v ∈ V : ~d(v) = 0} − |V |), which completes the proof of the
theorem for multigraphs.

Now, we modify the construction so that the resulting graph becomes simple. For any k ≥ 3, consider
the corresponding gadget Hv shown in Figure 7. Let ` =

⌊
k
2

⌋
. For any p ∈ {`− 1, `, `+ 1, `+ 2} and any

two distinct vertices ti, tj of Hv, if the gadget contains p parallel titj edges, then replace these edges by
the following graph: Take a complete bipartite graph Kk+1,k+1 = (L∪R,E′′), connect ti with p distinct
vertices from L and tj with p distinct vertices from R, and delete a matching of size p induced by these
2p vertices from the complete bipartite graph. The graph substituting the parallel edges is connected, the
degrees of the original vertices of the gadgets do not change, and every newly added vertex has degree
k+1. So in every k-bounded order, the last vertex is either ti or tj . Furthermore, we can insert the newly
added vertices between ti and tj into any order of the original vertices of the gadget without introducing
any additional vertices with left degree 0. By symmetry, we can assume that tj is later in the order
than ti is. Insert the newly added vertices after ti and before tj in the following order: first the vertices
adjacent to ti, then the vertices from R not adjacent to v, then the remaining vertices from L and finally,
the remaining vertices from R. Therefore, from any order for the multigraph, we can construct an order
for the modified graph without changing the number of vertices with left degree 0.

To see the reverse direction, consider an order given for the modified graph, and delete the newly
added vertices. Observe that this modification does not increase the number of vertices with left degree
0, because consider an edge titj where the degree of ti decreased to 0. This means that ti precedes tj
and at least one newly added vertex corresponding to the (parallel) edge titj precedes ti in the order.
The first one of these newly added vertices has left degree 0. So for every vertex ti whose left degree
decreased to 0 we had to remove at least one corresponding newly added vertex. Therefore, an optimal
order for this modified graph has at most as many vertices with left degree 0 as an optimal order for the
multigraph, which completes the proof for simple graphs. �

Since an inc-max k-bounded order minimizes the number of vertices with left degree 0, the previous
theorem implies the following.

Corollary 23 For any integer k ≥ 3, finding an inc-max k-bounded order is NP-hard, even in case of
simple graphs.

Next, we prove that finding an inc-max problem without bounds on the left degrees is NP-hard as
well. Note that unlike Theorem 20 for dec-min orders, Theorem 22 does not imply the complexity of the
inc-max problem without bounds on the left degrees, because it can happen that a graph has a k-bounded
order, but the optimal order for the inc-max problem is not k-bounded, see the graph shown in Figure 5
for an example.

Theorem 24 It is NP-hard to find an inc-max order, even for simple graphs.

Proof: Notice that an inc-max order for a simple graph maximizes the number ` for which there is
exactly one vertex with left degree i for each i ∈ {0, . . . , ` − 1}. We prove that finding such an order
is already NP-hard by a reduction from the MAX-3-SAT(4) problem, in which we are given a CNF
formula such that each variable is contained in exactly 4 clauses, and each clause contains exactly 3
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literals corresponding to 3 distinct variables. Our goal is to find an assignment that maximizes the
number of satisfied clauses. This problem is APX-hard with an approximation threshold of 1900

1899 , that
is, the problem cannot be approximated better than this threshold unless P=NP [4]. We show that a
polynomial-time algorithm for determining the maximum number ` for which there exists an order with
exactly one vertex with left degree i for each i ∈ {0, . . . , `− 1} would imply a better approximation ratio
for the MAX-3-SAT(4) problem, hence the former problem is NP-hard, and so is finding an inc-max
order.

For an instance of the MAX-3-SAT(4) problem with m clauses, we construct a graph G = (V,E) as
follows. For each j ∈ {1, . . . ,m} and r ∈ {1, 2, 3}, let G contain a vertex cjr corresponding to the rth

literal of the jth clause. Add an edge between the vertices cj1r1 and cj2r2 if j1 6= j2 and the corresponding
literals are not each other’s negations.

Let q denote the maximum number of clauses that can be satisfied by an assignment in the instance
of the MAX-3-SAT(4) problem, and let ` denote the maximum integer such that there exists an order
for G in which there is exactly one vertex with left degree equal to i for each i ∈ {1, . . . , `− 1}. We prove
that q − 4 ≤ ` ≤ q.

Firstly, consider the inequality ` ≤ q. Suppose that we are given an order of the vertices such
that there is a unique vertex vi of left degree i for each i ∈ {0, . . . , ` − 1}. Notice that each vertex in
V \{v0, . . . , v`−1} has left degree at least `, and G is simple, therefore, each such vertex must have at least
` preceding neighbors. This implies that the vertices v0, . . . , v`−1 are the first ` vertices in the order and
they induce a clique. Therefore, any two of v0, . . . , v`−1 represent two literals that are not each other’s
negations, from two distinct clauses. So one can set the variables such that the literals corresponding to
v0, . . . , v`−1 are true, and hence this assignment satisfies at least ` clauses, that is, ` ≤ q holds.

Secondly, consider the inequality q − 4 ≤ `. Take an optimal solution to the instance of the MAX-3-
SAT(4) problem that contains exactly q satisfied clauses. Choose a true literal from each of the satisfied
clauses, and let v0, . . . , vq−1 denote the vertices corresponding to these literals. These vertices form a
clique in G, because the corresponding literals are from different clauses and there are no two literals
that are each other’s negations. Consider an arbitrary order beginning with the vertices v0, . . . , vq−1. In
this order, the left degrees of the vertices v0, . . . , vq−1 are 0, . . . , (q − 1), respectively. All other vertices
have left degree at least (q− 4), because each vertex v ∈ V \ {v0, . . . , vq−1} has at least (q− 4) neighbors
in {v0, . . . , vq−1}, since there is at most one non-neighbor corresponding to a literal from the same clause
and 3 more corresponding to the negation of the literal corresponding to v. This means that there exists
exactly one vertex with left degree i for i ∈ {0, . . . , (q − 5)}, therefore, q − 4 ≤ ` holds.

By q − 4 ≤ ` ≤ q, if we can determine the value of `, then we obtain a q
q−4 -approximation for q. If

q ≤ 7600, then we can solve the MAX-3-SAT(4) problem in polynomial time, otherwise, if q > 7600, then
q
q−4 >

1900
1899 . So it is NP-hard to determine the value of `, because one would obtain an approximation

ratio better than 1900
1899 for the MAX-3-SAT(4) problem, which implies that P=NP. �

3.2 The inc-min and the dec-max (acyclic) orientation problems

We have seen that both the dec-min and inc-max acyclic orientation problems are NP-hard. One can
also define two natural counterparts, the inc-min and dec-max acyclic orientation problems: An acyclic
orientation is optimal for the inc-min (increasingly minimal) problem if the sequence of the indegrees
sorted in non-decreasing order is lexicographically minimal. Similarly, an acyclic orientation is optimal
for the dec-max (decreasingly maximal) problem if the sequence of the indegrees sorted in non-increasing
order is lexicographically maximal. We prove that these problems are NP-hard regardless of whether we
require that the orientation is acyclic. The non-acyclic counterparts of these problems are referred to as
the inc-min and the dec-max orientation problems.

Theorem 25 The inc-min orientation and inc-min acyclic orientation problems are NP-hard, even for
3-regular simple graphs.

Proof: Observe that the number of vertices of indegree zero is maximized in an optimal inc-min orien-
tation and also in an inc-min acyclic orientation. Let n0 and nDAG

0 denote the maximum number of zero
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indegrees in the former and latter problems, respectively. Clearly, n0 ≥ nDAG
0 holds.

We prove the NP-hardness of both problems simultaneously by a reduction from the maximum inde-
pendent set problem, which is NP-hard even for 3-regular simple graphs [1]. Let us be given a 3-regular
graph G = (V,E) in which we want to determine the size of the maximum independent set, denoted
by k. We show that n0 = nDAG

0 = k holds, which immediately implies the NP-hardness of the inc-min
orientation and inc-min acyclic orientation problems.

First, we prove that nDAG
0 ≥ k holds. For an independent set of size k in G, consider the following

acyclic orientation of G. Take a vertex order with the independent vertices in the first k places and the
other vertices in the remaining places, and orient every edge from left to right. This is clearly an acyclic
orientation, in which the vertices of the independent set have indegree 0.

Second, observe that k ≥ n0 holds, because the vertices of indegree zero are independent in any (not
necessarily acyclic) orientation of G.

In summary, the following inequalities hold: n0 ≥ nDAG
0 , nDAG

0 ≥ k and k ≥ n0. These together imply
that n0 = nDAG

0 = k holds, which completes the proof. �

In the case of 3-regular graphs, an orientation is an inc-min acyclic orientation if and only if the reverse
orientation is a dec-max acyclic orientation. To see this, observe that reversing an orientation preserves
the acyclicity, and if the indegree of v is %(v) in an orientation, then the indegree of v is (3 − %(v)) in
the reversed orientation. The same argument holds for the analogous problems without acyclicity. So
Theorem 25 implies the following corollary.

Corollary 26 The dec-max orientation and dec-max acyclic orientation problems are NP-hard, even for
3-regular simple graphs.

Table 1 summarizes the complexities of the considered orientation and acyclic orientation problems:

dec-min inc-max inc-min dec-max

orientation P [6] P [6, 13] NP-H Thm 25 NP-H Cor 26

acyclic orientation NP-H [6], Cor 21 NP-H Thm 24 NP-H Thm 25 NP-H Cor 26

Table 1: The complexities of the different lexicographical orientation problems without indegree bound.

4 Minimizing
∑

v∈V h(%(v)) over acyclic orientations

This section studies the problem of finding an acyclic orientation for a given graph G = (V,E) which
minimizes

∑
v∈V h(%(v)) for some discrete strictly convex function h : Z+ → R (i.e. h(z + 2) + h(z) >

2h(z + 1) holds for any z ∈ Z+). András Frank and Kazuo Murota investigated the analogous question
without acyclicity, that is, finding an orientation of G that minimize

∑
v∈V h(%(v)). They showed that

the exact same orientations are optimal for any discrete strictly convex function h, furthermore, these are
also optimal for the (non-acyclic) dec-min and inc-max orientation problems [13]. Moreover, the optimal
orientations can be found in strongly-polynomial time [6, 12].

Under the acyclicity constraint, however, the optimal solutions to different discrete strictly convex
functions do not coincide anymore. We prove that the problem becomes NP-hard for any discrete strictly
convex function h if we require acyclicity — provided that parallel edges are also allowed. After that, we
give an exact dynamic programming algorithm for a generalization of the problem, and further examine
the special case when h(z) = z2, that is, when our goal is to find an acyclic orientation of G that
minimizes the square-sum of the indegrees. Observe that finding an acyclic orientation of G minimizing∑
v∈V h(%(v)) is essentially the same as finding an order of the vertices minimizing

∑
v∈V h( ~d(v)) (and

orienting each edge from left to right). Throughout this section we are working with the ordering problems.
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e1 . . . ej . . . em

a
ej
si

b
ej
si if si ∈ ej

s1 . . . si . . . sn

s

Figure 8: Illustration of the reduction in the proof of Theorem 28.

4.1 Hardness results

The goal of this section is to prove the following theorem about the complexity of finding a vertex order
which minimizes

∑
v∈V h( ~d(v)) for a discrete strictly convex function h : Z+ → R.

Theorem 27 Let us be given a multigraph without loops. It is NP-hard to find an order of the vertices
minimizing

∑
v∈V h( ~d(v)) for any discrete strictly convex function h : Z+ → R.

First, we prove the analogous statement for multigraphs in which loops are also allowed. Then, we
use this weaker statement for proving Theorem 27. It is important to clarify the definition of ~d(v) in the

case of loops: each loop incident to v contributes to ~d(v) by 1 in any order of the vertices. Note that a
loop is a cycle of length one, hence no acyclic orientations exist in a graph with loops — but ordering
the vertices is still possible.

Theorem 28 Let us be given a multigraph G = (V,E) in which loops are allowed. It is NP-hard to find

an order minimizing
∑
v∈V h( ~d(v)) for any discrete strictly convex function h : Z+ → R.

Proof: The proof is by a reduction from the set cover problem, which is NP-complete [17]. Let us
be given an instance of the set cover problem with ground set S = {s1, . . . , sn} and subsets H =
{e1, . . . , em} ⊆ 2S . Our goal is to decide whether there exist k subsets ej1 , . . . , ejk ∈ H such that
∪ki=1eji = S. We assume without loss of generality that ∪mj=1ej = S, each item si is contained in at
least 2 subsets, n ≥ k and m ≥ k. We construct the multigraph G = (V,E) as follows: Let G contain
a vertex ej for j ∈ {1, . . . ,m} corresponding to the subset ej ∈ H, and a vertex si for i ∈ {1, . . . , n}
corresponding to the item si ∈ S. Moreover, let G contain two vertices a

ej
si and b

ej
si for every i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m} such that si ∈ ej . Add a triangle on the nodes a
ej
si , b

ej
si and ej , and add a new edge

between b
ej
si and si. Moreover, add a new vertex s to G, and connect s to ej for j ∈ {1, . . . ,m} and with

si for i ∈ {1, . . . , n}. Add loops to the vertices such that d(ej) = d + 2, d(si) = d + 2, d(a
ej
si ) = d + 2,

d(b
ej
si ) = d + 3 for each j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, and d(s) = d + 1 + n + k, for some integer d.

Figure 8 illustrates the construction, except for the loops. Note that d is polynomial in the size of the
set cover problem, and hence so is the size of G.

We prove that there exist subsets ej1 , . . . , ejk ∈ H covering S if and only if the optimal order for

minv∈V h( ~d(v)) contains at most k vertices with left degree at least d+ 2.
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We need to introduce some notations. Let Ln′,m′,d′,k′ denote the set of those multisets L of the
integers for which

• ` ≥ 0 for each ` ∈ L,

• |L| = n′,

•
∑
`∈L ` = m′, where m′ = n′d′ + r for some r ∈ {2k′, . . . , n′}, and

• γL ≥ k′, where γL =
∑
`∈L[`− (d′ + 1)]+.

Let L∗ ∈ Ln′,m′,d′,k′ denote the multiset that contains (d′+ 2) with multiplicity k′ and all other items
are either (d′ + 1) or d′. This means that L∗ contains (d′ + 2), (d′ + 1) and d′, with multiplicities k′,
(r − 2k′) and (n′ + k′ − r), respectively. The following claim states that L∗ is the unique minimizer of∑
`∈L h(`) in Ln′,m′,d′,k′ for any discrete strictly convex function h : Z+ → R.

Claim 29 For any L ∈ Ln′,m′,d′,k′ \ {L∗} and any discrete strictly convex function h : Z+ → R, the
inequality

∑
`∗∈L∗ h(`∗) <

∑
`∈L h(`) holds.

Proof: We show that if L ∈ Ln′,m′,d′,k′ \ {L∗}, then L can be modified in such a way that
∑
`∈L h(`)

strictly decreases and the resulting multiset is also in Ln′,m′,d′,k′ .
Firstly, suppose that L contains an element that is smaller than d′. Then it also contains an element

that is at least d′ + 1, because m′ ≥ n′d′ + 1. If d′ + 1 ∈ L, then we can decrease d′ + 1 by one and
increase an element smaller than d′ by one. This does not change γL and strictly decreases

∑
`∈L h(`),

because h is strictly convex. Otherwise, if d′ + 1 /∈ L, then

m′ − γL =
∑
`∈L

(`− [`− (d′ + 1)]+) =
∑
`∈L

min{`, d′ + 1} <
∑
`∈L

(d′ + 1`≥d′+1)

= n′d′ + #{` ∈ L : ` ≥ d′ + 1} = n′d′ + #{` ∈ L : ` ≥ d′ + 2} ≤ n′d′ + γL,

where the first inequality is true because L contains an element smaller than d′, the last equation holds,
since d′ + 1 /∈ L, and all the other equations and inequalities follow by definition and rearrangements
of the expressions. This implies that r = m′ − n′d′ < 2γL holds. Since r ≥ 2k′, we get that γL > k′.
Therefore, by decreasing any element that is at least d′ + 2 by one, and increasing an element that is
smaller than d′ by one, the resulting multiset remains in Ln′,m′,d′,k′ , and

∑
`∈L h(`) strictly decreases.

Secondly, if all element of L are at least d′ and there exists an element in L that is larger than d′+ 2,
then d′ ∈ L, because m′ ≤ n′(d′ + 1). If γL > k′, then we can decrease an element that is larger than
d′+2 by one, and increase d′ by one. This change strictly decreases

∑
`∈L h(`), and the resulting multiset

remains in Ln′,m′,d′,k′ . Otherwise, γL = k′, and hence

n′d′ + r = m′ = n′d′ + γL + #{` ∈ L : ` = d′ + 1}+ #{` ∈ L : ` ≥ d′ + 2} <
n′d′ + 2γL + #{` ∈ L : ` = d′ + 1} = n′d′ + 2k′ + #{` ∈ L : ` = d′ + 1},

where the first two equations come from the definition of m′, the inequality is strict, because there exists
an element in L that is larger than d′ + 2, which implies that #{` ∈ L : ` ≥ d′ + 2} < γL, and the last
equation is true because γL = k′. This implies that r < 2k′ + #{` ∈ L : ` = d′ + 1} holds. Since r ≥ 2k′,
we get that d′+ 1 ∈ L. We can decrease an element larger than d′+ 2 by one, and increase d′+ 1 by one.
This change strictly decreases

∑
`∈L h(`), and the resulting multiset is in Ln′,m′,d′,k′ .

Otherwise, d′ ≤ ` ≤ d′ + 2 holds for each ` ∈ L. As long as γL > k′, we know that d′ ∈ L, because
m′ ≤ n′(d′ + 1). We can increase d′ by one and decrease d′ + 2 by one, which strictly decreases the sum.

If L 6= L∗, then we are in one of the three cases considered above, therefore, there exists a modification
of L which strictly decreases

∑
`∈L h(`), and the resulting multiset remains in Ln′,m′,d′,k′ . This implies

that L∗ is the unique minimizer of
∑
`∈L h(`) in Ln′,m′,d′,k′ , which we had to prove. �

We continue the proof of Theorem 28. Consider the multisets in Ln′,m′,d′,k′ , with n′ = |V |,m′ = |E|,
d′ = d and k′ = k for the construction above, illustrated by Figure 8. Claim 29 states that there exists a
unique minimizer L∗ of

∑
`∈L h(`) in Ln′,m′,d′,k′ . Let optL∗ denote the optimum value.
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Claim 30 There exist ej1 , . . . , ejk ∈ H covering S if and only if there exists an order with∑
v∈V

h( ~d(v)) ≤ optL∗ .

Proof: First, suppose that there exist subsets ej1 , . . . , ejk ∈ H covering S. We show an appropriate
order of the vertices of G. For i = 1, . . . , k, repeat the following: put the vertex eji to the last free
position, delete it from G and while there exists a vertex of degree at most d+ 1, put that vertex to the
last free position, and delete it from G. After that, put s to the last free position, then complete the
order with the remaining vertices by applying the same method for ej , where j /∈ {j1, . . . , jk}: put the
vertex ej to the last free position, delete it from G and while there exists a vertex of degree at most d+ 1
put that vertex to the last free position, and delete it from G. In the resulting order, the left degree of
each vertex is d, d+ 1 or d+ 2, and exactly the vertices ej1 , . . . , ejk have degree d+ 2 by the construction

of the graph G. So the multiset consisting of the left degrees ~d(v) for v ∈ V is exactly L∗, therefore, we

get that
∑
v∈V h( ~d(v)) = optL∗ , which proves the first direction of the statement.

Second, suppose that there exists an order with
∑
v∈V h( ~d(v)) ≤ optL∗ . Let L denote the multiset

consisting of the left degrees ~d(v) for v ∈ V . Then γL ≤ k, because γL > k would imply that L ∈
Ln′,m′,d′,k′ \ {L∗} and

∑
`∈L h(`) =

∑
`∗∈L∗ h(`∗), which would contradict Claim 29.

Let us denote the number of the vertices ej on the right side of s by εe, and the number of the vertices
si on the right side of s by εs. Using these notations, we get that

k ≥ γL ≥ [ ~d(s)− (d+ 1)]+ +
∑

v∈V : s precedes v

[ ~d(v)− (d+ 1)]+ ≥ (n+ k − εe − εs) + εe = n+ k − εs,

where the second equation is true because [ ~d(s)−(d+1)]+ = (n+k−εe−εs) and for each vertex ej which
is after s there is at least one corresponding vertex v (i.e. v ∈ {ej , a

ej
si , b

ej
si } for some i ∈ {1, . . . , n}) with

~d(v) at least d+ 2. This implies that εs ≥ n holds, so all the vertices s1, . . . , sn must be after s. Out of

the (at most k) vertices with left degree at least d+2, we construct a set cover as follows. If ~d(ej) = d+2

or ~d(v) ≥ d + 2 for v ∈ {aejsi , b
ej
si } for some i ∈ {1, . . . , n}, then include the subset ej in the cover. If

~d(si) = d + 2, then include any subset ej ∈ H containing si. What is left is to show that these subsets

cover the whole ground set S. If ~d(si) = d+ 2, then si is clearly covered. Otherwise, ~d(si) < d+ 2, and

then there exists a vertex v ∈ {ej , a
ej
si , b

ej
si } for some j ∈ {1, . . . ,m} with ~d(v) ≥ d+ 2 by the construction

of G, hence the subset ej ∈ H corresponding to v covers si. �

Claim 30 completes the proof of Theorem 28 �

Now we turn to the proof of Theorem 27.

Proof: In the previous proof, we showed that it is NP-hard to minimize
∑
v∈V h( ~d(v)). Consider

the multigraph G = (V,E) constructed in the proof (Figure 8 illustrates G except for the loops). We
construct a loop-free multigraphs for which an optimal solution also has a part that is optimal for G.
The construction consists of two steps.

First, construct a graph G′ = (V ′, E′) as follows. Take a copy of G, add a new vertex u, replace each
loop on v with an edge uv and add d+ 1 + n+ k loops to u. We prove that u can be assumed to be the
first vertex in an optimal order for G′. Consider any order in which some of its neighbors precede u and

let v be the closest preceding neighbor of u. Observe that ~d(v) ≤ d + 1 + n + k < d + 2 + n + k ≤ ~d(u)
hold, therefore, moving u directly before v in the order does not increase the objective value. So we can
assume that no neighbor of u precedes u. We can also assume without loss of generality that the rest of
the nodes do not precede u either, because moving u to the front does not change the objective value.
Consider an optimal order for G′ in which u is the first vertex, and let σ denote the order of the other
vertices. Then, ~d(u,σ)(v

′) = ~dσ(v) holds for each v′ ∈ V ′ − u and v ∈ V , where v′ ∈ V ′ is the copy of
v ∈ V . Therefore, the problem is equivalent for G and G′ in the sense that an order (u, σ) is optimal for
G′ if and only if σ is optimal for G.
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Second, construct a loop-free multigraph G′′ = (V ′′, E′′) as follows. Take two disjoint copies G1 =
(V1, E1) and G2 = (V2, E2) of G′ = (V ′, E′) and denote the copy of v ∈ V ′ by v1 and v2, in the two copies
respectively. Remove the d+ 1 + n+ k loops from both u1 and u2, and add d+ 1 + n+ k parallel u1u2

edges between them. Now there are no loops in G′′. Consider an optimal order for G′′. Without loss of
generality, assume that u1 precedes u2 (otherwise, switch the role of G1 and G2). This order restricted
to V2 is clearly an optimal solution to G′, otherwise, we could decrease the objective value in G′′ by
changing the order of the vertices of V2 in G′′ to an optimal order of G′.

So from an optimal order for the loop-free multigraph G′′, we can get an optimal order for G (by
taking the order restricted to G1 or G2 and deleting u), which implies that the problem is NP-hard even
for loop-free multigraphs, and hence completes the proof of Theorem 27. �

In Section 2.4 we gave two different characterizations for the convex hull of the indegree vectors
of acyclic orientations. The NP-hardness of finding an acyclic orientation minimizing

∑
v∈V h(%(v))

together with the characterization in Theorem 14 implies that finding a vector of the base-polyhedron
B(eG) minimizing

∑
v∈V h(%(v)) becomes NP-hard if we search for a corner solution.

Remark 31 Note that if the multigraph G = (V,E) has n vertices, then for h(z) = nz, the optimal
orders are exactly the dec-min orders, and for h = ( 1

nz ) the optimal orders are exactly the inc-max order.
Therefore, Theorem 27 implies the NP-hardness of the dec-min and inc-max ordering problems in case
of loop-free multigraphs. In Section 3.1, we already showed the hardness of the dec-min and inc-max
problems even for simple graphs and in case of k-bounded orders.

From the previous remark and Claim 18, it follows that the optimal solutions for h(z) = nz and
h = ( 1

nz ) are not the same. This already shows that the optimal acyclic orientations for different discrete
convex functions may not coincide, unlike the optimal orientations for the analogous orientation problem
without the acyclicity condition [12, 13].

The strict convexity of the function h is a necessary condition in Theorem 27, because the problem is
polynomial-time solvable in case of linear functions. We show this for a more general problem in which,
instead of a single function h, each vertex v ∈ V has its own linear function hv. The solvability of this
problem also follows of Theorem 14 and Theorem 15.

Theorem 32 Let us be given a loop-free multigraph G = (V,E) and for each v ∈ V , a discrete linear
function hv : Z+ → R. Ordering the vertices in non-increasing order by the slope of hv minimizes∑
v∈V hv(

~d(v)).

Proof: Let av and bv be coefficients such that hv(z) = avz + bv for every v ∈ V . Consider an arbitrary
order σ of the vertices, and let πσ(v) = bv for every v ∈ V . Let πσ(uv) = av if u precedes v in σ, and
otherwise au. Using this notation,∑

v∈V
hv( ~d(v)) =

∑
v∈V

av ~d(v) + bv =
∑
e∈E

πσ(e) +
∑
v∈V

πσ(v)

holds. Observe that in any order, π(e) ≥ min{au, av} and π(v) = bv. So we obtain an optimal solution
by ordering the vertices in non-increasing order by av, because then π(e) = min{au, av}. �

From the proof it also follows that if each vertex has the same linear function h, then any vertex order
minimizes

∑
v∈V h( ~d(v)).

4.2 A special case: Minimizing
∑

v∈V %
2(v) over acyclic orientations

In this section, we focus on the problem of finding an acyclic orientation minimizing the square-sum of the

indegrees, which is essentially the same as finding an order of the vertices minimizing
∑
v∈V

~d
2
(v). This

problem is one of the most natural special cases of minimizing
∑
v∈V h( ~d(v)), which we obtain by setting

h(z) = z2. The NP-hardness of the problem for loop-free multigraphs is immediate by Theorem 27.
In the next section, we strengthen this result by proving that the problem is hard for simple graphs

as well. Then we propose a greedy algorithm and analyze its approximation ratio.
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Figure 9: The gadget Hv for replacing x loops incident to the vertex v of total degree d in the multigraph
constructed in the proof of Theorem 28. The wavy edges on the right illustrate the original edges.

4.2.1 Hardness for simple graphs

This section proves that finding an acyclic orientation that minimizes the square-sum of the indegrees is
NP-hard even for simple graphs.

Theorem 33 It is NP-hard to find a vertex order minimizing
∑
v∈V

~d
2
(v), even for simple graphs.

Proof: Consider the multigraph G = (V,E) constructed in the proof of Theorem 28, which contains
parallel edges. We assume without loss of generality that each vertex has at least 2 loops, because
the number of loops on the vertices can be easily increased by increasing the parameter d. Start the
construction of G′ = (V ′, E′) by a copy of the graph G. For each vertex v with d incident edges, x of
which are loops, remove all x incident loops, and add the gadget Hv which is constructed as follows.
Take a clique KM for M = 2d, and denote its vertices by k1, . . . , kM . Add x new vertices v1, . . . , vx to
the gadget. Connect the vertices v1, . . . , vx with v, and also add a complete bipartite graph between the
vertices v1, . . . , vx and the KM . Figure 9 illustrates the construction.

Claim 34 There exists an order for G′ minimizing
∑
v∈V

~d
2
(v) such that, for any vertex v ∈ V , the

vertices of the gadget Hv are right before v in the order k1, . . . , kM , v1, . . . , vx, v, moreover, v is the last
vertex of the gadget Hv in any optimal order.

Proof: Let σ denote an optimal order that minimizes the total number of inversions against the order
of the gadgets in the statement of the claim, that is, the number of those vertex pairs u1, u2 ∈ Hv for
which u1 precedes u2 in σ and u2 precedes u1 in the order k1, . . . , kM , v1, . . . , vx, v of the gadget Hv for
some v ∈ V . We prove that the number of inversions is zero. On the contrary, suppose that there is a
vertex v ∈ V such that two vertices of Hv appear in reverse order in σ and in k1, . . . , kM , v1, . . . , vx, v.
Observe that the left degree of each vertex in Hv − v only depends on the relative order of the vertices
in Hv, therefore, we can assume that the vertices of Hv form an interval in σ. The vertices k1, . . . , kM
are symmetric, hence we can assume that they are in increasing order by the indices, otherwise, we could
switch them into increasing order in σ, which leaves the order optimal, but decreases the number of
inversions. For a similar reason, the vertices v1, . . . , vx are also in increasing order. First, we focus on
the order of the vertices in Hv − v1 and we switch v1 to the right place in the order at the end of the
proof. Now suppose that there are some vertices of KM after v2 and take the smallest index j such that
kj is somewhere after v2. Consider the vertex u right before kj , which can only be v or vi for some
i ∈ {2, . . . , x}. If u = v, then there is no edge between v and kj , so we can swap v and kj without

increasing
∑
v∈V

~d
2
(v). The resulting order is also optimal and has fewer inversions than σ, which is

a contradiction. If u = vi for some i ∈ {2, . . . , x}, then ~d(kj) ≥ j + 1 > j ≥ ~d(vi). This means that
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we can swap vi and kj without increasing
∑
v∈V

~d
2
(v). The resulting order is also optimal and has

fewer inversions than σ, which is a contradiction. So the vertices of Hv − v appear in σ in the order
k1, . . . , kj−1, v1, kj , . . . , kM , v2, . . . , vx for some j ∈ {1, . . . ,M + 1}.

If v is after v1 and before vx, then by swapping v with the directly succeeding vertex w, the sum∑
v∈V

~d
2
(v) cannot increase. If w is a vertex in KM , then the left degrees remain the same, therefore the

resulting order is also optimal and has fewer inversions, which is a contradiction. Otherwise, if w = vi
for some i ∈ {2, . . . , x} then ~d(v) increases by one and ~d(w) decreases by one. Notice that ~d(v) ≤ d − 1

and ~d(w) = M + 1 before the change. Since d ≤M , the sum strictly decreases if we swap v and w, which
contradicts the optimality of σ.

Otherwise, if v and exactly k vertices of KM precede v1, then the following left degrees change if we
put v after vx: ~d(v) = a increases by x, ~d(v1) decreases from k + 1 to k, and ~d(vi) decreases from M + 1

to M for each i ∈ {1, . . . , x}. Hence the sum
∑
v∈V

~d
2
(v) decreases by

a2 + (k + 1)2 + (x− 1)(M + 1)2 − ((a+ x)2 + k2 + (x− 1)M2)

= −2ax+ x2 + 2k + 1 + (x− 1)(2M + 1) > −2dx+ 2Mx− 2M.

So it is enough to show that (2M − 2d)x− 2M ≥ 0, which is true because M = 2d and x ≥ 2. The sum
strictly decreases, which is a contradiction, because σ was optimal. This proves that the vertex v is the
last among the vertices of Hv in σ. Moreover, the vertices of the gadget Hv must appear in σ in the order
k1, . . . , kj−1, v1, kj , . . . , kM , v2, . . . , vx, v for some j ∈ {1, . . . ,M + 1}. If j 6= M , then we can swap v1 and
kj without increasing the sum, and the number of inversions would decrease, which is a contradiction.
This means that the number of inversions is zero, and hence the vertices of the gadget Hv appear in σ in
the order k1, . . . , kM , v1, v2, . . . , vx, v, which completes the proof of the claim. �

We continue the proof of Theorem 33. Let σHv denote the order k1, . . . , kM , v1, . . . , vn, v, and let

optHv =
∑
u∈Hv−v

~dσ(u). Let optG and optG′ denote the optimum value for G and for G′, respectively.
To finish the proof, it suffices to prove that optG′ = optG +

∑
v∈V optHv and if an order σ′ is optimal

for G′ then the same order restricted to the vertices of V is optimal for G. Let σ denote this restricted
order.

First, if an order σ is optimal for G, then insert the vertices of the gadget Hv right before v into
σ in the order of σHv . Then the resulting order has objective value optG +

∑
v∈V optHv . From this,

optG′ ≤ optG +
∑
v∈V optHv follows.

Second, let σ′ be an optimal order for G′. By Claim 34, we can assume that for each v ∈ V , the vertices
of Hv are right before v in the order k1, . . . , kM , v1 . . . , vn, otherwise, we can rearrange the vertices of Hv

into this order. This implies that for each vertex u ∈ V ′,

~dσ′(u) =

{
~dσ(u) if u ∈ V,
~dσHv (u) if u ∈ Hv − v for some v ∈ V,

therefore, optG′ =
∑
v∈V

~dσ(v) +
∑
v∈V optHv ≥ optG +

∑
v∈V optHv .

These together imply that optG′ = optG +
∑
v∈V optHv and σ′ restricted to V is optimal for G. This

completes the proof, because finding an optimal order for G is NP-hard by Theorem 28. �

4.2.2 Greedy approximation algorithm

This section investigates the approximation ratio of a greedy algorithm for the problem of finding an
order minimizing the square-sum of the left degrees, which achieves an approximation guarantee of
min{4ηn, ~dmin(G)}, where ηn =

∑n
i=1

1
i is the nth harmonic number and ~dmin(G) is the degeneracy of

the graph. Recall that the degeneracy of G is the same as the minimum number k for which G has a
k-bounded order [20]

The algorithm repeats the following, until no vertex remains: It fixes a vertex with minimum degree
at the last free position and deletes it from the graph.
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Note that there can be multiple vertices with minimum degree, so the output of the algorithm depends
on which minimum-degree vertex we choose.

Observe, that we already mentioned this algorithm in Section 2.2.2. It was first given in [21] for

determining the degeneracy of G by computing a ~dmin(G)-bounded order. So the output of the greedy

algorithm v1, . . . , vn is known to be a ~dmin(G)-bounded order. We will use this fact in the proof of
Theorem 35.

In what follows, we prove two different upper bounds on the approximation ratio of this algorithm.
The first one gives a better guarantee for sparse graphs and the other one for dense graphs.

Theorem 35 Let us be given a graph G = (V,E). The greedy algorithm gives a ~dmin(G)-approximate

order for minimizing
∑
v∈V

~d
2
(v).

Proof: Consider the greedy order, and for each edge e, let π(e) = ~d(v), where v is the endpoint of e

that is later in the order. Notice that
∑
e∈E π(e) =

∑
v∈V

~d
2
(v). Consider any edge e ∈ E. Observe

that π(e) = ~d(v) for some v ∈ V and ~d(v) ≤ ~dmin(G), because the greedy algorithm computes a ~dmin(G)-

bounded order, as we already mentioned. This implies that π(e) in the greedy order is at most ~dmin(G),

therefore, the objective value of the greedy order is at most |E| ~dmin(G). Since the optimum is at least

|E|, this together implies that obj
opt ≤

|E| ~dmin(G)
|E| = ~dmin(G). �

We give another upper bound for the approximation ratio.

Theorem 36 Let us be given a graph G = (V,E). The greedy algorithm gives a 4ηn-approximate order

for minimizing
∑
v∈V

~d
2
(v), where ηn =

∑n
i=1

1
i is the nth harmonic number.

Proof: Let v1, . . . , vn denote the order given by the greedy algorithm and let obj denote its objective
value. We introduce the notation Vi = {v1, . . . , vi} for the set of the first i vertices, and consider the
graph G[Vi] = (Vi, Ei) induced by Vi. The size of Ei will be denoted by mi, and we use opt(Vi) to denote
the optimum value for the graph G[Vi].

Then the following lower bound holds for the optimum value for all i ∈ {1, . . . , n}:

opt(V ) ≥ opt(Vi) ≥
∑
v∈Vi

(mi

i

)2

=
m2
i

i
, (2)

where the first inequality holds, because the optimal order contains an order of the vertices in Vi, and
the second inequality follows by rearrangement.

The following upper bound holds for the objective value of the greedy order:

obj =

n∑
i=1

~d(vi) ≤
n∑
i=1

(
2mi

i

)2

= 4

n∑
i=1

1

i

m2
i

i
≤ 4

n∑
i=1

1

i
opt(V ) = 4ηnopt(V ),

where the first inequality holds because vi is a vertex with minimum degree in G[Vi] and the average
degree in G[Vi] is 2mi

i . The second inequality uses lower bound which was derived in (2). �

The best lower bound that we found for the approximation ratio is 9
7 , which is a limit of the worst-case

approximation ratios of the greedy algorithm for the sequence of graphs shown in Figure 10.
We describe a worst-case greedy order and then an optimal order for the graph shown in Figure 10

with k triangles. Consider the order which begins with the vertices v1
i , v

2
i , v

3
i for i = 1, . . . , k and after

that contains the vertices ui for i = 2, . . . , k. Note that for every ` ∈ {1, . . . , n}, the `th vertex in this
order has minimum degree in the graph induced by the first ` vertices. So this solution can be found
by the greedy algorithm above, and the objective value of this order is k(02 + 12 + 22) + (k − 1)(22) =
9k − 4. In fact, one can also argue that this is the worst possible solution that the greedy algorithm
may return for Gk. On the other hand, the following order is optimal. List the vertices v1

1 , v2
1 , v3

1
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v1
1

v2
1

v3
1

u2 v1
2

v2
2

v3
2

×(k − 1)

Figure 10: Illustration of the graph sequence Gk for which the approximation ratio of the greedy algorithm
tends to 9

7 . Here k denotes the number of the triangles, and vji denotes the ith vertex of the jth triangle,
for each i ∈ {1, . . . , k} and j ∈ {1, . . . , 3}, and ui denotes the vertex connecting v3

i−1 and v1
i for each

i ∈ {2, . . . , k}.

first, and after them the vertices ui, v
1
i , v2

i , v3
i in this order for i = 2, . . . , k. So the optimum value is

(02 + 11 + 22) + (k − 1)(12 + 12 + 12 + 22) = 7k − 2. Therefore, the approximation ratio is 9k−4
7k−2 , which

tends to 9
7 as k goes to infinity.

We tested the approximation ratio of the worst possible solution found by the greedy algorithm for
every simple graph on at most 12 vertices, and found that the approximation ratio for the graph Gk,
shown in Figure 10, is an upper bound for the approximation ratio for every simple graph on at most
(4k− 1) vertices. It is an open question whether the approximation ratio of the greedy algorithm is 9

7 for
simple graphs.

4.3 An exponential dynamic programming algorithm

In Section 4.1, we proved that it is NP-hard to find a vertex order minimizing
∑
v∈V h( ~d(v)) for any

discrete strictly convex function h : Z+ → R in case of loop-free multigraphs. In this section, we
give an exact method for solving the following more general problem. Let us be given a multigraph
G = (V,E) and a discrete (not necessarily strictly convex) function hv : Z+ → R for each v ∈ V . Assume
that the function hv can be evaluated efficiently for each v ∈ V . Our goal is to find an order minimizing∑
v∈V hv(

~d(v)). The natural approach to solve this problem is to try all |V |! permutations of the vertices,
and choose one minimizing the objective value.

We give a dynamic programming algorithm for finding an order minimizing
∑
v∈V hv(

~d(v)), which

takes O(2|V |poly(|V |, |E|)) steps. Let f(∅) = 0. For each ∅ 6= V ′ ⊆ V , in non-decreasing order by |V ′|,
compute and memoize

f(V ′) = min
v∈V ′
{f(V ′ − v) + hv(d(v, V ′))}, (3)

and choose
g(V ′) ∈ arg min

v∈V ′
{f(V ′ − v) + hv(d(v, V ′))}. (4)

After that, construct the optimal order by repeating the following step until no vertex remains: Put
g(V ) at the last free place of the order, and delete v from the graph.

We prove the correctness of this algorithm by showing that f(V ′) is the optimum value and g(V ′) is
the last vertex of an optimal order for G[V ′] for each V ′ ⊆ V .

Theorem 37 For each subset ∅ 6= V ′ ⊆ V , the minimum value of
∑
v∈V ′ hv(

~d(v)) for the graph G[V ′]
is f(V ′) defined in (3), and there exists an optimal order in which the last vertex is g(V ′) defined in (4).

Proof: The proof is by induction on |V |. Consider a graph G = (V,E). Suppose that the statement
holds for every V ′ ⊂ V .

Firstly, consider an optimal order σ = v1, . . . , vn for G. Notice that v1, . . . , vn−1 is an optimal order
for G− vn. By induction, the objective value of this order is f(V − vn). Moreover, vn is the last vertex

in σ, therefore, ~d(vn) = hvn(d(vn, V )) holds. These imply that f(V − vn) +hvn(d(vn, V )) is the objective
value of σ. So f(V ) is at most the optimum value for G.
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Secondly, construct an order for G with objective value f(V ). Let vn denote a vertex, for which
f(V − v) + hv(d(v, V )) is minimal (so vn ∈ arg minv∈V ′{f(V ′ − v) + hv(d(v, V ′))}). The inductive
hypothesis implies that f(V −vn) is the optimum value for G−vn. Take an optimal order for G−vn and
put vn at the end of this order. The resulting order has objective value equal to f(V ). This completes
the proof. �

The running time of the dynamic programming algorithm is clearly O(2|V |poly(|V |, |E|)), because we
assumed that the hv functions can be evaluated in polynomial time, so the computation of f(V ′) and
g(V ′) takes poly(|V |, |E|)) time for each subset.

5 Maximizing
∑

v∈V %(v)δ(v) over acyclic orientations

This section is devoted to another notion of “equitable” acyclic orientations, that is, we define the
equitable orientations in terms of the in- and outdegrees as opposed to Problems 1, 2 and 3, which only
focus on the indegrees.

Our goal is to find an acyclic orientation of a graph G = (V,E) maximizing
∑
v∈V %(v)δ(v). The

optimal orientations are equitable in the sense that the product %(v)δ(v) is maximal for a single vertex
v if the degree of v is evenly distributed to the indegree and outdegree of v.

Without the acyclicity condition, the optimal orientations are either the Eulerian (that is, %(v) = δ(v)
for every v ∈ V ) or the almost-Eulerian (that is, |%(v) − δ(v)| ≤ 1 for every v ∈ V ) orientations. It is
well known that every graph has an Eulerian or almost-Eulerian orientation and we can compute such
orientations in polynomial time, hence the problem is polynomial-time solvable. However, the acyclicity
condition makes the problem much more difficult, as we are going to see in the next section.

5.1 NP-hardness

The problem of finding an acyclic orientation of G which maximizes
∑
v∈V %(v)δ(v) is clearly equivalent to

the problem of finding an order of the vertices maximizing
∑
v∈V

~d(v)~d(v). In [5], the authors considered

similar ordering problems in which they wanted to find an order minimizing
∑
v∈V | ~d(v) − ~d(v)|. They

called an order perfectly balanced if | ~d(v)− ~d(v)| ≤ 1 holds for every vertex v, and proved that deciding
whether a given graph has a perfectly balanced vertex order is NP-complete. Next, we describe their
proof.

Theorem 38 (Biedl, Chan, Ganjali, Hajiaghayi, Wood [5]) It is NP-complete to decide whether
a graph has a perfectly balanced vertex order.

Proof: The proof is by reduction from the positive NAE-(2,3)-SAT(3) problem, in which we are given
a conjunctive normal form (CNF) formula which only contains positive literals, each clause contains 2 or
3 literals and each variable occurs at most 3 times. Our goal is to decide whether there exists a truth
assignment for the variables such that each clause contains at least one true literal and at least one false
literal. This problem is NP-complete [19].

Let us be given an instance of the positive NAE-(2,3)-SAT(3) problem with variables x1, . . . , xn and
clauses c1, . . . , cm, and denote the number of occurrences of the variable xi by di. Construct the graph
G = (V,E) as follows. For each variable xi for i ∈ {1, . . . ,m} which occurs di ∈ {1, 2, 3} times in the
CNF formula, add the gadget Hxi containing a path on the vertices vi0, . . . , v

i
2di

and an edge vi0v
i
2`−1 for

j ∈ {2, . . . , di}. Moreover, for each clause cj , let G contain a vertex cj and add an edge cjx
i
0 for every

variable xi which is in cj . The gadget Hxi for a variable xi with di = 3 occurrences is shown in Figure 11.
We claim that the given instance of the positive NAE-(2,3)-SAT(3) is satisfiable if and only if G has a
perfectly balanced vertex order.

First, if the positive NAE-(2,3)-SAT(3) instance is satisfiable, then construct the vertex order as
follows. Put the vertices corresponding to the clauses in the middle of the order continuously. For each
variable xi set to true, put the vertices of the gadget Hxi before the vertices corresponding to the clauses
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vi0 vi1 vi2 vi3 vi4 vi5 vi6

Figure 11: Example for the gadget Hxi constructed in the proof of Theorem 38, for a variable xi with
di = 3 occurrences. The wavy edges are going to the vertices of the clauses containing xi.

in order vi2di , . . . , v
i
0; and for each variable xi set to false, put the vertices of the gadget Hxi after the

clause vertices in order vi0, . . . , v
i
2di

. It is easy to see that the vertices vi1, . . . , v
i
di

from the gadget Hxi

are balanced in the obtained order for every i ∈ {1, . . . , n}. The vertex vi0 is also balanced for every
i ∈ {1, . . . , n}, because it has di incident edges inside the gadget Hxi which are going to the same
direction, and di incident edges going to vertices corresponding to clauses which are going to the opposite
direction. Each vertex corresponding to a clause has 2 or 3 incident edges, and at least one of these edges
goes to the left, because the clause contains at least one true literal, similarly at least one edge goes to
the right, because the clause also contains a false literal. Therefore, every vertex is perfectly balanced.

Second, if there exists a perfectly balanced order of the vertices, then consider the vertices of the
gadget Hxi . If vi1 is to the right (left) from vi0, then vi2 has to be to the right (left) from vi1, because
vi1 is balanced. Similarly, for every ` ∈ {1, . . . , di}, vi` has to be to the right (left) from v`−1, because
v`−1 is balanced. So the vertices of the gadget Hxi are either in the order vi2di , . . . , v

i
0 or in the order

vi0, . . . , v
i
2di

. Set the variable xi to true if the gadget Hxi belongs to the former category, otherwise, set it

to false. Since the vertex vi0 is balanced, every vertex corresponding to a clause containing xi has to be
to the right (left) of the vertex vi0, if xi is true (false). Note that each vertex corresponding to a clause
has degree 2 or 3, therefore, it has at least one edge going to the left and at least one edge going to the
right. This means that each clause contains at least one true and at least one false literal, therefore, the
constructed truth assignment satisfies the positive NAE-(2,3)-SAT(3) instance.

�

Note that the proof of Theorem 38 only implies the NP-completeness for graphs with maximum
degree 6. In [16], the authors strengthened this theorem and proved that deciding whether a graph has a
perfectly balanced vertex order is NP-hard even for planar graphs with maximum degree at most 4 and
for 5-regular graphs.

For a single vertex v, the value of ~d(v)~d(v) is maximized if and only if | ~d(v)− ~d(v)| ≤ 1. So if G has

a perfectly balanced order, then exactly the perfectly balanced orders are maximizing
∑
v∈V

~d(v)~d(v).
Therefore, by the NP-hardness of finding a perfectly balanced order, we obtain the following.

Corollary 39 It is NP-hard to find a vertex order maximizing
∑
v∈V

~d(v)~d(v), even for graphs with
maximum degree at most 4.

In the next section, we prove that our problem is tracktable when the maximum degree is at most 3.

5.2 Polynomial-time algorithm for graphs with maximum degree at most 3

The problem of finding an order minimizing
∑
v∈V | ~d(v) − ~d(v)| is polynomial-time solvable, for simple

graphs with maximum degree at most 3. The algorithm given in [5] finds an order minimizing the number

of vertices for which ~d(v) = 0 or ~d(v) = 0. We prove that, a slightly modified version of their algorithm
solves our problem in case of graphs with maximum degree at most three. Before presenting the algorithm
we need the following definitions. An order for G = (V,E) is called an s-t order if s and t are the first and

last vertices of the order, respectively, and ~d(v) ≥ 1 and ~d(v) ≥ 1 hold for each v ∈ V \ {s, t} if d(v) ≥ 2.
Every biconnected graph has an s-t order for any distinct vertices s, t ∈ V , and we can compute such
an order in polynomial time [10]. Clearly, an s-t order maximizes

∑
v∈V

~d(v)~d(v), for any biconnected
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3-regular graph, we extend this for any connected graph with maximum degree at most 3. Let B1, . . . , Br
denote the biconnected components of G. It is well known that the biconnected components can be
represented by a tree T . A component is called an end-component if it only contains one cut vertex (i.e.
the end-components are the leaves of T ). The following algorithm is a modified version of the algorithm
presented in [5].

Algorithm 3 Combine s-t orderings

1: Let us be given a connected graph G = (V,E).
2: Determine the tree T of the biconnected components of G.
3: Let B1 be an end-component.
4: Start a depth-first traversal of T from B1 and let B1, . . . , Br be the depth-first numbering of the

biconnected components of G.
5: Let t1 ∈ B1 be the unique cut vertex of B1 and choose s1 ∈ B1 − t1 such that dG(s1) is minimal. If

no such vertex exists, then let si = ti.
6: Compute an s1-t1 order for B1, and denote this order by σ1.
7: for i = 2, . . . , r do
8: Let si be a cut vertex of Bi with a block Bj for some j < i.
9: if Bi is an end-component of G then

10: Choose a vertex ti ∈ Bi−si such that dG(ti) is minimal, if no such vertex exists, then let ti = si.
11: else
12: Let ti be a cut vertex of Bi with a component Bj for some j > i.
13: end if
14: Let vi1, . . . , v

i
ni be an si-ti order of Bi.

15: Let σi denote the order obtained by adding vi2, . . . , v
i
ni to the end of σi−1.

16: end for
17: output σr

Algorithm 3 computes s-t orders for the biconnected components of G and combines them into a
single order.

Theorem 40 Let us be given a simple connected graph G = (V,E), with maximum degree at most 3.

Algorithm 3 computes an order maximizing
∑
v∈V

~d(v)~d(v) in polynomial time.

Proof: The running time of the algorithm is clearly polynomial. We define the imbalance of v as

Iσ(v) =

⌊
d(v)

2

⌋⌈
d(v)

2

⌉
− ~dσ(v)~dσ(v).

Note that Iσ(v) ≥ 0, because
⌊
d(v)

2

⌋ ⌈
d(v)

2

⌉
is an upper bound for ~dσ(v)~dσ(v) in any order σ.

Clearly, the problem of maximizing
∑
v∈V

~d(v)~d(v) is equivalent to finding an order minimizing∑
v∈V Iσ(v). We prove the correctness of Algorithm 3 for the latter problem.
By definition,

Iσ(v) =


2 if d(v) = 3 and ~d(v) = 0 or ~d(v) = 0,

1 if d(v) = 2 and ~d(v) = 0 or ~d(v) = 0,

0 otherwise,

in any order σ, which means that Iσ(v) is either (d(v)− 1) or 0.
Let T denote the tree of the biconnected components of G and let B1, . . . , Br denote the biconnected

components of G, numbered in the depth-first numbering as in Line 4 of the algorithm. Suppose that
Bi1 , . . . , Bi` are the end-components, where Bi1 = B1. Let qij denote the unique cut vertex of Bij for
each j ∈ {1, . . . , `}. So with the notations in Algorithm 3, qi1 = ti1 and qij = sij for each j ∈ {2, . . . , `}.
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Figure 12: The graph sequence Gk which shows that the 13
8 -approximation algorithm for∑

v∈v max{ ~d(v), ~d(v)} in [5] does not approximate our problem within any constant factor.

Observe that in the order σr given by the algorithm, each v ∈ V \ {si1 , ti2 , . . . , ti`} have ~dσr (v) ≥ 1

and ~dσr (v) ≥ 1, therefore, Iσr (v) = 0 for these vertices. This implies that∑
v∈V
Iσr (v) = Iσr (si1) +

∑̀
j=2

Iσr (ti2) ≤ d(si1)− 1 +
∑̀
j=2

(d(tij )− 1). (5)

Consider any order σ of V . In a biconnected component Bij , only the vertex qij is connected to vertices
of other components, hence the first or last vertex of Bij in the order is some vertex vij ∈ Bij −qij , which

implies that ~dσ(vij ) = 0 or ~dσ(vij ) = 0. Therefore, Iσ(vij ) = d(vij )− 1 and

∑
v∈V
Iσ(v) ≥

∑̀
j=1

Iσ(vij ) =
∑̀
j=1

(d(vij )− 1). (6)

Observe that d(si1) ≤ d(vi1) holds, because si1 , vi1 ∈ Bi1 − qi1 , and Algorithm 3 chose si1 in Line 5.
Similarly, d(tij ) ≤ d(vij ) holds for each j ∈ {1, . . . , `}, because both ti1 , vi1 ∈ Bi1 − qi1 and Algorithm 3
chose ti1 in Line 10. These with the equations (5) and (6) together imply that

∑
v∈V Iσr (v) ≤

∑
v∈V Iσ(v)

holds, which implies that σr is an optimal solution. �

So the problem of finding an order maximizing
∑
v∈V

~d(v)~d(v) is polynomial-time solvable in case
of simple graphs with maximum degree at most three, but becomes NP-hard for simple graphs with
maximum degree at most four.

From now on, we focus on the problem of approximating max
∑
v∈V

~d(v)~d(v). Note that, in [5], a 13
8 -

approximation algorithm was given for the problem of finding an order minimizing
∑
v∈V max{ ~d(v), ~d(v)}.

The algorithm constructs an order by inserting the vertices one by one, placing each in the middle of
their already inserted neighbors. If there are multiple such places, then we insert the vertex to a place
where the objective value increases the least. They insert the vertices in any order in which the vertices
of degree at most 2 are last. Intuitively, the same algorithm could work for the problem of maximizing∑
v∈V

~d(v)~d(v), but unfortunately one can construct a sequence of graphs for which the approximation
ratio goes to infinity. For example consider the graph sequence shown in Figure 12. For Gk = (V,E), the

algorithm outputs the order u,w1, . . . , w2k, v, for which
∑
v∈V

~d(v)~d(v) = 2k. However, one can argue

that the order w1, . . . , wk, u, v, wk+1, . . . , w2k with
∑
v∈V

~d(v)~d(v) = 2k2 is optimal. So the approximation

ratio is 2k2

2k , which goes to infinity if k →∞.
In what follows, we show that a random order of the vertices gives an expected 3-approximation for

maximizing
∑
v∈V

~d(v)~d(v), even in case of multigraphs. After that, we present a deterministic algorithm
achieving the same approximation ratio for simple graphs.

5.3 Approximation ratio of orienting by a random permutation

This section investigates the expected approximation ratio of a random order of the vertices for maxi-
mizing

∑
v∈V

~d(v)~d(v) in case of multigraphs.
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Theorem 41 Let us be given a multigraph G = (V,E). A random permutation of the vertices is a

3-approximate solution in expectation for maximizing the value of
∑
v∈V

~d(v)~d(v).

Proof: Let n denote the number of vertices and SV denote the set of all permutations of V . Let E(v)

denote the expected value of ~d(v)~d(v) in a random order, that is, E(v) =
∑
σ∈SV

~dσ(v)~dσ(v)

n! . By definition,
the expected objective value of a random permutation is∑

σ∈SV
∑
v∈V

~dσ(v)~dσ(v)

n!
=
∑
v∈V

∑
σ∈SV

~dσ(v)~dσ(v)

n!
=
∑
v∈V

E(v).

Therefore, it suffices to prove that E(v) is at least the third of the product ~d(v)~d(v) in an optimal
order for each vertex v ∈ V . The statement is clearly true if d(v) = 0. Consider a vertex v with d(v) ≥ 1,
and let {v1, . . . , vd} denote its neighbors. Let xi denote the number of parallel edges between v and vi
for each i ∈ {1, . . . , d}, and assume that x1 ≤ · · · ≤ xd. Let s denote the degree of v with multiplicities,

that is, s =
∑d
i=1 xi.

We prove that

U(v) =

{
xd(s− xd) if xd > s− xd,
s2

4 if xd ≤ s− xd

is an upper bound on ~d(v)~d(v) in the optimal order. To see this, observe that ~d(v)~d(v) = ~d(v)(s− ~d(v)).

This expression is maximized when ~d(v) is as close to s
2 as possible, therefore, s2

4 is an upper bound

for ~d(v)~d(v). In the case when xd > s − xd (i.e. xd >
s
2 ), if the vertex vd is on the left side of v then

~d(v) ≥ xd; otherwise, if the vertex vd is on the right side of v, then ~d(v) ≤ s− xd. So ~d(v) is the nearest

to s
2 if ~d(v) = xd or ~d(v) = s− xd, therefore, U(v) = xd(s− xd) is an upper bound.
What we prove is that E(v) is at least 1

3U(v). The proof is divided into two steps.
Step 1: We prove the statement in the special case when x1 = · · · = xd−1 = 1 and xd = k ≥ 1. Observe

that for any distinct i, j ∈ {1, . . . , d+ 1}, there are exactly |SV |
d(d+1) permutations of all vertices in which v

is the ith and vd is the jth vertex among the vertices v, v1, . . . , vd. Moreover, in any such permutation,

~d(v)~d(v) =

{
(i− 1)(d− i+ k) if i < j,

(i− 2 + k)(d− i+ 1) if j < i

holds by definition.
Therefore, we can compute the expected value of ~d(v)~d(v) by taking the average of the products

~d(v)~d(v) over all possible placements of v and vd. Formally,

E(v) =

∑d
i=1

∑d+1
j=i+1(i− 1)(d− i+ k) +

∑d+1
i=2

∑i−1
j=1(i− 2 + k)(d− i+ 1)

d(d+ 1)

=

∑d
i=2(d− i+ 1)(i− 1)(d− i+ k) +

∑d
i=2(i− 1)(i− 2 + k)(d− i+ 1)

d(d+ 1)

=

∑d
i=2(i− 1)(d− i+ 1)(d+ 2k − 2)

d(d+ 1)
=

(d+ 2k − 2)
∑d−1
i=1 i(d− i)

d(d+ 1)

= (d+ 2k − 2)

(∑d−1
i=1 i

d+ 1
−
∑d−1
i=1 i

2

d(d+ 1)

)
= (d+ 2k − 2)

(
d(d− 1)

2(d+ 1)
− (d− 1)(2d− 1)

6(d+ 1)

)
= (d+ 2k − 2)(d− 1)

(
3d− (2d− 1)

6(d+ 1)

)
=

(d− 1)(d+ 2k − 2)

6
,

where the first equation holds by the argument above, and all other equations follow by rearrangements
of the expressions. We proceed to show that E(v) ≥ 1

3U(v).
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If xd > (s− xd), that is, k > d− 1, then

E(v) =
(d− 1)(d+ 2k − 2)

6
≥ 2k(d− 1)

6
=

1

3
U(v),

where the inequality is true because d ≥ 1 and k > d− 1.
Otherwise, if xd ≤ (s− xd), that is, k ≤ d− 1, then

E(v) =
(d− 1)(d+ 2k − 2)

6
≥ (d+ k − 1)(d+ 2k − 2)

12
≥ (d+ k − 1)(d+ k − 1)

12
=

1

3
U(v),

where the inequality is true because d+ 1 ≥ k and k ≥ 1. This completes Step 1.
Step 2: We prove that E(v) ≥ 1

3U(v) holds for arbitrary x1 ≤ · · · ≤ xd. First, we show a simple
modification of the values x1, . . . , xd preserving the inequality to be proven.

Take an index j ∈ {1, . . . , d − 1} for which xd ≥ xj + 2, and consider the sequence x′1, . . . , x
′
d which

is obtained by the following modification of x1, . . . , xd:

x′i =


xi − 1 if i = d,

xi + 1 if i = j,

xi otherwise.

We re-index the sequence x′1, . . . , x
′
d such that x′1 ≤ · · · ≤ x′d holds. We denote the expected value, the

upper bound, the left degree and the right degree of v for the modified sequence x′1, . . . , x
′
d by E′(v),

U ′(v), ~d′(v) and ~d′(v), respectively, while we keep the original notations for the sequence x1, . . . , xd.
We prove that E(v) ≥ 1

3U(v) implies E′(v) ≥ 1
3U
′(v), by showing that

E′(v)− E(v) ≥ 1

3
(U ′(v)− U(v)).

For a given order σ, let ∆σ(v) = ~d′σ(v)~d′σ(v)− ~dσ(v)~dσ(v). Observe that E′(v)− E(v) =
∑
σ∈SV

∆σ(v)

|SV | .

On the one hand, if xd ≤ s − xd, then x′d = xd − 1 ≤ s − xd − 1 < s′ − x′d also holds, so U ′(v) =

U(v) = s2

4 . Therefore, it is enough to show that E′(v) − E(v) =
∑
σ∈SV

∆σ(v)

|SV | ≥ 0 holds. If vj and

vd are in the same side of v in σ, then ~d′σ(v)~d′σ(v) = ~dσ(v)~dσ(v), therefore, ∆σ(v) = 0. Consider
those orders σ, in which vd and vj are in opposite direction from v in σ. Arrange such orders in pairs:
let σ and σ′ form a pair if we can get σ′ by swapping the positions of vj and vd in σ. Consider a
pair σ, σ′ and assume that vj is on the left side of v in σ and on the right side of v in σ′. Let
L denote the sum of the xi values on the left side of v in σ, and let R denote the sum of the xi
values on the right side of v in σ. By definition, ∆σ(v) = (L + 1)(R − 1) − LR = R − L − 1 and
∆σ′(v) = (L − xj + xd − 1)(R − xd + xj + 1) − (L − xj + xd)(R − xd + xj) = L − R − 2xj + 2xd − 1,
therefore

∆σ(v) + ∆σ′(v) = R− L− 1 + L−R− 2xj + 2xd − 1 = 2xd − 2xj − 2 > 0,

where the inequality holds because xd ≥ xj + 2. This implies that E′(v)− E(v) =
∑
σ∈SV

∆σ(v)

|SV | > 0.

On the other hand, if xd > s−xd, then U ′(v)−U(v) = (xd−1)(s−xd+ 1)−xd(s−xd) = 2xd− s−1.
Observe that xd and xj are in the same direction from v in two-third of the permutations, which means

that ~d′σ(v)~d′σ(v) − ~dσ(v)~dσ(v) = 0, that is, ∆σ(v) = 0. In the other one-third of the permutations, xd
and xj are in the opposite direction from v. Consider an order σ in which vj and vd are in the opposite
direction from v. Denote the sum of the values in the side of v in σ that contains vd by D. Then the
following holds:

∆σ(v) = (D − 1)(s−D + 1)−D(s−D) = 2D − s− 1 ≥ 2xd − s− 1.

Therefore, in two-third of the permutations ∆σ(v) = 0 holds, and in one-third of the permutations
∆σ(v) ≥ (2xd − s − 1) holds, which implies that E′(v) − E(v) ≥ 1

3 (2xd − s − 1) = 1
3 (U ′(v) − U(v)). We

conclude that E′(v) ≥ 1
3U
′(v).

36



Observe that any sequence x1, . . . , xd is reachable from the sequence y1, . . . , yd, where y1 = · · · =
yd−1 = 1 and yd =

∑d
i=1 xi − (d − 1), by repeatedly applying the modification described above. The

inequality holds for y1, . . . , yd by Step 1, and the modification given in Step 2 preserves the inequality,
hence it also holds for any x1, . . . , xd. This completes Step 2, and also the proof of the theorem. �

5.4 De-randomized approximation algorithm

In this section, we give a deterministic polynomial-time 3-approximation algorithm for maximizing∑
v∈V

~d(v)~d(v). Let us be given a multigraph graph G = (V,E), where |V | = n. Let Ev1,...,vi de-
note the expected objective value under all permutations of the vertex set V in which the first i ≤ n
vertices are the vertices v1, . . . , vi in this order. Formally,

Ev1,...,vi =

∑
σ∈SV ,σj=vj∀j≤i

∑
v∈V

~dσ(v)~dσ(v)

(n− i)!
,

where v1, . . . , vi are distinct vertices in V .
Now we are in a position to describe the deterministic algorithm, which can be seen as the de-

randomized version of the algorithm given in the previous section using conditional probabilities. The
algorithm fixes the vertices from left to right. In the ith step, there are already some vertices v1, . . . , vi−1

fixed at the first (i − 1) places. We compute the expected value Ev1,...,vi−1,v for each remaining vertex
v ∈ V \ {v1, . . . , vi−1}, and fix a vertex v at the ith place maximizing the expected value.

First, we prove that we can compute the expected value Ev1,...,vi for any distinct vertices v1, . . . , vi ∈ V
in polynomial time, which immediately implies that the algorithm runs in polynomial time.

Claim 42 For any distinct v1, . . . , vi ∈ V , Ev1,...,vi can be computed in polynomial time.

Proof: We call a permutation relevant if it begins with the vertices v1, . . . , vi in this order. For v ∈ V ,
let Ev1,...,vi(v) denote the expected value of ~d(v)~d(v) in a random relevant permutation of V . By definition
and simple rearrangements,

Ev1,...,vi =

∑
σ∈SV ,σj=vj∀j≤i

∑
v∈V

~dσ(v)~dσ(v)

(n− i)!
=
∑
v∈V

∑
σ∈SV ,σj=vj∀j≤i

~dσ(v)~dσ(v)

(n− i)!
=
∑
v∈V

Ev1,...,vi(v).

Therefore, it is enough to show that we can compute Ev1,...,vi(v) in polynomial time. Let Vj = {v1, . . . , vj}
for j ∈ {1, . . . , i}. First, suppose that v = vj for some j ≤ i. This means that Ev1,...,vi(vj) =
d(vj , Vj−1)d(vj , V \ Vj), because the left and right degrees of the vertex vj remains the same in all
relevant permutations.

Second, suppose that v ∈ V \ Vi. We give a dynamic programming method for computing Ev1,...,vi(v)
using the fact that only the vertices of V \Vi can appear on the right side of v in any relevant permutation.
First we need some notations: Let us denote the neighbors of v from V \ Vi by n1, . . . , nd. Let f(j, k, `)
denote the number of those permutations of {v, n1, . . . , nj} in which v has k succeeding vertices and right
degree equal to ` for j, k ∈ {0, . . . , d} and ` ∈ {0, . . . , d(v, V \ Vi)}. Otherwise, let f ≡ 0. Observe that

f(0, k, `) =

{
1 if k = ` = 0,

0 otherwise.

Claim 43 The following recursion holds for the function f(j, k, `):

f(j, k, `) = k · f(j − 1, k − 1, `− d(v, {nj})) + (j − k) · f(j − 1, k, `),

Proof: Consider a permutation σ counted in f(j, k, `) and note that there exists a unique permutation
σ′ from which we can get σ by inserting nj to the right position. Observe that σ′ is counted either in
f(j− 1, k− 1, `− d(v, {nj})) or in f(j− 1, k, `), depending on the relative order of nj and v. We say that
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σ is corresponding to σ′. Now observe a permutation σ′ counted in f(j − 1, k − 1, ` − d(v, {nj})) and
note that σ′ has exactly k corresponding permutations counted in f(j, k, `), because we can insert nj to
one of the k possible positions after v. Similarly, a permutation σ′ counted in f(j − 1, k, `) has exactly
(j − k) corresponding permutations counted in f(j, k, `), because we can insert nj to one of the (j − k)
possible positions before v. This proves the correctness of the recursion. �

Observe that if we compute the f(j, k, `) values in increasing order by j and memoize the results,
then the expressions on the right side of the recursion are already accessible in every step. Therefore, we
can compute f(j, k, `) for all j, k ∈ {0, . . . , d} and ` ∈ {0, . . . , d(v, V \ Vi)} in O(|V |2|E|) time. Note that
f(k, j, `),≤ |V |!, so it can be stored in O(|V | log(|V |)) bits, these together imply that the given dynamic
program runs in polynomial time.

Now we show a formula to determine Ev1,...,vi(v) using the computed f(d, k, `) values, where d denotes
the number of neighbors of v in V \ Vi.

By definition, any relevant permutation contains v1, . . . , vi on the first i places, and after them the
other vertices according to a permutation of V \ Vi. Therefore, there are |SV \Vi | relevant permutations

and v has right degree equal to ` in exactly
∑d
k=0 f(d, k, `) relevant permutations. This means that

Ev1,...,vi(v) is equal to the weighted average of the (d(v)− `)` values with weights
∑d
k=0 f(d, k, `):

Ev1,...,vi(v) =

∑d
k=0 f(d, k, `)(d(v)− `)`

|SV \Vi |

Since we can compute this in polynomial time, the de-randomized algorithm also runs in polynomial
time. �

Remark 44 In case of simple graphs v is succeeded by ` neighbors in exactly
|SV \Vi |

d(v,V \Vi)+1 of the relevant

permutations, therefore

Ev1,...,vi(v) =

∑d(v,V \Vi)
`=0 (d(v)− `)`
d(v, V \ Vi) + 1

=
d(v)

∑d(v,V \Vi)
`=0 `

d(v, V \ Vi) + 1
−

∑d(v,V \Vi)
`=0 `2

d(v, V \ Vi) + 1

=
d(v)d(v, V \ Vi)

2
− d(v, V \ Vi)(2d(v, V \ Vi) + 1)

6
=
d(v, V \ Vi)(3d(v)− 2d(v, V \ Vi)− 1)

6
.

Hence, in case of simple graphs, we can compute Ev1,...,vi(v) by evaluating this explicit formula instead
of the previous dynamic programming method.

In the rest of this section, we prove that our algorithm finds a 3-approximate order.

Theorem 45 The de-randomized algorithm is a 3-approximation algorithm for max
∑
v∈V

~d(v)~d(v).

Proof: Denote the optimum value by opt. Consider the step of the algorithm when the first i vertices,
denoted by v1, . . . , vi, are fixed and denote the set of these vertices by Vi. We prove by induction on i
that Ev1,...,vi ≥ 1

3opt holds for each i ∈ {1, . . . , n}, that is, fixing the vertices of V \ Vi in a random order
after v1, . . . , vi gives a 3-approximate order in expectation. This proves the theorem for i = n.

Theorem 41 implies the claim for i = 0. Suppose it holds for some i < n, so Ev1,...,vi ≥ 1
3opt. From

the definitions and simple rearrangements, we get the following:

Ev1,...,vi =

∑
σ∈SV ,σj=vj∀j≤i

∑
v∈V

~dσ(v)~dσ(v)

(n− i)!
=

∑
u∈V \Vi

∑
σ∈SV ,σj=vj∀j≤i,σi+1=u

∑
v∈V

~dσ(v)~dσ(v)

(n− i)!

=

∑
u∈V \Vi(n− i− 1)!Ev1,...,vi,u

(n− i)!
=

∑
u∈V \Vi Ev1,...,vi,u

(n− i)
≤
∑
u∈V \Vi Ev1,...,vi+1

(n− i)
= Ev1,...,vi+1

,

where all the equations come from the definitions of Ev1,...,vi and Ev1,...,vi,v and rearrangements of the
expressions, and the inequality is true, because the algorithm chooses a vertex vi+1 for which the expected
objective value Ev1,...,vi,u is maximal. So Ev1,...,vi,vi+1

≥ Ev1,...,vi ≥ 1
3opt holds. �
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6 Open questions

In Section 3, we gave a comprehensive analysis of the complexities of different lexicographically optimal
acyclic orientation problems by considering the vertex-ordering alternatives of the problems. We proved
that the same orders are optimal for the dec-min 2-bounded and inc-max 2-bounded ordering problems,
but the complexity of finding such an optimal order remains open. We proved the NP-hardness of the
dec-min and inc-max k-bounded ordering problems for any k ≥ 3. This implies the NP-hardness of
the dec-min problem for k-degenerate graphs for any k ≥ 3, but we do not know the complexity of the
inc-max problem in case of k-degenerate graphs. As one of our main result, we proved in Section 4 that
the min

∑
v∈V h(%(v)) acyclic orientation problem is NP-hard for any discrete strictly convex function

h : Z+ → R if parallel edges are allowed in the graph. However, the complexity remains open in case of
simple graphs. For the special case of h(z) = z2, we extended the NP-hardness proof for simple graphs.
We examined the approximation ratio of a greedy algorithm for this special case. The worst approximation
ratio of graph sequence that we found tends to 9

7 . It is an open question whether the greedy algorithm
approximates the problem within a constant factor. The routing application described in Section 1.1
uses the dec-min and min

∑
v∈V h( ~d(v)) acyclic orientation problems with the modification that we are

searching for a rooted-connected acyclic orientation. However, the complexities of the egalitarian acyclic
orientation problems remain open in this constrained version. In Section 5, we showed that orienting the
edges from left to right in a random vertex order gives a 3-approximate solution in expectation for the
max

∑
v∈V %(v)δ(v) acyclic orientation problem even for multigraphs. It remains open whether a better

approximation exists.
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[18] Z. Király and D. Pálvölgyi. Acyclic orientations with degree constraints. arXiv:1806.03426, 2018.

[19] J. Kratochvıl and Z. Tuza. On the complexity of bicoloring clique hypergraphs of graphs. Journal
of Algorithms, 45(1):40–54, 2002.

[20] D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathematics, 22(5):1082–
1096, 1970.

[21] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
Journal of the ACM (JACM), 30(3):417–427, 1983.

[22] R. R. Meyer. A class of nonlinear integer programs solvable by a single linear program. SIAM
Journal on Control and Optimization, 15(6):935–946, 1977.

[23] J. C. Sancho, A. Robles, and J. Duato. A new methodology to compute deadlock-free routing tables
for irregular networks. In International Workshop on Communication, Architecture, and Applications
for Network-Based Parallel Computing, pages 45–60. Springer, 2000.

[24] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham, T. L. Rodeheffer, E. H.
Satterthwaite, and C. P. Thacker. Autonet: A high-speed, self-configuring local area network using
point-to-point links. IEEE Journal on Selected Areas in Communications, 9(8):1318–1335, 1991.
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