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1 Introduction
Rigidity theory usually deals with the examination of static structures consisting of joints
and some rigid bars connecting pairs of them. The structure is typically described by a
graph, where the vertices represent point-like joints that can rotate freely in any direction,
and the edges represent inextendible, incompressible bars. This model is relatively simple,
mathematically tractable, and also very helpful for understanding a wide range of practical
structures; however, for the sake of manageability, we need to neglect several aspects
that may be significant in certain real-world applications. For example, in practice it is
common for a structure to be designed in such a way that certain bars only experience
tensile forces during their use, and they do not need to withstand compression at all. In
such cases, it seems wasteful to use a rigid bar that can bear forces in all directions; instead,
we can replace it with a cable that can withstand tensile forces very well but immediately
deforms under compressive forces. For example, consider the bar structure modeling a
hook mounted on the wall as shown in the left side of Figure 1. It is clear that here, instead
of the upper bar, we could use a cable, and instead of the lower bar, a strut (which is the
opposite of a cable: it can withstand any compressive force, but deforms under any tensile
force), while still retaining the weight hung on it, thereby potentially reducing the overall
weight and material cost of the structure.

Figure 1: Simple models of a hook mounted on the wall. Bars are denoted by solid lines,
cables by dashed lines and struts by double lines.

This approach naturally motivates a generalization of bar-and-joint frameworks, which
we call tensegrity frameworks. A tensegrity graph is a graph where the edges are labeled
according to whether they represent cables or struts. By assigning positions to the vertices
of a tensegrity graph, we obtain a tensegrity framework. In the literature, tensegrity graphs
are sometimes defined to allow three types of edge labels: cable, strut, and bar. If a cable
and a strut both run parallel between two of the joints, then this joint pair will behave
exactly as if they are connected by a bar in the model (the cable prevents their distance
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from increasing, while the strut prevents their distance from decreasing). Therefore, here
we allow such parallel cable-strut pairs, but we only use these two types (cable and strut)
of labels. We give precise definitions in the next section.

The interest in tensegrity frameworks was significantly raised by the works of the sculptor
Kenneth Snelson in the 1940s. His creations, consisting of bars and cables, are visually
striking as they stably stand with the bars not touching each other, creating an illusion of
them floating in the air, see for example Figure 2. The term "tensegrity" was coined by
Snelson’s advisor, Richard Buckminster Fuller, and it originates from the combination of
"tension" and "structural integrity".

Figure 2: One of Kenneth Snelson’s small sculptures, called X-tend [19].

Similar to bar-and-joint frameworks, the fundamental question about tensegrity frame-
works is whether they are stable (rigid) or not. This area motivates numerous interesting
mathematical questions, problems, and conjectures, and has obvious practical applica-
tions. Although the fundamental questions are similar, it is not surprising that there are
significant differences between the practical and theoretical perspectives. For example,
in the mathematical approach that we use in this thesis, we assume that the cables resist
any attempt to pull them apart with any force: they do not stretch at all and do not snap.
Similarly, we assume that struts do not break, and their length does not decrease under any
compressive force. Moreover, we also assume that struts can be stretched to any length.
It is clear that in a physical realization we cannot rely on these simplifications and must
consider the load-bearing capacity and flexibility of the elements of the structure and
compare it with the forces acting on them. Additionally, mathematicians do not usually
consider the extension of joints; they simply regard them as point-like, nor do we con-
sider in the mathematical model whether two members (cables or struts) intersect each
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other. Another significant difference between the two perspectives is that in engineering
applications, frameworks do not typically "float in the air"; there is always some support
or suspension holding the structure. However, in mathematics, there is a rich literature in
studying frameworks only represented by a graph without any pinned points, and this thesis
also deals with such frameworks. Furthermore, mathematicians often study frameworks
in high dimensional spaces, while understandably, engineers are more interested in 1, 2
and 3-dimensions.

But what do we mean by saying that a structure is stable? A 𝑑-dimensional tensegrity
framework is an edge-labeled graph alongside with a representation of its vertices in the
𝑑-dimensional space. Thus, the length of each cable and strut is defined by the Euclidean
distance between its endpoints. A deformation of a framework is an operation which is
not an isometry, that is, the distance between some two vertices changes. We say that a
tensegrity framework is rigid if it cannot be continuously deformed in such a way that the
lengths of the cables do not increase and the lengths of the struts do not decrease. For
example, the frameworks in Figure 3a and 3b are both rigid in 2-dimensions. However,
many engineers would be unhappy with calling the 3b framework rigid, because if we do
not use ideal cables (i.e. they can stretch a bit), then we can move the central point of the
framework slightly downward with much less force in Figure 3b than the central point
of the framework in Figure 3a, as the cables only hold it horizontally. This occurrence
motivates a stronger rigidity definition, called infinitesimal rigidity.

(a) (b)

Figure 3: Tensegrity frameworks in R2.

An infinitesimal motion of a tensegrity framework can be seen as a function that assigns
a vector to each vertex, satisfying that if the vertices move with velocities equal to the
given vectors, then the first derivative of the cable’s length is at most zero and the first
derivative of the strut’s length is at least zero. Clearly, applying a translation or rotation to
the entire framework and assigning the initial velocity of this motion to the points results

3



in an infinitesimal motion, which we call a trivial infinitesimal motion. The framework is
infinitesimally rigid if it has no infinitesimal motion other than the trivial ones. Therefore,
the structure in Figure 3b is not infinitesimally rigid, since by assigning a downward-
pointing vector to the central vertex and zero vectors to the other vertices, we obtain a
non-trivial infinitesimal motion.

Another stronger definition of rigidity is global rigidity. If a 𝑑-dimensional tensegrity
framework that satisfies that all 𝑑-dimensional representations in which the lengths of the
cables are not greater and the lengths of the struts are not smaller are congruent to it,
then we say that the structure is globally rigid. That is, the framework does not even have
a non-continuous deformation. If this also holds for every 𝐷-dimensional representation
where 𝐷 ≥ 𝑑, then the structure is universally rigid.

There are frameworks that are infinitesimally rigid but not globally rigid. For example,
the framework in Figure 4a is infinitesimally rigid and has a non-continuous deformation
as shown in Figure 4b. There are also examples where the converse holds: the framework
in Figure 4c is globally rigid (and also universally rigid) but not infinitesimally rigid in
R2.

(a) (b)

(c)

Figure 4: Tensegrity frameworks in R2.

Studying the rigidity of frameworks, it turns out that it causes many difficulties when
some vertices are in "special" positions in the representation, as is the case with Figures 3a
and 3b, where the difference in their rigidity is caused by three vertices lying on a
straight line in Figure 3b. In higher dimensions and larger structures, such geometric
coincidences might significantly increase the difficulty of addressing rigidity questions.
Therefore, in rigidity theory, many statements are formulated for frameworks where we
assume that there are no algebraic relationships among the coordinates of their vertices.
These representations of vertices are called generic configurations. On one hand, this is not
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a very strong assumption, as randomly choosing the coordinates with a natural continuous
distribution, the chance of hitting a non-generic configuration is zero. However, note that
the majority of real-life structures are not generic.

The rest of this thesis is organized as follows. In Section 2, after introducing the basic
definitions, we summarize some previous results related to the rigidity of tensegrities.
In Section 3, we present some definitions and results from the field of matroid theory,
especially the concepts related to the rigidity matroid. We use these in Section 4 to prove
the main results of this thesis. In Section 4.1 we show sharp upper bounds in one, two,
and three dimensions on the number of edges of minimally infinitesimally rigid tensegrity
frameworks containing no parallel members. These bounds turn out to be significantly
better than the also sharp upper bound for the general case, which we prove for all
dimensions in Section 4.2. The results presented in Section 4 come from our joint research
with Adam Clay and Tibor Jordán, and will be published in an upcoming paper. Finally,
in Section 5, we list some related open problems.

For more details about tensegrity frameworks we recommend [1].

2 Tensegrity frameworks

2.1 Definitions
A tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆) is a graph on vertex set 𝑉 , in which each edge 𝑒 is
labelled as a cable or a strut. Accordingly, the edge set of 𝑇 is partitioned into two sets, 𝐶
and 𝑆. We call the elements of 𝐶 ∪ 𝑆 the members of 𝑇 .

A 𝑑-dimensional tensegrity framework (𝑇, 𝑝) is a pair, where 𝑇 = (𝑉,𝐶 ∪ 𝑆) is a
tensegrity graph and 𝑝 : 𝑉 −→ R𝑑 is a map, satisfying 𝑝(𝑢) ≠ 𝑝(𝑣) for each 𝑢𝑣 ∈ 𝐶 ∪ 𝑆.
We also say that (𝑇, 𝑝) is a 𝑑-dimensional realization of 𝑇 .

The underlying graph of 𝑇 = (𝑉,𝐶 ∪ 𝑆), denoted by 𝑇 = (𝑉, 𝐸), is a simple graph on
vertex set𝑉 in which 𝑢𝑣 ∈ 𝐸 if and only if 𝑢𝑣 ∈ 𝐶 ∪ 𝑆 holds. The bar-and-joint framework
(𝑇, 𝑝) is obtained from the tensegrity framework (𝑇, 𝑝) by replacing the cables and struts
between each of the adjacent pair of vertices with a single bar.

Let (𝑇, 𝑝) and (𝑇, 𝑞) be two 𝑑-dimensional realizations of the tensegrity graph 𝑇 =

(𝑉,𝐶 ∪ 𝑆). The framework (𝑇, 𝑝) dominates (𝑇, 𝑞) if we have

| |𝑝(𝑢) − 𝑝(𝑣) | | ≥ | |𝑞(𝑢) − 𝑞(𝑣) | | for each cable 𝑢𝑣 ∈ 𝐶,
| |𝑝(𝑢) − 𝑝(𝑣) | | ≤ | |𝑞(𝑢) − 𝑞(𝑣) | | for each strut 𝑢𝑣 ∈ 𝑆.

In this case we also use the term (𝑇, 𝑞) satisfies the member constraints of (𝑇, 𝑝).
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The frameworks (𝑇, 𝑝) and (𝑇, 𝑞) are congruent if we have

| |𝑝(𝑢) − 𝑝(𝑣) | | = | |𝑞(𝑢) − 𝑞(𝑣) | | for each vertex 𝑢, 𝑣 ∈ 𝑉.

Here | |.| | denotes the Euclidean norm in R𝑑 .
A tensegrity framework (𝑇, 𝑝) is rigid if there is some 𝜀 > 0 such that any other

realization (𝑇, 𝑞) with | |𝑝(𝑣) − 𝑞(𝑣) | | ≤ 𝜀 for all 𝑣 ∈ 𝑉 that satisfies the member
constraints of (𝑇, 𝑝) is, in fact, congruent to it.

An infinitesimal motion of a tensegrity framework (𝑇, 𝑝) is an assignment 𝑚 : 𝑉 −→ R𝑑
which satisfy

(𝑝(𝑢) − 𝑝(𝑣)) · (𝑚(𝑢) − 𝑚(𝑣)) ≤ 0 for each cable 𝑢𝑣 ∈ 𝐶,
(𝑝(𝑢) − 𝑝(𝑣)) · (𝑚(𝑢) − 𝑚(𝑣)) ≥ 0 for each strut 𝑢𝑣 ∈ 𝑆.

A 𝑑-dimensional tensegrity framework (𝑇, 𝑝) is infinitesimally rigid if every infinitesimal
motion of (𝑇, 𝑝) is an infinitesimal isometry of R𝑑 .

The rigidity matrix 𝑅(𝑇, 𝑝) of a tensegrity framework (𝑇, 𝑝) is a matrix of size |𝐶∪ 𝑆 | ×
𝑑 |𝑉 |, where, for each edge 𝑒 = 𝑢𝑣 ∈ 𝐶∪𝑆, in the row corresponding to 𝑒, the entries in the
two columns corresponding to vertices 𝑢 and 𝑣 contain the 𝑑 coordinates of (𝑝(𝑢) − 𝑝(𝑣))
and (𝑝(𝑣) − 𝑝(𝑢)), respectively, and the remaining entries are zeros.

For a subset 𝐴 of edges of𝑇 we use 𝑅𝐴 (𝑇, 𝑝) to denote the submatrix of the rigidity matrix
𝑅(𝑇, 𝑝) induced by the rows of 𝐴. An infinitesimal motion of a tensegrity framework (𝑇, 𝑝)
is often considered as a vector 𝑚 ∈ R𝑑 |𝑉 | such that 𝑅𝐶 (𝑇, 𝑝) ·𝑚 ≤ 0 and 𝑅𝑆 (𝑇, 𝑝) ·𝑚 ≥ 0.

A 𝑑-dimensional tensegrity framework (𝑇, 𝑝) is globally rigid if the only 𝑑-dimensional
realizations satisfying its member constraints are the ones congruent to it.

A stress of a tensegrity framework (𝑇, 𝑝) is a function 𝜔 : 𝐶 ∪ 𝑆 −→ R, which assigns a
scalar to each edge of 𝑇 such that

𝜔(𝑒) ≤ 0 for each cable 𝑒 ∈ 𝐶,
𝜔(𝑒) ≥ 0 for each strut 𝑒 ∈ 𝑆,

and ∑︁
𝑢𝑣∈𝐶∪𝑆

𝜔(𝑢𝑣) (𝑝(𝑢) − 𝑝(𝑣)) = 0 for each vertex 𝑣 ∈ 𝑉.

A stress is often considered as a vector 𝜔 ∈ R𝐶∪𝑆 such that 𝜔(𝑒) ≤ 0 for each 𝑒 ∈ 𝐶,
𝜔(𝑒) ≥ 0 for each 𝑒 ∈ 𝑆, and 𝜔 · 𝑅(𝑇, 𝑝) = 0.

The support of a stress 𝜔 of (𝑇, 𝑝) is the set of edges with non-zero stress, i.e.

supp(𝜔) = {𝑒 ∈ 𝐶 ∪ 𝑆 : 𝜔(𝑒) ≠ 0}.
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A proper stress 𝜔 of a tensegrity framework (𝑇, 𝑝) is a stress of (𝑇, 𝑝) with every edge
in its support, i.e.

𝜔(𝑒) < 0 for each cable 𝑒 ∈ 𝐶,
𝜔(𝑒) > 0 for each strut 𝑒 ∈ 𝑆,

and ∑︁
𝑢𝑣∈𝐶∪𝑆

𝜔(𝑢𝑣) (𝑝(𝑢) − 𝑝(𝑣)) = 0 for each vertex 𝑣 ∈ 𝑉.

A 𝑑-dimensional realization (𝑇, 𝑝) of the tensegrity graph𝑇 = (𝑉,𝐶∪𝑆) is called generic
realization if the set of the 𝑑 |𝑉 | coordinates of the points 𝑝(𝑣), 𝑣 ∈ 𝑉 , is algebraically
independent over the rationals (i. e. the only polynomial with integer coefficients satisfied
by the coordinates of all the vertices is the zero polynomial).

The 𝑑-dimensional framework (𝑇, 𝑝) is in general position if

rank𝑅𝐴 (𝑇, 𝑝) = max{rank𝑅𝐴 (𝑇, 𝑞) : (𝑇, 𝑞) is a 𝑑-dimensional realization of 𝑇}

for every non-empty 𝐴 ⊆ 𝐶 ∪ 𝑆. We also use the term that (𝑇, 𝑝) is a general realization.
A realization 𝑝 is injective if 𝑝(𝑢) ≠ 𝑝(𝑢) for all pairs of distinct vertices 𝑢, 𝑣 ∈ 𝑉 .
A 𝑑-dimensional bar-and-joint framework (𝐺, 𝑝) is a pair, where 𝐺 = (𝑉, 𝐸) is a graph

and 𝑝 : 𝑉 −→ R𝑑 is a map, satisfying 𝑝(𝑢) ≠ 𝑝(𝑣) for each 𝑢𝑣 ∈ 𝐸 .
The rigidity (infinitesimal rigidity, global rigidity resp.) of a bar-and-joint framework

(𝐺, 𝑝) with 𝐺 = (𝑉, 𝐸) is equivalent to the rigidity (infinitesimal rigidity, global rigidity)
of the tensegrity framework (𝑇, 𝑝), where 𝑇 is constructed from 𝐺 by replacing each bar
with a parallel cable and strut, i.e. 𝑇 = (𝑉,𝐶 ∪ 𝑆) where 𝐶 = 𝑆 = 𝐸 .

For a bar-and-joint framework (𝐺, 𝑝) with 𝐺 = (𝑉, 𝐸), the rigidity matrix 𝑅(𝐺, 𝑝) is
the same as the rigidity matrix of a tensegrity framework (𝑇, 𝑝) with 𝑇 = (𝑉,𝐶 ∪ 𝑆) and
𝐶 ∪ 𝑆 = 𝐸 .

2.2 Previous results
It will be convenient to use the following notation:

𝑆( |𝑉 |, 𝑑) =
{
𝑑 |𝑉 | −

(𝑑+1
2
)

if |𝑉 | ≥ 𝑑 + 2( |𝑉 |
2
)

if |𝑉 | ≤ 𝑑 + 1

A fundamental result about infinitesimally rigid bar-and-joint frameworks is the follow-
ing.
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Lemma 2.1. [[9], Lemma 1.2.1.] Let (𝐺, 𝑝) be a bar-and-joint framework in R𝑑 , where
𝐺 = (𝑉, 𝐸). Then

rank𝑅(𝐺, 𝑝) ≤ 𝑆( |𝑉 |, 𝑑),
and (𝐺, 𝑝) is infinitesimally rigid if and only if

rank𝑅(𝐺, 𝑝) = 𝑆( |𝑉 |, 𝑑).

It is proved in [2], that infinitesimal rigidity and rigidity are equivalent for tensegrity
frameworks in general position. Note that if (𝑇, 𝑝) is generic then it is general.

The rigidity and global rigidity of bar-and-joint frameworks is a generic property, that
is, for any fixed dimension 𝑑, either all generic realizations in R𝑑 are rigid (globally rigid,
respectively), or none of them are [3, 4]. So the rigidity (global rigidity) of a framework
depends only on its graph and not the particular realization, if it is assumed to be generic.
We say that a graph is rigid (globally rigid) in 𝑑-dimensions if every (or equivalently, if
some) of its generic realization in R𝑑 is rigid (globally rigid). Both of the problems of
characterizing when a graph is rigid and when a graph is globally rigid have been solved
for 𝑑 = 1, 2 and are major open problems for 𝑑 ≥ 3.

For tensegrity graphs, the situation is different: it may happen that some generic realiza-
tions are rigid, while others are not. For example, consider the graph on Figure 4a and 4b. It
has rigid as well as non-rigid generic realizations in R2. This makes some of the questions
concerning tensegrities more difficult than the corresponding questions for bar-and-joint
frameworks. However, we can still explore the connection between a tensegrity graph and
the rigidity of its generic realizations.

We may ask which tensegrity graphs have a rigid (globally rigid, respectively) generic
realization in 𝑑-dimensions. We call these tensegrity graphs weakly rigid (weakly globally
rigid) in R𝑑 . We may also require every generic realization of a tensegrity graph in 𝑑-
dimensions to be rigid (globally rigid, respectively). Tensegrity graphs with this stronger
property are called strongly rigid (strongly globally rigid) in R𝑑 . Characterizing which
graphs are weakly and strongly rigid is an interesting but as yet not very well understood
area. In the following, we summarize some of the important previous results related to
generic rigidity of tensegrity graphs.

Regarding weak rigidity, the only case we can handle is the 1-dimensional case, for
which the following polynomial-time checkable characterization is known, attributed to
Recski and Shai.

Theorem 2.1 (Recski, Shai [5]). A tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆) is weakly rigid in R1

if and only if

• 𝑇 is 2-edge-connected,
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• every 2-vertex-connected component of 𝑇 contains at least one cable and one strut.

Characterizing the weakly rigid tensegrity graphs is open for 𝑑 ≥ 2.
In the case of strong rigidity, Jackson, Jordán and Király gave a combinatorial charac-

terization of strongly rigid graphs in R1, called alternating cycle property.
Let 𝑇 = (𝑉,𝐶 ∪ 𝑆) be a tensegrity graph. A cycle in 𝑇 is alternating if no two incident

edges along the cycle have the same label. We say that 𝑇 has the alternating cycle property
if for all proper bipartitions (𝑈,𝑉 −𝑈) of 𝑉 there is an alternating cycle in the bipartite
subgraph 𝐻 = (𝑉, 𝐸 (𝑈,𝑉 −𝑈)) of 𝑇 induced by the bipartition.

Theorem 2.2 (Jackson, Jordán, Király [6]). Let 𝑇 = (𝑉,𝐶 ∪ 𝑆) be a tensegrity graph.
Then T is strongly rigid in R1 if and only if 𝑇 has the alternating cycle property.

They also showed that if there exists a polynomial-time algorithm that decides whether
a 2-edge-labeled graph has the alternating cycle property, then we could solve the 3-SAT
problem in polynomial time, leading to the following theorem.

Theorem 2.3 (Jackson, Jordán, Király [6]). Recognizing strongly rigid tensegrity graphs
in R1 is co-NP-hard.

It is an open question, whether this hardness result concerning strong rigidity extends to
higher dimensions.

Regarding strong and weak global rigidity, quite similar results are known. Garamvölgyi
proved the following necessary condition for 𝑑-dimensional weak global rigidity.

Theorem 2.4 (Garamvölgyi [7]). Let 𝑇 = (𝑉,𝐶 ∪ 𝑆) be a weakly globally rigid tensegrity
graph. Then either it is a complete graph with only parallel cable-strut members, or it has
at least 𝑑 + 2 vertices and satisfies the following conditions:

• 𝑇 is globally rigid in R𝑑

• 𝑇 contains at least 𝑑+1
2 struts

• The graph (𝑉,𝐶) is connected.

He also showed that for 𝑑 = 1, the condition of the theorem is sufficient, however, for
𝑑 ≥ 2 it is not. Thus, similarly to weak rigidity, we have a polynomial-time checkable
characterization for weakly globally rigid graphs in R1, and for 𝑑 ≥ 2 the problem of
characterizing globally rigid graphs is still open.

Theorem 2.5 (Garamvölgyi [7]). A tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆) with |𝑉 | ≥ 𝑑 + 2 is
weakly globally rigid in R1 if and only if
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• 𝑇 is 2-connected,

• 𝑇 contains at least one strut,

• the graph (𝑉,𝐶) is connected.

The proof of this theorem also implies that a tensegrity graph has a generic globally
rigid realization in R1 if and only if it has a generic universally rigid realization in R1.

In this paper Garamvölgyi also proved a necessary condition for strong global rigidity
of tensegrity graphs, called the odd cycle property, and showed that it is sufficient in some
special cases. Using this, he proved the following hardness result about 𝑑-dimensional
strongly rigid tensegrity graphs.

Theorem 2.6 (Garamvölgyi [7]). For any 𝑑 ≥ 1 recognizing strongly globally rigid
tensegrity graphs in R𝑑 is co-NP-hard.

Another approach to the topic of tensegrities is studying the rigidity properties of
tensegrity frameworks instead of tensegrity graphs. So, given a tensegrity graph 𝑇 and a
𝑑-dimensional realization 𝑝 of its vertices, the question is whether the resulting framework
(𝑇, 𝑝) is rigid (resp. infinitesimally rigid, globally rigid).

The following fundamental theorem of Roth and Whiteley gives a nice characterization
of infinitesimally rigid tensegrity frameworks.

Theorem 2.7 (Roth, Whiteley [8]). Let (𝑇, 𝑝) be a tensegrity framework in R𝑑 . Then
(𝑇, 𝑝) is infinitesimally rigid if and only if

• (𝑇, 𝑝) is infinitesimally rigid,

• there exists a proper stress of (𝑇, 𝑝).

Another interesting lemma from the same paper, which we will use later is the following.

Lemma 2.2 (Roth, Whiteley [8]). Let (𝑇, 𝑝) be a realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆) in R𝑑 and let 𝑒 ∈ 𝐶 ∪ 𝑆. If there exists a stress of (𝑇, 𝑝) with 𝑒 in
its support, then there exists a stress 𝜔 of (𝑇, 𝑝) with 𝑒 in its support and such that
rank𝑅𝐴 (𝑇, 𝑝) = |𝐴| for every 𝐴 ⊂ supp(𝜔).

3 Rigidity matroid
The aim of this section is to define concepts and prove some statements from the field of
matroid theory so that they can be used in Section 4 to prove the main results of this thesis.
For more details, we recommend [3, 9, 10], which are also the sources we used for this
section.
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3.1 Matroids
A set-system M = (𝐸,I) is called a matroid if it satisfies the following properties, called
independence axioms.

(I1) ∅ ∈ I,

(I2) if 𝑋 ⊆ 𝑌 ∈ I, then 𝑋 ∈ I,

(I3) for every subset 𝑋 ⊆ 𝐸 , the maximal subsets of 𝑋 which are in I have the same
cardinality.

The members of I are called independent sets; all other subsets of 𝐸 are dependent.
Axiom (I1) requires the empty set to be independent, (I2) means that the subset of an
independent set is independent, while (I3) is another way of saying that the maximal
independent subsets of each subset of 𝐸 are of the same size. This maximum number is
called the rank of 𝑋 and is denoted by 𝑟 (𝑋), where 𝑟 is the rank function of the matroid
and 𝑟 (𝐸) is the rank of the matroid. A subset 𝐵 ⊆ 𝐸 is called a basis of the matroid if 𝐵
is a maximal independent subset of 𝐸 . A subset 𝐶 ⊆ 𝐸 is called a circuit of the matroid if
𝐶 is dependent but every proper subset of 𝐶 is independent.

Theorem 3.1. [[10], Theorem 5.2.1] Let 𝐶1 and 𝐶2 be two distinct circuits of the matroid
M and let 𝑒 ∈ 𝐶1 ∩ 𝐶2. Then there is a circuit 𝐶 for which 𝐶 ⊆ 𝐶1 ∪ 𝐶2 − 𝑒.

Proof. Suppose indirectly that two circuits 𝐶1 and 𝐶2 are violating the statement. Then
𝐶1 ∪ 𝐶2 − 𝑒 is independent, while 𝐶1 ∪ 𝐶2 is not, thus 𝑟 (𝐶1 ∪ 𝐶2) = |𝐶1 ∪ 𝐶2 | − 1. On
the other hand 𝐶1 ∩ 𝐶2 is independent, so it can be extended to a maximal independent
subset 𝐹 of 𝐶1 ∪ 𝐶2, for which |𝐹 | = |𝐶1 ∪ 𝐶2 | − 1. But 𝐹 includes neither 𝐶1 nor 𝐶2, so
its cardinality is at most |𝐶1 ∪ 𝐶2 | − 2, a contradiction. □

Theorem 3.2. [[10], Theorem 5.2.3] Let 𝐶1 and 𝐶2 be two distinct circuits of the matroid
M and let 𝑒 ∈ 𝐶1 ∩ 𝐶2 and 𝑓 ∈ 𝐶1 − 𝐶2. Then there is a circuit 𝐶 for which 𝑓 ∈ 𝐶 ⊆
𝐶1 ∪ 𝐶2 − 𝑒.

Proof. Suppose indirectly that two circuits 𝐶1 and 𝐶2 are violating the statement, select
𝐶1, 𝐶2 such that |𝐶1 ∪ 𝐶2 | is minimal. By Theorem 3.1 there is a circuit 𝐶3 for which
𝐶3 ⊆ 𝐶1 ∪ 𝐶2 − 𝑒. Then 𝑓 ∉ 𝐶3.

Since 𝐶3 is not a subset of 𝐶1, there is an element 𝑔 ∈ 𝐶3 − 𝐶1 which is in 𝐶2. By the
minimality of |𝐶1 ∪ 𝐶2 |, the statement of the theorem holds for circuits 𝐶2 and 𝐶3. Thus,
there exists a circuit 𝐶4 ⊆ 𝐶2 ∪ 𝐶3 − 𝑔 for which 𝑒 ∈ 𝐶4. Since 𝑓 ∈ 𝐶1 and 𝑓 ∉ 𝐶4,
𝐶1 ≠ 𝐶4.
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Since 𝐶1 ∪ 𝐶4 ⊂ 𝐶1 ∪ 𝐶2, the statement of the theorem holds for 𝐶1 and 𝐶4, and hence
there is a circuit 𝐶 ⊆ 𝐶1 ∪ 𝐶4 − 𝑒 ⊆ 𝐶1 ∪ 𝐶2 − 𝑒 for which 𝑓 ∈ 𝐶, a contradiction. □

An element 𝑒 ∈ 𝐸 is a bridge if 𝑟 (𝐸 − 𝑒) = 𝑟 (𝐸) − 1 holds. This definition is equivalent
to requiring that 𝑒 is the element of every basis of M, or equivalently: 𝑒 is not included in
any circuit of M. A matroid M is bridgeless, if it contains no bridges.

3.2 Circuit decomposition of matroids
In the following we present the definition of a new concept called matroid circuit decom-
position, and prove some properties related to it. The results demonstrated here are used
in Section 4 for the new results about minimal tensegrities.

Let M = (𝐸,I) be a matroid and let (𝐶1, . . . , 𝐶𝑡) be a non-empty sequence of circuits
of M. Let 𝐷0 = ∅, and 𝐷𝑖 = 𝐶1 ∪ . . . ∪ 𝐶𝑖 for 1 ≤ 𝑖 ≤ 𝑡. We say that (𝐶1, . . . , 𝐶𝑡) is a
partial circuit decomposition of M if for any 2 ≤ 𝑖 ≤ 𝑡 the following properties hold:

(E1) 𝐶𝑖 − 𝐷𝑖−1 ≠ ∅

(E2) no circuit 𝐶′
𝑖

satisfying (E1) has 𝐶′
𝑖
− 𝐷𝑖−1 properly contained in 𝐶𝑖 − 𝐷𝑖−1.

A circuit decomposition of M is a partial circuit decomposition with 𝐷𝑡 = 𝐸 . The set
𝐶𝑖 − 𝐷𝑖−1 is denoted by �̃�𝑖 for 1 ≤ 𝑖 ≤ 𝑡.

Note that if we replace (E1) with the property

(E1’) 𝐶𝑖 − 𝐷𝑖−1 ≠ ∅ and 𝐶𝑖 ∩ 𝐷𝑖−1 ≠ ∅

in the definition of partial circuit decomposition, then we obtain the definition of partial
ear decomposition, which is a well-known concept in matroid theory [11].

Lemma 3.1. Let M = (𝐸,I) be a matroid. Then M has a circuit decomposition if
and only if M is bridgeless. Furthermore, if M is bridgeless, then every partial circuit
decomposition of M can be extended to a circuit decomposition.

Proof. By definition, M is bridgeless if and only if each 𝑒 ∈ 𝐸 is in a circuit 𝐶𝑒 of M, so
the "only if" direction is immediate.

Suppose that M is bridgeless and we have a partial circuit decomposition (𝐶1, . . . , 𝐶 𝑗 )
of M with 𝐸 − 𝐷 𝑗 ≠ ∅. Let 𝑒 ∈ 𝐸 − 𝐷 𝑗 . Since M is bridgeless, there exists a circuit
𝐶𝑒 with 𝑒 ∈ 𝐶𝑒. The circuit 𝐶𝑒 satisfies (E1), so there exists a circuit 𝐶′ satisfying both
(E1) and (E2). Then (𝐶1, . . . , 𝐶 𝑗 , 𝐶

′) is a partial circuit decomposition of M. Clearly, we
can choose a first circuit 𝐶1 and iterating this method we get a circuit decomposition of
M. □

12



Lemma 3.2. Let (𝐶1, . . . , 𝐶𝑡) be a circuit decomposition of M. Then

𝑟 (𝐷 𝑗 ) − 𝑟 (𝐷 𝑗−1) = |𝐶 𝑗 | − 1

for all 1 ≤ 𝑗 ≤ 𝑡.

Proof. Let 𝑒 ∈ 𝐶 𝑗 . By (E2), there is no circuit 𝐶′ in M with 𝐶′ − 𝐷 𝑗−1 ≠ ∅ and
𝐶′
𝑖
−𝐷𝑖−1 properly contained in 𝐶𝑖 −𝐷𝑖−1, so each 𝑓 ∈ 𝐶 𝑗 − 𝑒 is a bridge in 𝐷 𝑗 − 𝑒. Thus,

𝑟 (𝐷 𝑗 ) ≥ 𝑟 (𝐷 𝑗−1) + |𝐶 𝑗 | − 1. As the inequality cannot be strict, the lemma follows. □

3.3 Rigidity matroid
The rigidity matroid of a 𝑑-dimensional framework (𝐺, 𝑝) is defined on the edge set 𝐸 of
𝐺, where 𝐹 ⊆ 𝐸 is independent if and only if the corresponding rows of the rigidity matrix
𝑅(𝐺, 𝑝) are linearly independent. Any two general 𝑑-dimensional frameworks (𝐺, 𝑝) and
(𝐺, 𝑞) have the same rigidity matroid, because for a subset 𝐴 of the edges of 𝐺, if the
rows of 𝑅𝐴 (𝐺, 𝑝) are linearly independent then the rows of 𝑅𝐴 (𝐺, 𝑞) must also be linearly
independent and vice versa.

It is not difficult to see that R1(𝐺) is the circuit matroid of 𝐺. According to Laman’s
theorem, R2(𝐺) is also well-characterized, since it is equivalent to the sparsity matroid
of 𝐺. More precisely, the edge set of a subgraph 𝐻 of 𝐺 is independent in the rigidity
matroid if and only if 𝐻 is sparse, i.e. for every subset 𝑋 of at least 2 vertices in 𝐻, the
number of edges spanned by 𝑋 is at most 2|𝑋 | − 3. It is an open problem to find good
characterizations for the 𝑑-dimensional rigidity matroid of a graph when 𝑑 ≥ 3 [9].

A simple graph 𝐺 = (𝑉, 𝐸) is said to be an R𝑑-circuit if 𝐸 is a circuit (i.e. a minimal
dependent set) in R𝑑 (𝐺). The following property is proved in [12].

Theorem 3.3 ([12], Corollary 2.6). Let 𝐺 be an R𝑑-circuit. Then 𝐺 is (𝑑 + 1)-edge-
connected.

For a graph 𝐺 = (𝑉, 𝐸) with |𝑉 | ≥ 𝑑 + 2 let

𝑘𝑑 (𝐺) = 𝑑 |𝑉 | −
(
𝑑 + 1

2

)
− 𝑟𝑑 (𝐺)

denote the degrees of freedom of 𝐺. By Lemma 2.1 we have 𝑘𝑑 (𝐺) ≥ 0.
The following lemma gives an upper bound on the number of edges of an R𝑑-circuit

for 𝑑 ≥ 2, which we need for the proofs of the new results about minimal tensegrities
presented in Section 4.
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Lemma 3.3. Let 𝐺 = (𝑉, 𝐸) be an R𝑑-circuit for some 𝑑 ≥ 2. Then

|𝐸 | ≤ (𝑑 + 1) |𝑉 | −
(
𝑑 + 2

2

)
− 𝑑 + 1
𝑑 − 1

𝑘𝑑 (𝐺).

Proof. By the definition of 𝑘𝑑 (𝐺) and from the fact that if 𝐺 is an R𝑑-circuit then it has
𝑟𝑑 (𝐺) + 1 edges:

|𝐸 | = 𝑑 |𝑉 | −
(
𝑑 + 1

2

)
− 𝑘𝑑 (𝐺) + 1. (1)

It follows from Theorem 3.3 that the minimum degree of an R𝑑-circuit is at least 𝑑 + 1.
Therefore, from (1) we have

𝑘𝑑 (𝐺) = −|𝐸 | + 𝑑 |𝑉 | −
(
𝑑 + 1

2

)
+ 1 ≤

≤ −𝑑 + 1
2

|𝑉 | + 𝑑 |𝑉 | −
(
𝑑 + 1

2

)
+ 1,

which leads to

𝑘𝑑 (𝐺) ≤
𝑑 − 1

2
|𝑉 | −

(
𝑑 + 1

2

)
+ 1. (2)

Multiplying both sides of the inequality (2) by − 2
𝑑−1 , adding |𝑉 | to both sides and then

performing transformations on the right-hand side:

|𝑉 | − 2
𝑑 − 1

𝑘𝑑 (𝐺) ≥
2

𝑑 − 1

(
𝑑 + 1

2

)
− 2
𝑑 − 1

=

=
𝑑 (𝑑 + 1)
𝑑 − 1

− 2
𝑑 − 1

=
𝑑2 + 𝑑 − 2
𝑑 − 1

= 𝑑 + 2 =

= 𝑑 + 1 + 1 =

(
𝑑 + 2

2

)
−
(
𝑑 + 1

2

)
+ 1,

where in the last step we use the well-known equality:
(𝑑+2

2
)
=

(𝑑+1
2
)
+
(𝑑+1

1
)
. Since

2
𝑑−1 𝑘𝑑 (𝐺) =

𝑑+1
𝑑−1 𝑘𝑑 (𝐺) − 𝑘𝑑 (𝐺), we get

|𝑉 | +
(
𝑑 + 1

2

)
+ 𝑘𝑑 (𝐺) − 1 ≥

(
𝑑 + 2

2

)
+ 𝑑 + 1
𝑑 − 1

𝑘𝑑 (𝐺).

Multiplying by −1 and adding (𝑑 + 1) |𝑉 | to both sides:

𝑑 |𝑉 | −
(
𝑑 + 1

2

)
− 𝑘𝑑 (𝐺) + 1 ≤ (𝑑 + 1) |𝑉 | −

(
𝑑 + 2

2

)
− 𝑑 + 1
𝑑 − 1

𝑘𝑑 (𝐺),

where the left-hand side is equal to |𝐸 | by (1), resulting the inequality that we required.
□
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4 Minimally rigid tensegrities
An infinitesimally rigid tensegrity framework (𝑇, 𝑝) in R𝑑 is called minimally infinitesi-
mally rigid, if (𝑇 − 𝑒, 𝑝) is not infinitesimally rigid in R𝑑 for every edge 𝑒 of 𝑇 .

Studying the minimal elements of a graph family is often a key step in finding a construc-
tive characterization. The fundamental question of this section is that how many edges a
minimally infinitesimally rigid tensegrity framework can have.

An easy consequence of Lemma 2.1 is the following.

Corollary 4.1. Let (𝐺, 𝑝) be a minimally infinitesimally rigid bar-and-joint framework in
R𝑑 , where 𝐺 = (𝑉, 𝐸). Then

|𝐸 | = 𝑆( |𝑉 |, 𝑑).

Note that if a 𝑑-dimensional tensegrity framework (𝑇, 𝑝) has at most 𝑑 + 1 vertices,
then, according to Theorem 2.7 and Corollary 4.1, if (𝑇, 𝑝) is minimally infinitesimally
rigid, then 𝑇 can only be the cable-strut complete graph (i.e., (𝑉,𝐶) = (𝑉, 𝑆) = 𝐾 |𝑉 |).
In this case, we understand the minimal instances well, and they are not very interesting.
Therefore, in the following, we will only consider cases where the number of vertices is
at least 𝑑 + 2.

By Theorem 2.7, there is a linear dependence on the rows of the rigidity matrix of an
infinitesimally rigid tensegrity framework, thus, it is immediate from Lemma 2.1 that
a 𝑑-dimensional minimally infinitesimally rigid tensegrity framework on at least 𝑑 + 2
vertices must have at least 𝑑 |𝑉 | −

(𝑑+1
2
)
+ 1 edges.

This trivial lower bound is also sharp: let 𝐺 = (𝑉, 𝐸) be an R𝑑-circuit with |𝐸 | =
𝑑 |𝑉 | −

(𝑑+1
2
)
+ 1 and (𝐺, 𝑝) be a rigid 𝑑-dimensional realization of 𝐺 as a bar-and-joint

framework. Note that there exists such a framework for any 𝑑 and |𝑉 | ≥ 𝑑 + 2, since any
generic 𝑑-dimensional realization of the R𝑑-circuits obtained by 1-extensions from 𝐾𝑑+2
are rigid [3]. Since𝐺 is an R𝑑-circuit, there is a linear dependence 𝜆 of the rows of 𝑅(𝐺, 𝑝)
with supp(𝜆) = 𝐸 . Let 𝐶 = {𝑒 ∈ 𝐸 : 𝜆(𝑒) < 0} and 𝑆 = {𝑒 ∈ 𝐸 : 𝜆(𝑒) > 0} and (𝑇, 𝑝)
be the tensegrity framework, where 𝑇 = (𝑉,𝐶 ∪ 𝑆). Then 𝜆 is a proper stress of (𝑇, 𝑝),
the bar-and-joint framework (𝑇, 𝑝) is infinitesimally rigid, and there is no proper stress of
(𝑇 −𝑒, 𝑝) for any edge 𝑒 ∈ 𝐶∪𝑆, because the rows of 𝑅(𝑇 −𝑒, 𝑝) are linearly independent.
Therefore, (𝑇, 𝑝) is a 𝑑-dimensional minimally infinitesimally rigid tensegrity framework
with exactly 𝑑 |𝑉 | −

(𝑑+1
2
)
+ 1 edges.

However, there are minimally infinitesimally rigid tensegrity frameworks with more
edges than this, see Figure 6 for example. The question that we investigate in the rest
of this section is that how many edges can a minimally infinitesimally rigid tensegrity
framework have at most.
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4.1 Upper bound without parallel members
In this section, we consider tensegrity graphs, in which a cable is not allowed to be parallel
to a strut.

We show tight upper bounds for 1 ≤ 𝑑 ≤ 3 on the number of edges of 𝑑-dimensional
minimally infinitesimally rigid tensegrity frameworks in general position with no parallel
members. Interestingly, with this natural restriction, the upper bounds become significantly
better than the (also tight) generalized upper bounds presented in Section 4.2 bellow.

We need the concepts and results related to matroid theory introduced in Section 3.
Using them, we can formulate Lemma 2.2 as follows.

Corollary 4.2. Let (𝑇, 𝑝) be a general realization of the tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆)
in R𝑑 and let 𝑒 ∈ 𝐶 ∪ 𝑆. If there exists a stress of (𝑇, 𝑝) with 𝑒 in its support, then there
exists a stress 𝜔𝑒 of (𝑇, 𝑝) with 𝑒 in its support and such that supp(𝜔𝑒) is a circuit of
R𝑑 (𝑇).

.

4.1.1 One dimension

First we prove the 1-dimensional case, Theorem 4.3. We will see later that this result is
an easy consequence of the generalized case, however the proof presented here is easily
understandable and instructive; it can be helpful in illustrating the fundamental idea behind
the higher-dimensional proofs.

Lemma 4.1. Let (𝑇, 𝑝) be a minimally infinitesimally rigid tensegrity framework in R𝑑 .
Then every infinitesimally rigid subframework of (𝑇, 𝑝) is minimally infinitesimally rigid.

Proof. Let (𝑇, 𝑝) be a minimally infinitesimally rigid tensegrity framework, and let (𝑇 ′, 𝑝′)
be an infinitesimally rigid subframework of 𝑇 , where 𝑝′ denotes the restriction of 𝑝 to
the vertices of 𝑇 ′. Suppose for a contradiction that 𝑇 ′ has an edge 𝑢𝑣 = 𝑒 such that
(𝑇 ′ − 𝑒, 𝑝′) remains infinitesimally rigid. Consider the framework (𝑇 − 𝑒, 𝑝), where the
minimality of (𝑇, 𝑝) implies the existence of a non-trivial infinitesimal motion𝑚 satisfying
(𝑝(𝑢) − 𝑝(𝑣)) (𝑚(𝑢) − 𝑚(𝑣)) ≠ 0. Restricting 𝑚 to the vertices of 𝑇 ′ yields a non-trivial
infinitesimal motion of (𝑇 ′ − 𝑒, 𝑝′), a contradiction. □

Theorem 4.3. Let (𝑇, 𝑝) be a 1-dimensional general realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆) with no parallel members. Suppose that (𝑇, 𝑝) is minimally infinitesimally
rigid. Then

|𝐶 ∪ 𝑆 | ≤ 2|𝑉 | − 3.
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Proof. By Theorem 2.7, there exists a proper stress 𝜔 of (𝑇, 𝑝). Thus, by Corollary 4.2,
for each edge 𝑒 ∈ 𝐶 ∪ 𝑆, there is a stress 𝜔𝑒 of (𝑇, 𝑝), such that supp(𝜔𝑒) is a cycle 𝐻𝑒
containing 𝑒.

Since 𝑇 is connected, there exists a permutation (𝐻1, . . . , 𝐻𝑡) of the cycles in {𝐻𝑒 : 𝑒 ∈
𝐶 ∪ 𝑆} such that

𝑉 (𝐻𝑖) ∩𝑉 (𝐻1 ∪ . . . ∪ 𝐻𝑖−1) ≠ ∅
for 𝑖 = 2, . . . , 𝑡.

We prove the inequality by induction on 𝑡. For 𝑡 = 1, 𝑇 is a cycle on at least 3 vertices,
thus |𝐶 ∪ 𝑆 | = |𝑉 | ≤ 2|𝑉 | − 3 holds. Suppose that 𝑡 ≥ 2. Let (𝑇 ′, 𝑝′) be the subframework
on 𝐻1 ∪ . . . ∪ 𝐻𝑡−1 with 𝑇 ′ = (𝑉 ′, 𝐸′). Since 𝑇 ′ is connected, (𝑇 ′, 𝑝′) is infinitesimally
rigid in R1, and

∑
𝑒∈𝐸 ′ 𝜔𝑒 is a proper stress of (𝑇 ′, 𝑝′), therefore, (𝑇 ′, 𝑝′) is infinitesimally

rigid. Moreover, by Lemma 4.1, (𝑇 ′, 𝑝′) is minimally infinitesimally rigid.
Let 𝐸+ = 𝐻𝑡 − 𝐸′ and 𝑉+ = 𝑉 (𝐻𝑡) − 𝑉 ′. Since (𝑇 ′, 𝑝′) is minimally infinitesimal rigid,

the vertex set 𝑉 ′ induces no other members of 𝑇 but the edges of 𝑇 ′, so if 𝑉+ = ∅, then
𝐸+ = ∅ and the statement follows from the induction hypothesis. If𝑉+ ≠ ∅ then the degree
of any vertex in 𝑉+ is at most 2, so |𝐸+ | ≤ 2|𝑉+ |.

Then, by the induction hypothesis

|𝐶 ∪ 𝑆 | = |𝐸′| + |𝐸+ | ≤ 2|𝑉 ′| − 3 + 2|𝑉+ | = 2|𝑉 | − 3,

as required.
□

The upper bound in Theorem 4.3 is the best possible, since the framework in Figure 5
(with arbitrarily many vertices in the middle) has 2|𝑉 | −3 edges and a minimally infinites-
imally rigid realization on the line: every representation is valid in which one endpoint of
the strut is the first, and the other endpoint is the last.

Figure 5: Tensegrity graph with 2|𝑉 | − 3 edges that has a minimally infinitesimally rigid
realization in R1.

4.1.2 Two and three dimensions

Let (𝑇, 𝑝) be a realization of the tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆) and let 𝐹 ⊆ 𝐶 ∪ 𝑆.
We say that a linear dependence 𝜔 of the rows of 𝑅(𝑇, 𝑝) is a semi-stress of (𝑇, 𝑝) with
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respect to 𝐹, if supp(𝜔) − 𝐹 ≠ ∅ and it satisfies the sign constraints on (𝐶 ∪ 𝑆) − 𝐹, i. e.
𝜔(𝑐) ≤ 0 for each 𝑐 ∈ 𝐶 − 𝐹 and 𝜔(𝑠) ≥ 0 for each 𝑠 ∈ 𝑆 − 𝐹. We call 𝜔 a minimal
semi-stress of (𝑇, 𝑝) with respect to 𝐹, if 𝜔 is a semi-stress of (𝑇, 𝑝) with respect to 𝐹, for
which supp(𝜔) − 𝐹 is minimal and under this condition, supp(𝜔) ∩ 𝐹 is minimal.

Lemma 4.2. Let (𝑇, 𝑝) be a general 𝑑-dimensional realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆) and let 𝐹 ⊆ 𝐶 ∪ 𝑆. Suppose that 𝜔 is a minimal semi-stress with respect
to 𝐹, and let 𝐻 be a circuit of R𝑑 (𝑇) with 𝐻 ⊆ 𝐹 ∪ supp(𝜔) and 𝐻 − 𝐹 ≠ ∅. Let 𝜆𝐻 be a
dependence with supp(𝜆𝐻) = 𝐻. Then 𝜆𝐻 or −𝜆𝐻 is a semi-stress with respect to 𝐹 and
supp(𝜆𝐻) − 𝐹 = supp(𝜔) − 𝐹.

Proof. Since 𝐻 is a circuit in R𝑑 (𝑇), 𝜆𝐻 exists.
By replacing 𝜆𝐻 with −𝜆𝐻 , if necessary, we may assume that for at least one member 𝑓

of 𝐻 − 𝐹 the sign of 𝜆𝐻 ( 𝑓 ) and the sign of 𝜔( 𝑓 ) agrees.
If the two sign patterns agree on all members of 𝐻 − 𝐹, then, since 𝜔 is a semi-stress

of (𝑇, 𝑝) with respect to 𝐹, 𝜆𝐻 is also a semi-stress of (𝑇, 𝑝) with respect to 𝐹. The
minimality of 𝜔 implies that supp(𝜆𝐻) − 𝐹 = supp(𝜔) − 𝐹.

If the two sign patterns do not agree on all members of 𝐻 − 𝐹 then let

𝑡 = min
{
𝜔(𝑒)
𝜆𝐻 (𝑒)

: 𝑒 ∈ 𝐻 − 𝐹, sign(𝜆𝐻 (𝑒)) = sign(𝜔(𝑒))
}
.

Then 𝑡 > 0 and 𝜇 = 𝜔 − 𝑡𝜆𝐻 is a semi-stress of (𝑇, 𝑝) with respect to 𝐹, for which
∅ ≠ supp(𝜇) − 𝐹 ⊂ supp(𝜔) − 𝐹, contradicting the minimality of 𝜔.

□

Corollary 4.4. Let (𝑇, 𝑝) be a general 𝑑-dimensional realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆), 𝐹 ⊆ 𝐶 ∪ 𝑆 and 𝜔 be a minimal semi-stress of (𝑇, 𝑝) with respect to 𝐹.
Then supp(𝜔) is a circuit of R𝑑 (𝑇).

Proof. Let 𝐻 be a circuit of R𝑑 (𝑇) with 𝐻 ⊂ supp(𝜔) and 𝜆𝐻 a dependence with
supp(𝜆𝐻) = 𝐻.

If 𝐻 − 𝐹 ≠ ∅, then by Lemma 4.2, 𝜆𝐻 or −𝜆𝐻 is a semi-stress of (𝑇, 𝑝) with respect to
𝐹, contradicting the minimality of 𝜔.

Suppose that 𝐻 − 𝐹 = ∅. Let 𝑒 ∈ 𝐻 fixed and

𝜇 = 𝜔 − 𝜔(𝑒)
𝜆𝐻 (𝑒)

𝜆𝐻 .

Then 𝜇 is a semi-stress of (𝑇, 𝑝) for which supp(𝜇) −𝐹 = supp(𝜔) −𝐹 and supp(𝜇) ∩𝐹 ⊂
supp(𝜔) ∩ 𝐹, contradicting the minimality of 𝜔.

Therefore, there is no circuit 𝐻 of R𝑑 (𝑇) with 𝐻 ⊂ supp(𝜔), thus supp(𝜔) is a circuit
of R𝑑 (𝑇). □
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For a partial circuit decomposition (𝐻1, . . . , 𝐻𝑡) of R𝑑 (𝑇), denote 𝐷 𝑗 = 𝐻1 ∪ . . . ∪ 𝐻 𝑗

for 𝑗 = 1, . . . , 𝑡.

Corollary 4.5. Let (𝑇, 𝑝) be a tensegrity framework in general position in R𝑑 and
(𝐻1, . . . , 𝐻 𝑗 ) a partial circuit decomposition of R𝑑 (𝑇). Let 𝜔 be a minimal semi-stress
of (𝑇, 𝑝) with respect to 𝐷 𝑗 and supp(𝜔) = 𝐻. Then (𝐻1, . . . , 𝐻 𝑗 , 𝐻) is a partial circuit
decomposition of R𝑑 (𝑇).

Proof. By Corollary 4.4, 𝐻 is a circuit of R𝑑 (𝑇). The definition of a semi-stress and
Lemma 4.2 implies that (𝐻1, . . . , 𝐻 𝑗 , 𝐻) satisfies (E1) and (E2). □

Lemma 4.3. Let (𝑇, 𝑝) be a general realization of the tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆) in
R𝑑 , 𝐹 ⊆ 𝐶 ∪ 𝑆 and assume that (𝑇, 𝑝) has a proper stress. Then for any 𝑓 ∈ (𝐶 ∪ 𝑆) − 𝐹
there exists a minimal semi-stress 𝜔 𝑓 of (𝑇, 𝑝) with respect to 𝐹 with 𝑓 ∈ supp(𝜔 𝑓 ).

Proof. Let 𝜔 be a semi-stress of (𝑇, 𝑝) with respect to 𝐹, such that 𝑓 ∈ supp(𝜔), under
this condition, supp(𝜔) − 𝐹 is minimal and among all these, supp(𝜔) ∩ 𝐹 is minimal.
Suppose that 𝜔 is not a minimal semi-stress of (𝑇, 𝑝) with respect to 𝐹. Then there
exists a minimal semi-stress 𝜔′ of (𝑇, 𝑝) with respect to 𝐹 such that 𝑓 ∉ supp(𝜔′) and
supp(𝜔′) − 𝐹 ⊂ supp(𝜔) − 𝐹. Let

𝑡 = min
{
𝜔(𝑒)
𝜔′(𝑒) : 𝑒 ∈ supp(𝜔′) − 𝐹

}
.

Then 𝑡 > 0 and 𝜇 = 𝜔 − 𝑡𝜔′ is a semi-stress of (𝑇, 𝑝) with respect to 𝐹, for which
𝑓 ∈ supp(𝜇) and supp(𝜇) − 𝐹 ⊂ supp(𝜔) − 𝐹, contradicting the minimality of 𝜔. □

A properly stressed circuit decomposition of a 𝑑-dimensional tensegrity framework
(𝑇, 𝑝) is a circuit decomposition (𝐻1, . . . , 𝐻𝑡) of R𝑑 (𝑇), for which the subframework on
𝐷 𝑗 has a proper stress for all 1 ≤ 𝑗 ≤ 𝑡.

Corollary 4.6. Let (𝑇, 𝑝) be a general realization of the tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆)
in R𝑑 , assume that (𝑇, 𝑝) has a proper stress. Then (𝑇, 𝑝) has a properly stressed circuit
decomposition (𝐻1, . . . , 𝐻𝑡). Moreover, if 𝑇 is connected then it can be chosen such that
𝑉 (𝐷 𝑗−1) ∩𝑉 (𝐻 𝑗 ) ≠ ∅ for 𝑗 = 1, . . . , 𝑡.

Proof. For each edge 𝑒 ∈ 𝐶 ∪ 𝑆 there is a properly stressed circuit containing 𝑒 by
Lemma 2.2, so we can choose a first circuit 𝐻1.

Suppose that (𝐻1, . . . , 𝐻 𝑗 ) is a partial circuit decomposition of R𝑑 (𝑇) and there is a
proper stress 𝜔 of the subframework on 𝐷 𝑗 . Let 𝜔′ be a minimal semi-stress of (𝑇, 𝑝)
with respect to 𝐷 𝑗 with 𝐻 = supp(𝜔′). Since (𝑇, 𝑝) has a proper stress, such 𝜔′ exists. By
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the connectivity of 𝑇 and Lemma 4.3, it can be chosen such that 𝑉 (𝐻) ∩ 𝑉 (𝐷 𝑗 ) ≠ ∅. By
Corollary 4.5 (𝐻1, . . . , 𝐻 𝑗 , 𝐻) is a partial circuit decomposition of R𝑑 (𝑇). Then 𝜔 + 𝜀𝜔′

is a proper stress on (𝐻1, . . . , 𝐻 𝑗 , 𝐻) for a sufficiently small positive 𝜀. Repeating this
method, we get a properly stressed circuit decomposition of (𝑇, 𝑝). □

A tensegrity framework (𝑇, 𝑝) is minimally properly stressed if (𝑇, 𝑝) has a proper
stress, but (𝑇 − 𝑒, 𝑝) has no proper stress for every edge 𝑒 of 𝑇 .

Lemma 4.4. Let (𝑇, 𝑝) be an infinitesimally rigid tensegrity framework inR𝑑 . Then (𝑇, 𝑝)
is minimally infinitesimally rigid if and only if (𝑇, 𝑝) is minimally properly stressed.

Proof. The ”if” direction immediately follows from Theorem 2.7.
For the "only if" direction suppose that (𝑇, 𝑝) is minimally infinitesimally rigid, but

(𝑇 − 𝑒, 𝑝) is properly stressed for some member 𝑒 of 𝑇 . Since by Theorem 2.7, (𝑇, 𝑝) is
infinitesimally rigid and (𝑇, 𝑝) has a proper stress, (𝑇 − 𝑒, 𝑝) is infinitesimally rigid. Thus
(𝑇 − 𝑒, 𝑝) is also infinitesimally rigid by Theorem 2.7. □

Lemma 4.5. Suppose that (𝑇, 𝑝) is a minimally properly stressed tensegrity framework
in general position in R𝑑 and let (𝐻1, . . . , 𝐻𝑡) be a properly stressed circuit decomposition
of (𝑇, 𝑝). Then the subframework on 𝐷 𝑗 is minimally properly stressed for all 1 ≤ 𝑗 ≤ 𝑡.

Proof. Since the subframework on 𝐻1 is clearly minimally properly stressed, we assume
that 𝑡 ≥ 2. We also assume that 𝑗 = 𝑡−1. Suppose for a contradiction that the subframework
(𝑇 ′, 𝑝′) on 𝐷𝑡−1 − 𝑒 has a proper stress 𝜔′ for some 𝑒 ∈ 𝐷𝑡−1.

We show that there exists a circuit 𝐻 in R𝑑 (𝑇) with 𝑒 ∉ 𝐻 and 𝐻 − 𝐷𝑡−1 ≠ ∅. If 𝑒 ∉ 𝐻𝑡 ,
then the statement clearly holds with 𝐻 = 𝐻𝑡 . Assume that 𝑒 ∈ 𝐻𝑡 . Let 𝐻′ ⊆ 𝐷𝑡−1 be a
circuit of R𝑑 (𝑇) with 𝑒 ∈ 𝐻′ and let 𝑓 ∈ 𝐻𝑡 − 𝐷𝑡−1. By the strong circuit exchange axiom
(Theorem 3.2) there is a circuit 𝐻 of R𝑑 (𝑇) with 𝑓 ∈ 𝐻, 𝑒 ∉ 𝐻, and 𝐻 ⊂ 𝐻′ ∪ 𝐻𝑡 , thus
the statement holds for 𝐻.

Let 𝜔 be a minimal semi-stress of (𝑇, 𝑝) with respect to 𝐷𝑡−1. By Corollary 4.4,
supp(𝜔) is a circuit of R𝑑 (𝑇). Since (𝐻1, . . . , 𝐻𝑡) is a circuit decomposition, 𝐻𝑡 −𝐷𝑡−1 =

supp(𝜔)−𝐷𝑡−1 = 𝐻−𝐷𝑡−1. Then by Lemma 4.2, 𝜆𝐻 or−𝜆𝐻 is a semi-stress of (𝑇, 𝑝) with
respect to 𝐷𝑡−1. So 𝜔′ + 𝜀𝜆𝐻 or 𝜔′ − 𝜀𝜆𝐻 is a proper stress of (𝑇 − 𝑒, 𝑝) for a sufficiently
small positive 𝜀, contradicting the minimality of (𝑇, 𝑝).

□

Theorem 4.7. Let (𝑇, 𝑝) be a general realization of the connected tensegrity graph 𝑇 =

(𝑉,𝐶 ∪ 𝑆) in R2 with no parallel members. Suppose that (𝑇, 𝑝) is minimally properly
stressed. Then

|𝐶 ∪ 𝑆 | ≤ 3|𝑉 | − 6 − 3𝑘2(𝑇).
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Proof. By Corollary 4.6, there is a properly stressed circuit decomposition (𝐻1, . . . , 𝐻𝑡)
of (𝑇, 𝑝) such that 𝑉 (𝐻 𝑗 ) ∩ 𝑉 (𝐷 𝑗−1) ≠ ∅ for 𝑗 = 1, . . . , 𝑡. We prove the inequality
by induction on 𝑡. For 𝑡 = 1, the graph 𝑇 is a R2-circuit and the bound follows from
Lemma 3.3. Assume that 𝑡 ≥ 2. Let 𝑇 ′ = (𝑉 (𝐷𝑡−1), 𝐷𝑡−1) be the subgraph of 𝑇 induced
by 𝐷𝑡−1, let 𝐸+ = 𝐻𝑡 − 𝐷𝑡−1 and 𝑉+ = 𝑉 (𝐻𝑡) −𝑉 (𝐷𝑡−1).

By Lemma 3.2 and the definition of 𝑘2(𝑇), we have

|𝐸+ | = 𝑟2(𝑇) − 𝑟2(𝑇 ′) + 1 = 2|𝑉+ | + 1 + 𝑘2(𝑇 ′) − 𝑘2(𝑇). (3)

If 𝑉+ = ∅ then the minimality of (𝑇, 𝑝) implies that |𝐸+ | ≥ 2. If 𝑉+ ≠ ∅ then by
Theorem 3.3, there are at least 3 edges between 𝑉+ and 𝑉 − 𝑉+ and the degree of any
vertex in 𝑉+ is at least 3. So in both cases, when 𝑉+ = ∅ and when 𝑉+ ≠ ∅, the inequality

|𝐸+ | ≥ 3
2
( |𝑉+ | + 1)

holds. Combining this with (3) we get

1 ≤ |𝑉+ | + 2𝑘2(𝑇 ′) − 2𝑘2(𝑇).

Plugging this into the right hand side of (3) we have

|𝐸+ | ≤ 3|𝑉+ | + 3𝑘2(𝑇 ′) − 3𝑘2(𝑇).

By Lemma 4.5, the subframework on 𝐷𝑡−1 is minimally properly stressed. Then, by the
induction hypothesis

|𝐶 ∪ 𝑆 | = |𝐷𝑡−1 | + |𝐸+ | ≤ 3|𝑉 (𝐷𝑡−1) | − 6 − 3𝑘2(𝑇 ′) + 3|𝑉+ | + 3𝑘2(𝑇 ′) − 3𝑘2(𝑇) =

= 3|𝑉 | − 6 − 3𝑘2(𝑇),

as required. □

We can prove a quite similar result in the 3-dimensional case.

Theorem 4.8. Let (𝑇, 𝑝) be a general realization of the connected tensegrity graph 𝑇 =

(𝑉,𝐶 ∪ 𝑆) in R3 with no parallel members. Suppose that (𝑇, 𝑝) is minimally properly
stressed. Then

|𝐶 ∪ 𝑆 | ≤ 4|𝑉 | − 10 − 2𝑘3(𝑇).

Proof. By Corollary 4.6, there is a properly stressed circuit decomposition (𝐻1, . . . , 𝐻𝑡)
of (𝑇, 𝑝) such that 𝑉 (𝐻 𝑗 ) ∩ 𝑉 (𝐷 𝑗−1) ≠ ∅ for 𝑗 = 1, . . . , 𝑡. We prove the inequality
by induction on 𝑡. For 𝑡 = 1, the graph 𝑇 is a R3-circuit and the bound follows from
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Lemma 3.3. Assume that 𝑡 ≥ 2. Let 𝑇 ′ = (𝑉 (𝐷𝑡−1), 𝐷𝑡−1) be the subgraph of 𝑇 induced
by 𝐷𝑡−1, let 𝐸+ = 𝐻𝑡 − 𝐷𝑡−1 and 𝑉+ = 𝑉 (𝐻𝑡) −𝑉 (𝐷𝑡−1).

By Lemma 3.2 and the definition of 𝑘3(𝑇), we have

|𝐸+ | = 𝑟3(𝑇) − 𝑟3(𝑇 ′) + 1 = 3|𝑉+ | + 1 + 𝑘3(𝑇 ′) − 𝑘3(𝑇). (4)

If 𝑉+ = ∅ then the minimality of (𝑇, 𝑝) implies that |𝐸+ | ≥ 2. If 𝑉+ ≠ ∅ then by
Theorem 3.3, there are at least 4 edges between 𝑉+ and 𝑉 − 𝑉+ and the degree of any
vertex in 𝑉+ is at least 4. So in both cases, when 𝑉+ = ∅ and when 𝑉+ ≠ ∅, the inequality

|𝐸+ | ≥ 2( |𝑉+ | + 1)

holds. Combining this with (4) we get

1 ≤ |𝑉+ | + 𝑘3(𝑇 ′) − 𝑘3(𝑇).

Plugging this into the right hand side of (4) we have

|𝐸+ | ≤ 4|𝑉+ | + 2𝑘3(𝑇 ′) − 2𝑘3(𝑇).

By Lemma 4.5, the subframework on 𝐷𝑡−1 is minimally properly stressed. Then, by the
induction hypothesis

|𝐶 ∪ 𝑆 | = |𝐷𝑡−1 | + |𝐸+ | ≤ 4|𝑉 (𝐷𝑡−1) | − 10 − 2𝑘3(𝑇 ′) + 4|𝑉+ | + 2𝑘3(𝑇 ′) − 2𝑘3(𝑇) =

= 4|𝑉 | − 10 − 2𝑘3(𝑇),

as required. □

By Lemma 4.4, and Theorem 4.7 and 4.8 combined with the fact that 𝑘𝑑 (𝑇) = 0, if
(𝑇, 𝑝) is an infinitesimally rigid tensegrity framework without parallel edges, we obtain
the main results.

Theorem 4.9. Let (𝑇, 𝑝) be a 2-dimensional general realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆) with no parallel members. Suppose that (𝑇, 𝑝) is minimally infinitesimally
rigid. Then

|𝐶 ∪ 𝑆 | ≤ 3|𝑉 | − 6.

Theorem 4.10. Let (𝑇, 𝑝) be a 3-dimensional general realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆) with no parallel members. Suppose that (𝑇, 𝑝) is minimally infinitesimally
rigid. Then

|𝐶 ∪ 𝑆 | ≤ 4|𝑉 | − 10.
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The upper bounds in Theorem 4.9 and Theorem 4.10 are the best possible: consider the
tensegrity framework in R2 obtained from a triangle of struts, by adding |𝑉 | − 3 vertices
inside and connecting each of them to every vertex of the triangle with cables, see for
example the left framework in Figure 6. It is infinitesimally rigid and has 3|𝑉 | − 6 edges.
Similarly, the framework obtained from a tetrahedron of struts in R3 with |𝑉 | − 4 vertices
inside, each of them connected to every vertex of the tetrahedron, is infinitesimally rigid
and has 4|𝑉 |−10 edges, see Figure 7. Note that there exists other type of extremal examples,
see for example the right framework in Figure 6.

Figure 6: Minimally infinitesimally rigid tensegrity frameworks in R2 with 3|𝑉 | −6 edges.

Figure 7: Minimally infinitesimally rigid tensegrity framework in R3 with 4|𝑉 | −10 edges.

Consider the tensegrity framework in Figure 8a and assume that there are multiple copies
of the central vertex at the same position and each of the copies are connected to every
vertex of the square with struts. It can be easily verified that this framework is minimally
infinitesimally rigid in R2. Similarly: the framework in Figure 8b with multiple copies of
the central vertex and the attached struts is minimally infinitesimally rigid in R3. Note
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that these frameworks are not in general position (in fact, they are not even injective). The
2-dimensional frameworks have 4( |𝑉 | − 4) + 4 = 4|𝑉 | − 12 edges and the 3-dimensional
frameworks have 6( |𝑉 |−6)+12 = 6|𝑉 |−24 edges, showing that the bounds of Theorem 4.9
and 4.10 do not hold without any restrictions on 𝑝.

(a) (b)

Figure 8: Non-generic minimally infinitesimally rigid tensegrity frameworks.

It is important to mention that the condition in Theorem 4.9 and Theorem 4.10, which
forbids any parallel edges in the framework, can be weakened. Let (𝑇, 𝑝) be a minimally
infinitesimally rigid tensegrity framework in general position in R𝑑 , and 𝜔 be a proper
stress of 𝑇 , which exists by Theorem 2.7. If a cable 𝑐 and a strut 𝑠 are parallel in 𝑇 , then
𝜔(𝑠) = −𝜔(𝑐) must hold, since otherwise (𝑇−𝑠, 𝑝) or (𝑇−𝑐, 𝑝) has a proper stress, thus it is
infinitesimally rigid by Theorem 2.7. Then the framework (𝑇 −𝑐− 𝑠, 𝑝) has a proper stress,
hence the bar-and-joint framework (𝑇 − 𝑒, 𝑝), where 𝑒 is the edge of 𝑇 corresponding to
𝑠 and 𝑐, cannot be infinitesimally rigid. Therefore, rank𝑅(𝑇 − 𝑒, 𝑝) = rank𝑅(𝑇, 𝑝) − 1, so
𝑒 is a bridge in R𝑑 (𝑇). Hence, in Theorem 4.9 and Theorem 4.10, instead of forbidding
any parallel edges, it is enough to assume that for any parallel cable-strut pair of 𝑇 , the
corresponding edge of 𝑇 is not a bridge in R𝑑 (𝑇).

4.2 The general upper bound
In this section, we consider tensegrity graphs, in which a cable is allowed to be parallel to
a strut.

4.2.1 Without bars

Consider a minimally infinitesimally rigid bar-and-joint framework (𝐺, 𝑝) in R𝑑 with
𝐺 = (𝑉, 𝐸). That is, for any edge 𝑒 ∈ 𝐸 there exists a non-trivial infinitesimal motion
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𝑚 ∈ R𝑑 |𝑉 | of (𝐺 − 𝑒, 𝑝) for which 𝑅𝐸−{𝑒} (𝑇, 𝑝) · 𝑚 = 0 and 𝑅{𝑒} (𝑇, 𝑝) · 𝑚 ≠ 0 hold.
Clearly, the negative of 𝑚 is also an infinitesimal motion of (𝐺 − 𝑒, 𝑝) and the sign of
𝑅{𝑒} (𝑇, 𝑝) · (−𝑚) is the opposite of the sign of 𝑅{𝑒} (𝑇, 𝑝) · 𝑚. Therefore, replacing each
bar in (𝐺, 𝑝) with a parallel cable-strut pair leads to an infinitesimally rigid tensegrity
framework (it is intuitively clear and also easy to verify using the conditions in Theo-
rem 2.7) and removing any member from this framework allows an infinitesimal motion.
Thus, tensegrity frameworks constructed this way are minimally infinitesimally rigid. By
Corollary 4.1, every 𝑑-dimensional minimally infinitesimally rigid bar-and-joint frame-
work with |𝑉 | ≥ 𝑑 + 2 has exactly 𝑑 |𝑉 | −

(𝑑+1
2
)

edges, implying the existence of minimally
infinitesimally rigid tensegrity frameworks in R𝑑 with 2 · (𝑑 |𝑉 | −

(𝑑+1
2
)
) edges for any 𝑑

and |𝑉 | ≥ 𝑑 + 2.
This means that there exist a minimally infinitesimally rigid tensegrity framework with

exactly 2|𝑉 | −2 edges in 1-dimension, 4|𝑉 | −6 edges in 2-dimensions and 6|𝑉 | −12 edges
in 3-dimensions. Therefore, the upper bounds of Theorem 4.3, 4.9 and 4.10 do not hold,
if we allow parallel cable-strut pairs to appear in the framework.

We show that a minimally infinitesimally rigid tensegrity framework in R𝑑 cannot have
more edges than 2 · (𝑑 |𝑉 | −

(𝑑+1
2
)
). The proof employs a variant of Carathéodory’s theorem

from convex geometry, attributed to Ernst Steinitz [13], see also [14, Theorem 4.22.].
Let 𝑋 = {𝑥1, . . . , 𝑥𝑚} ⊂ R𝑛 be a finite set of points. The (linear) span of 𝑋 is the

subspace span(𝑋) = {∑𝑚
𝑖=1 𝜆𝑖𝑥𝑖 : 𝜆1, . . . , 𝜆𝑚 ∈ R}. The convex hull of 𝑋 is the set

conv(𝑋) = {∑𝑚
𝑖=1 𝜆𝑖𝑥𝑖 :

∑𝑚
𝑖=1 𝜆𝑖 = 1, 0 ≤ 𝜆1, . . . , 𝜆𝑚 ∈ R}. The polytope conv(𝑋) is

𝑘-dimensional, if there exists a 𝑘-dimensional affine subspace in R𝑛 containing conv(𝑋)
and there is no (𝑘 −1)-dimensional affine subspace containing conv(𝑋). A point 𝑥 is in the
relative interior of conv(𝑋) if conv(𝑋) is 𝑘-dimensional and there exists a 𝑘-dimensional
ball centered at 𝑥 contained in conv(𝑋).

Lemma 4.6. Let 𝑋 ⊂ R𝑛 be a finite set of points. A point 𝑥 is in the relative interior of
conv(𝑋) if and only if there is a strictly positive convex combination of the elements of 𝑋
resulting in 𝑥.

Proof. Let 𝑋 = {𝑥1, . . . , 𝑥𝑚}, and suppose that conv(𝑋) is 𝑘-dimensional. First, assume
that 𝑥 is the origin. If the origin is in the relative interior of conv(𝑋) then −𝜀 ·∑𝑚

𝑖=1 𝑥𝑖 is in
conv(𝑋) for a sufficiently small positive 𝜀, thus

−𝜀
𝑚∑︁
𝑖=1

𝑥𝑖 =

𝑚∑︁
𝑖=1

𝜆𝑖𝑥𝑖,
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where 𝜆1, . . . , 𝜆𝑚 ≥ 0 and
∑𝑚
𝑖=1 𝜆𝑖 = 1. Then

0 =

𝑚∑︁
𝑖=1

𝜆𝑖 + 𝜀
1 + 𝑚 · 𝜀𝑥𝑖

is a strictly positive convex combination of the elements of 𝑋 resulting in zero.
Conversely, let

∑𝑚
𝑖=1 𝛼𝑖𝑥𝑖 = 0 be a strictly positive convex combination of the elements

of 𝑋 resulting in the origin. It is enough to show that for any ℎ ∈ span(𝑋) there exists
a positive 𝜀 such that 𝜀ℎ is in conv(𝑋). Let ℎ ∈ span(𝑋) and ℎ =

∑𝑚
𝑖=1 𝜆𝑖𝑥𝑖. Denote

𝜆 =
∑𝑚
𝑖=1 𝜆𝑖. If 𝜆 ≠ 0, then there exists 𝜇 ∈ R with the same sign as 𝜆 and |𝜇 | being

sufficiently small such that

𝜇

𝑚∑︁
𝑖=1

𝜆𝑖

𝜆
𝑥𝑖 + (1 − 𝜇)

𝑚∑︁
𝑖=1

𝛼𝑖𝑥𝑖 =
𝜇

𝜆
ℎ

is a convex combination of the elements of 𝑋 resulting in 𝜀ℎ, where 𝜀 =
𝜇

𝜆
> 0. If 𝜆 = 0

then for a sufficiently small positive 𝜀,

𝜀

𝑚∑︁
𝑖=1

𝜆𝑖𝑥𝑖 +
𝑚∑︁
𝑖=1

𝛼𝑖𝑥𝑖 = 𝜀ℎ

is a convex combination of the elements of 𝑋 resulting in 𝜀ℎ.
Finally, observe that if 𝑥 is not the origin then 𝑥 is in the relative interior of conv(𝑋) if and

only if the origin is in the relative interior of conv(𝑋′), where 𝑋′ = {𝑥1 − 𝑥, . . . , 𝑥𝑚 − 𝑥}.
Also, there is a strictly positive convex combination of the elements of 𝑋 resulting in 𝑥 if
and only if there is a strictly positive convex combination of the elements of 𝑋′ resulting
in the origin, since if

∑𝑚
𝑖=1 𝛼𝑖 = 1 then

0 =

𝑚∑︁
𝑖=1

𝛼𝑖 (𝑥𝑖 − 𝑥)

is equivalent to

𝑥 =

𝑚∑︁
𝑖=1

𝛼𝑖 (𝑥𝑖 − 𝑥) + 𝑥 =
𝑚∑︁
𝑖=1

𝛼𝑖𝑥𝑖 − 𝑥
𝑚∑︁
𝑖=1

𝛼𝑖 + 𝑥 =
𝑚∑︁
𝑖=1

𝛼𝑖𝑥𝑖 .

□

Lemma 4.7. Let 𝑋 ⊂ R𝑛 be a finite set of points. If there exists a strictly positive
combination of the elements of 𝑋 resulting in zero then
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• the origin is in the relative interior of conv(𝑋) and

• the dimension of the subspace span(𝑋) is equal to the dimension of the polytope
conv(𝑋).

Proof. Let 𝑋 = {𝑥1, . . . , 𝑥𝑚} and
∑𝑚
𝑖=1 𝜆𝑖𝑥𝑖 be a strictly positive combination of the

elements of 𝑋 resulting in zero. Denote 𝜆 =
∑𝑚
𝑖=1 𝜆𝑖. Then

∑𝑚
𝑖=1

𝜆𝑖
𝜆
𝑥𝑖 is a strictly positive

convex combination resulting in zero, thus the origin is in the relative interior of conv(𝑋)
by Lemma 4.6.

Assume that span(𝑋) is 𝑘-dimensional. Since conv(𝑋) is contained in span(𝑋), conv(𝑋)
is at most 𝑘-dimensional. Assume that conv(𝑋) is contained in a (𝑘 − 1)-dimensional
affine subspace 𝐻 ⊂ span(𝑋). The origin is in conv(𝑋), thus it is in 𝐻. Therefore, 𝐻 is a
subspace. Since 𝐻 contains all elements of 𝑋 , it contains span(𝑋), contradicting the fact
that 𝐻 is (𝑘 − 1)-dimensional.

□

The theorem of Steinitz is the following.

Theorem 4.11 (Steinitz [13]). Let 𝑋 ⊂ R𝑛 be a finite set of points, conv(𝑋) 𝑘-dimensional
and a point 𝑥 in the relative interior of conv(𝑋). Then there is a subset 𝑌 ⊆ 𝑋 of at most
2𝑘 points such that conv(𝑌 ) is 𝑘-dimensional and 𝑥 is in the relative interior of conv(𝑌 ).

Using this theorem, we prove a sharp upper bound on the edge count of minimally
infinitesimally rigid tensegrity frameworks, depending on the number of vertices and
dimensions.

Theorem 4.12. Let (𝑇, 𝑝) be a minimally infinitesimally rigid realization of𝑇 = (𝑉,𝐶∪𝑆)
in R𝑑 with |𝑉 | ≥ 𝑑 + 2. Then

|𝐶 ∪ 𝑆 | ≤ 2 ·
(
𝑑 |𝑉 | −

(
𝑑 + 1

2

))
.

Proof. Let 𝑁 = 𝑑 |𝑉 |−
(𝑑+1

2
)
. For a 𝑑-dimensional tensegrity framework (𝑇, 𝑝) let 𝑅′(𝑇, 𝑝)

be the matrix obtained by replacing the rows corresponding to cables in the rigidity matrix
𝑅(𝑇, 𝑝) with their negatives, and let 𝑋 denote the set of points in R𝑑 |𝑉 | whose coordinates
are the rows of 𝑅′(𝑇, 𝑝).

According to Theorem 2.7, the tensegrity framework (𝑇, 𝑝) with |𝑉 | ≥ 𝑑 +2 is infinites-
imally rigid if and only if

(1) 𝑇 is infinitesimally rigid, or equivalently, the rank of 𝑅′(𝑇, 𝑝) is 𝑁 , or equivalently,
the subspace span(𝑋) is 𝑁-dimensional, and
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(2) there exists a proper stress of (𝑇, 𝑝), or equivalently, there exists 𝜔 ∈ R𝐸 such that
𝜔 > 0 and 𝜔 · 𝑅′(𝑇, 𝑝) = 0, or equivalently, there is a strictly positive combination
of the elements of 𝑋 resulting in in zero.

Assume for a contradiction that (𝑇, 𝑝) is a minimally infinitesimally rigid realization of
𝑇 = (𝑉,𝐶 ∪ 𝑆) in R𝑑 with |𝐶 ∪ 𝑆 | ≥ 2𝑁 + 1 and |𝑉 | ≥ 𝑑 + 2.

Since (𝑇, 𝑝) is infinitesimally rigid, (1) and (2) hold. Therefore, by Lemma 4.7, conv(𝑋)
forms an 𝑁-dimensional polytope containing the origin in its relative interior.

By Theorem 4.11 of Steinitz, one can select a set 𝑌 ⊂ 𝑋 of at most 2𝑁 elements such
that conv(𝑌 ) forms an 𝑁-dimensional polytope with the origin in its relative interior.
By Lemma 4.7, span(𝑌 ) is 𝑁-dimensional, thus both (1) and (2) hold for the submatrix
of 𝑅′(𝑇, 𝑝) only containing the rows corresponding to 𝑌 . So the tensegrity framework
obtained from (𝑇, 𝑝) by deleting the edges corresponding to 𝑋 −𝑌 is infinitesimally rigid.
Notice that adding edges to an infinitesimally rigid tensegrity, it remains infinitesimally
rigid.

Therefore, if |𝐶∪𝑆 | ≥ 2𝑁+1 then there exists an edge such that by removing it (1) and (2)
still hold, thus the framework remains infinitesimally rigid, contradicting the minimality
of (𝑇, 𝑝).

□

It is also proved in Steinitz’s paper that in Theorem 4.11 if conv(𝑋) is 𝑘-dimensional and
𝑌 is a minimal subset of 𝑋 such that conv(𝑌 ) is also 𝑘-dimensional and 𝑥 is in the relative
interior of conv(𝑌 ), then either |𝑌 | ≤ 2𝑘 − 1 or 𝑌 consists of 2𝑘 points collinear in pairs
with 𝑥 [14]. Therefore, a minimally infinitesimally rigid tensegrity framework (𝑇, 𝑝) has
2 ·

(
𝑑 |𝑉 | −

(𝑑+1
2
) )

edges if and only if the points in R𝑑 |𝑉 | whose coordinates are the rows of
𝑅′(𝑇, 𝑝) are collinear in pairs with the origin. By the definition of the rigidity matrix, two
different rows of 𝑅′(𝑇, 𝑝) only can be collinear with the origin if they are the negatives of
each other, which means that they correspond to a parallel cable-strut pair in 𝑇 .

So, we can characterize the minimally infinitesimally rigid tensegrity frameworks for
which the number of edges equals the upper bound provided by Theorem 4.12. These
extremal frameworks are exactly the minimally infinitesimally rigid bar-and-joint frame-
works with parallel cable-strut pairs instead of bars.

Notice, that this characterization gives a different proof for the upper bound 2|𝑉 | − 3
proved in Theorem 4.3 in the 1-dimensional non-parallel case. If (𝑇, 𝑝) is a minimally
rigid realization of 𝑇 = (𝑉,𝐶 ∪ 𝑆) in R1, and there are no parallel cable-strut pairs in 𝑇 ,
then (𝑇, 𝑝) is not an extremal example of Theorem 4.12, thus |𝐶 ∪ 𝑆 | ≤ 2|𝑉 | − 3. And
this is sharp, because there exist 1-dimensional minimally infinitesimally rigid tensegrity
frameworks with exactly 2|𝑉 | − 3 edges, see Figure 5. Note that we do not need to assume
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here that 𝑝 is in general position.
Now we prove a lemma, which is a consequence of Theorem 4.11 of Steinitz, and then

use it to show a better upper bound for frameworks that are not extremal examples of
Theorem 4.12. This lemma will also be useful to prove a generalization of Theorem 4.12
in Section 4.2.2.

For a subspace 𝐻 ⊆ R𝑛 the orthogonal complement of 𝐻 is the subspace containing the
elements of R𝑛 orthogonal to each element of 𝐻.

Lemma 4.8. Let 𝑋 ⊂ R𝑛 be a finite set of points, conv(𝑋) 𝑘-dimensional and a point 𝑥 in
the relative interior of conv(𝑋). Let 𝑍 ⊆ 𝑋 such that conv(𝑍) is 𝑘′-dimensional and 𝑥 is
in the relative interior of conv(𝑍). Then there is a subset 𝑌 ⊆ 𝑋 of at most 2(𝑘 − 𝑘′) + |𝑍 |
points such that conv(𝑌 ) is 𝑘-dimensional, 𝑥 is in the relative interior of conv(𝑌 ) and
𝑍 ⊆ 𝑌 .

Proof. We can assume without loss of generality that 𝑥 is the origin.
Let𝑈 denote the subspace span(𝑍), which is 𝑘′-dimensional by Lemma 4.7, and𝑊 denote

the subspace obtained by the intersection of the orthogonal complement of𝑈 and span(𝑋).
For a point ℎ ∈ span(𝑋), denote the component of ℎ in 𝑈 by ℎ𝑈 , and the component in
𝑊 by ℎ𝑊 (thus, ℎ = ℎ𝑈 + ℎ𝑊 ), and for a subset 𝑌 ⊆ 𝑋 denote 𝑌𝑊 = {𝑦𝑊 : 𝑦 ∈ 𝑌 } the
orthogonal projection of 𝑌 to𝑊 .

By Lemma 4.7, span(𝑋) is 𝑘-dimensional, span(𝑍) is 𝑘′-dimensional, hence𝑊 is (𝑘−𝑘′)-
dimensional. Any ℎ ∈ 𝑊 can be expressed as a linear combination of elements of 𝑋 , and
orthogonally projecting both sides of this linear expression onto 𝑊 , we obtain ℎ as a
linear combination of elements in 𝑋𝑊 (since the orthogonal projection eliminates the 𝑈-
directional components of the elements of 𝑋). So span(𝑋𝑊 ) = 𝑊 , and therefore span(𝑋𝑊 )
is (𝑘−𝑘′)-dimensional. Moreover, if we take a strictly positive combination of the elements
of 𝑋 expressing the origin, then projecting this orthogonally onto 𝑊 yields to a strictly
positive combination of the elements of 𝑋𝑊 resulting in the origin.

Thus, by Lemma 4.7, conv(𝑋𝑊 ) is a (𝑘 − 𝑘′)-dimensional polytope with the origin in
its relative interior. Applying Theorem 4.11 of Steinitz to 𝑋𝑊 we obtain that there exists
𝑌 ⊆ 𝑋 with at most 2(𝑘 − 𝑘′) elements, such that conv(𝑌𝑊 ) is (𝑘 − 𝑘′)-dimensional and
it contains the origin in its relative interior.

Then 𝑌 ∪ 𝑍 has at most 2(𝑘 − 𝑘′) + |𝑍 | elements. Now we prove that conv(𝑌 ∪ 𝑍) is
𝑘-dimensional and contains the origin in its relative interior.

Let 𝑍 = {𝑧1, . . . , 𝑧 |𝑍 |} and 𝑌 = {𝑦1, . . . , 𝑦 |𝑌 |}. First we show that the elements of 𝑌 ∪ 𝑍
generate span(𝑋). Let ℎ ∈ span(𝑋). Since by Lemma 4.7, the elements of 𝑌𝑊 generate𝑊 ,
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we can express ℎ𝑊 as

ℎ𝑊 =

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦
𝑊
𝑖 .

Combining the corresponding elements in 𝑌 with the same coefficients we obtain

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦𝑖 =

|𝑌 |∑︁
𝑖=1

𝛼𝑖 (𝑦𝑊𝑖 + 𝑦𝑈𝑖 ) = ℎ𝑊 +
|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦
𝑈
𝑖 .

Since
∑
𝛼𝑖𝑦

𝑈
𝑖
∈ span(𝑍),

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦
𝑈
𝑖 =

|𝑍 |∑︁
𝑖=1

𝛽𝑖𝑧𝑖,

and by ℎ𝑈 ∈ span(𝑍)

ℎ𝑈 =

|𝑍 |∑︁
𝑖=1

𝛾𝑖𝑧𝑖 .

So

ℎ = ℎ𝑊 + ℎ𝑈 =

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦𝑖 −
|𝑍 |∑︁
𝑖=1

𝛽𝑖𝑧𝑖 +
|𝑍 |∑︁
𝑖=1

𝛾𝑖𝑧𝑖 .

Thus, ℎ can be expressed as a linear combination of elements of 𝑌 ∪ 𝑍 .
Similarly, we can show that there is a strictly positive combination of the elements of

𝑌 ∪ 𝑍 resulting in the origin. We chose the set 𝑌 such that

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦
𝑊
𝑖 = 0,

where 𝛼1, . . . , 𝛼|𝑌 | > 0. Combining the corresponding elements in 𝑌 with the same
coefficients, we obtain

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦𝑖 =

|𝑌 |∑︁
𝑖=1

𝛼𝑖 (𝑦𝑊𝑖 + 𝑦𝑈𝑖 ) = 0 +
|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦
𝑈
𝑖 ∈ span(𝑍).

Since the origin is in the relative interior of conv(𝑍), for a sufficiently small positive 𝜀,
the vector 𝜀 ·

(
−∑

𝛼𝑖𝑦
𝑈
𝑖

)
can be expressed as a strictly positive convex combination of

elements in 𝑍 , thus

−
|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦
𝑈
𝑖 =

|𝑍 |∑︁
𝑖=1

𝛽𝑖𝑧𝑖,
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where 𝛽1, . . . , 𝛽|𝑍 | > 0. Therefore, we have

|𝑌 |∑︁
𝑖=1

𝛼𝑖𝑦𝑖 +
|𝑍 |∑︁
𝑖=1

𝛽𝑖𝑧𝑖 = 0,

which is a strictly positive combination of elements in 𝑌 ∪ 𝑍 resulting in the origin.
Therefore, by Lemma 4.7, conv(𝑌 ∪ 𝑍) is 𝑘-dimensional and it contains the origin in its

relative interior. □

The following corollary is immediate from Lemma 4.8 and it also follows from the result
of Bonnice and Reay proved in [15].

Corollary 4.13. Let 𝑋 ⊂ R𝑛 be a finite set of points, conv(𝑋) 𝑘-dimensional and a point
𝑥 in the relative interior of conv(𝑋). Let 𝑘′ be the dimension of the highest dimensional
simplex with vertices in 𝑋 and having 𝑥 in its relative interior. Then there is a subset𝑌 ⊆ 𝑋

of at most 2𝑘 − 𝑘′ + 1 points such that conv(𝑌 ) is 𝑘-dimensional and 𝑥 is in the relative
interior of conv(𝑌 ).

This implies the following modification of Theorem 4.12, which improves the upper
bound, if the tensegrity framework is in general position and it contains a properly stressed
R𝑑-circuit.

Corollary 4.14. Let (𝑇, 𝑝) be a general minimally infinitesimally rigid realization of
𝑇 = (𝑉,𝐶 ∪ 𝑆) in R𝑑 with |𝑉 | ≥ 𝑑 + 2. Let 𝜔 be a stress of (𝑇, 𝑝) such that supp(𝜔) is a
circuit of R𝑑 (𝑇). Let 𝐻 = supp(𝜔), then

|𝐶 ∪ 𝑆 | ≤ 2 ·
(
𝑑 |𝑉 | −

(
𝑑 + 1

2

))
− |𝐻 | + 2.

Proof. Let 𝑅′
𝐻
(𝑇, 𝑝) be the matrix obtained by replacing the rows corresponding to cables

in the matrix 𝑅𝐻 (𝑇, 𝑝) with their negatives, and let 𝑋 denote the set of points in R𝑑 |𝑉 |

whose coordinates are the rows of 𝑅′
𝐻
(𝑇, 𝑝). Since supp(𝜔) = 𝐻, there is a strictly positive

combination of the elements of 𝑋 resulting in zero. Moreover, 𝐻 is a circuit of R𝑑 (𝑇),
so the dimension of span(𝑋) is |𝐻 | − 1 = |𝑋 | − 1. Therefore, by Lemma 4.7, conv(𝑋)
is ( |𝑋 | − 1)-dimensional, thus it is a simplex, and the origin is in the relative interior of
conv(𝑋). So in the proof of Theorem 4.12 we can improve the upper bound on |𝑌 | by
Corollary 4.13 with |𝑌 | ≤ 2𝑁 − (|𝑋 | − 1) + 1 = 2𝑁 − |𝐻 | + 2. □

Using this, we can improve the upper bound, when the framework is in general position
and it is not an extremal example.
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Corollary 4.15. Let (𝑇, 𝑝) be a general minimally infinitesimally rigid realization of
𝑇 = (𝑉,𝐶 ∪ 𝑆) in R𝑑 and |𝑉 | ≥ 𝑑 + 2. Suppose that there exist two vertices 𝑢, 𝑣 of 𝑇 with
only a cable or only a strut connecting them. Then

|𝐶 ∪ 𝑆 | ≤ 2 ·
(
𝑑 |𝑉 | −

(
𝑑 + 1

2

))
−
(
𝑑 + 2

2

)
+ 2.

Proof. By Corollary 4.2, there exists a stress 𝜔 of (𝑇, 𝑝) with its support being an R𝑑-
circuit containing the single edge 𝑢𝑣. Since R𝑑-circuits have at least

(𝑑+2
2
)

edges, see [3],
Corollary 4.15 follows from Corollary 4.14. □

4.2.2 With bars

In the previous sections, we considered tensegrity graphs in which edges are labeled as
cables or struts, and in certain cases, a cable is allowed to be parallel to a strut. In the
literature, tensegrity graphs are often considered of the form 𝑇 = (𝑉, 𝐵 ∪𝐶 ∪ 𝑆) in which
edges are labeled as bars, cables, or struts. As we mentioned above, there is no significant
difference between the two approaches in terms of (any kind of) rigidity, since using
parallel cable-strut pairs instead of bars and vice versa does not change the rigidity of the
framework.

However, it is not clear, how to define the minimality of infinitesimally rigid tensegrity
frameworks consisting of bars.

It is convenient to say, that a tensegrity framework (𝑇, 𝑝), where 𝑇 = (𝑉, 𝐵 ∪ 𝐶 ∪ 𝑆)
is minimally infinitesimally rigid, if the framework (𝑇 ′, 𝑝) is minimally infinitesimally
rigid, where 𝑇 ′ is the tensegrity graph that we get by replacing each of the bars in 𝑇 with
a parallel cable and strut. Thus, by this definition, if a tensegrity framework is minimally
infinitesimally rigid, then replacing any of its bars with a single cable or a single strut,
makes it no longer infinitesimally rigid. Call this definition the first definition of minimal
infinitesimal rigidity. Using the first definition, it follows immediately from Theorem 4.12,
that if (𝑇, 𝑝) is a 𝑑-dimensional minimally infinitesimally rigid realization of the tensegrity
graph 𝑇 = (𝑉, 𝐵 ∪ 𝐶 ∪ 𝑆), then 2|𝐵 | + |𝐶 ∪ 𝑆 | ≤ 2(𝑑 |𝑉 | −

(𝑑+1
2
)
).

However, in the beginning of this section, we define minimal infinitesimal rigidity
such that an infinitesimally rigid tensegrity framework (𝑇, 𝑝) in R𝑑 is called minimally
infinitesimally rigid, if (𝑇 − 𝑒, 𝑝) is not infinitesimally rigid in R𝑑 for any edge 𝑒 of 𝑇 .
It looks natural to use this definition for tensegrity frameworks consisting of bars. Call
this the second definition. Notice, that the second definition generalizes the first definition,
and there exist tensegrities, which are only minimally infinitesimally rigid by the second
definition and not by the first one, see Figure 9 and Figure 10. In the following, we use
the second definition and show that the inequality 2|𝐵 | + |𝐶 ∪ 𝑆 | ≤ 2(𝑑 |𝑉 | −

(𝑑+1
2
)
) still
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holds for 𝑑-dimensional minimally infinitesimally rigid tensegrity framework consisting
bars, generalizing Theorem 4.12.

The following result is the consequence of Lemma 4.8.

Corollary 4.16. Let 𝑋 ⊂ R𝑛 be a finite set of points and conv(𝑋) be a 𝑘-dimensional
polytope with the origin in its relative interior. Let 𝑍 ⊆ 𝑋 such that 𝑍 = 𝑍+ ¤∪𝑍− where
𝑍− = {−𝑧 : 𝑧 ∈ 𝑍+}. Then there is a subset 𝑌 ⊆ 𝑋 of at most 2𝑘 points such that conv(𝑌 )
is 𝑘-dimensional, the origin is in the relative interior of conv(𝑌 ) and for each point 𝑧 ∈ 𝑍
either both 𝑧 and −𝑧 are in 𝑌 or neither of them is.

Proof. Let 𝑍1 ⊆ 𝑍+ be a maximal linearly independent system in 𝑍+, and let 𝑍2 =

{−𝑧 : 𝑧 ∈ 𝑍1} ⊆ 𝑍−. The sum of the elements of 𝑍1 ∪ 𝑍2 is zero, thus, by Lemma 4.7,
conv(𝑍1 ∪ 𝑍2) is |𝑍1 |-dimensional. Then by Lemma 4.8, there is a subset𝑌 ⊆ 𝑋 of at most
2(𝑘 − |𝑍1 |) + 2|𝑍1 | = 2𝑘 points such that conv(𝑌 ) is 𝑘-dimensional, the origin is in the
relative interior of conv(𝑌 ) and 𝑍1 ∪ 𝑍2 ⊆ 𝑌 , so for each point 𝑧 ∈ 𝑍 either both 𝑧 and −𝑧
are in 𝑌 or neither of them is. □

A 𝑑-dimensional infinitesimally rigid realization (𝑇, 𝑝) of tensegrity graph 𝑇 = (𝑉, 𝐵 ∪
𝐶 ∪ 𝑆) is called minimally infinitesimally rigid, if (𝑇 − 𝑒, 𝑝) is not infinitesimally rigid in
R𝑑 for every edge 𝑒 of 𝑇 .

Theorem 4.17. Let (𝑇, 𝑝) be a minimally infinitesimally rigid realization of 𝑇 = (𝑉, 𝐵 ∪
𝐶 ∪ 𝑆) in R𝑑 with |𝑉 | ≥ 𝑑 + 2. Then

2|𝐵 | + |𝐶 ∪ 𝑆 | ≤ 2 ·
(
𝑑 |𝑉 | −

(
𝑑 + 1

2

))
.

Proof. Let 𝑁 = 𝑑 |𝑉 |−
(𝑑+1

2
)
. For a 𝑑-dimensional tensegrity framework (𝑇, 𝑝) let 𝑅′(𝑇, 𝑝)

be the matrix obtained by replacing the rows corresponding to cables in the rigidity matrix
𝑅(𝑇, 𝑝) with their negatives, and adding the negatives of the rows of 𝑅(𝑇, 𝑝) corresponding
to bars (so there are 2|𝐵 | + |𝐶 ∪ 𝑆 | rows of 𝑅′(𝑇, 𝑝)). Note that the rank of 𝑅′(𝑇, 𝑝) is
equal to the rank of 𝑅(𝑇, 𝑝). Let 𝑋 denote the set of points in R𝑑 |𝑉 | whose coordinates are
the rows of 𝑅′(𝑇, 𝑝), and let 𝑍 ⊆ 𝑋 denote the 2|𝐵 | points corresponding to the bars.

According to Theorem 2.7 by Roth and Whiteley, the tensegrity framework (𝑇, 𝑝) with
|𝑉 | ≥ 𝑑 + 2 is infinitesimally rigid if and only if

(1) 𝑇 is infinitesimally rigid, or equivalently, the rank of 𝑅′(𝑇, 𝑝) is 𝑁 , or equivalently,
the subspace span(𝑋) is 𝑁-dimensional, and

(2) there exists a proper stress of (𝑇, 𝑝), or equivalently, there exists 𝜔 ∈ R𝐸 such that
𝜔 > 0 and 𝜔 · 𝑅′(𝑇, 𝑝) = 0, or equivalently, there is a strictly positive combination
of the elements of 𝑋 resulting in in zero.
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Assume for a contradiction that (𝑇, 𝑝) is a minimally infinitesimally rigid realization of
𝑇 = (𝑉, 𝐵 ∪ 𝐶 ∪ 𝑆) in R𝑑 with 2|𝐵| + |𝐶 ∪ 𝑆 | ≥ 2𝑁 + 1 and |𝑉 | ≥ 𝑑 + 2.

Since (𝑇, 𝑝) is infinitesimally rigid, (1) and (2) hold. Therefore, by Lemma 4.7, conv(𝑋)
forms an 𝑁-dimensional polytope containing the origin in its relative interior.

By Corollary 4.16, one can select a set 𝑌 ⊂ 𝑋 of at most 2𝑁 elements such that conv(𝑌 )
forms an 𝑁-dimensional polytope with the origin in its relative interior and for each point
𝑧 ∈ 𝑍 either both 𝑧 and −𝑧 are is𝑌 or neither of them is. Thus, each bar 𝑏 ∈ 𝐵 satisfies that
either both of the corresponding points are in𝑌 or neither of them is, so deleting the edges
corresponding to 𝑋 − 𝑌 results in a subframework of (𝑇, 𝑝). Moreover, by Lemma 4.7,
span(𝑌 ) is 𝑁-dimensional, thus both (1) and (2) hold for the submatrix of 𝑅′(𝑇, 𝑝) only
containing the rows corresponding to𝑌 . So the tensegrity framework obtained from (𝑇, 𝑝)
by deleting the edges corresponding to 𝑋 − 𝑌 is infinitesimally rigid. Notice that adding
edges to an infinitesimally rigid tensegrity, it remains infinitesimally rigid.

Therefore, if 2|𝐵 | + |𝐶 ∪ 𝑆 | ≥ 2𝑁 + 1 then there exists an edge such that by removing it
(1) and (2) still hold, thus the framework remains infinitesimally rigid, contradicting the
minimality of (𝑇, 𝑝).

□

Clearly, equality holds in Theorem 4.17, if (𝑇, 𝑝) is a minimally infinitesimally rigid
bar-and-joint framework with some of its bars (possibly none of them) replaced by parallel
cable-strut pairs. However, there exist different types of extremal examples. It is not too
difficult to see that the frameworks in Figure 9 and Figure 10 are minimally infinitesimally
rigid in R2 and R3.

Figure 9: Minimally infinitesimally rigid tensegrity framework in R2 with 2|𝐵 | + |𝐶 ∪ 𝑆 | =
4|𝑉 | − 6.

34



Figure 10: Minimally infinitesimally rigid tensegrity framework inR3 with 2|𝐵 | + |𝐶∪𝑆 | =
6|𝑉 | − 12.

4.3 Consequences for weak rigidity
A tensegrity graph 𝑇 is minimally weakly rigid in R𝑑 , if 𝑇 is weakly rigid in R𝑑 but 𝑇 − 𝑒
is not weakly rigid in R𝑑 for every edge 𝑒 of 𝑇 .

It is immediate that the upper bounds of Theorem 4.3, Theorem 4.9 and Theorem 4.10
hold for the number of edges of minimally weakly rigid tensegrity graphs without parallel
edges. This is because a 𝑑-dimensional weakly rigid tensegrity graph 𝑇 has an infinitesi-
mally rigid representation (𝑇, 𝑝) in R𝑑 and if 𝑇 is minimally weakly rigid then (𝑇, 𝑝) must
be minimally infinitesimally rigid (otherwise there would be an edge 𝑒 of 𝑇 such that 𝑝 is
a rigid realization of 𝑇 − 𝑒 in R𝑑 , contradicting the minimality of 𝑇).

Thus, Theorem 4.3, Theorem 4.9 and Theorem 4.10 imply the following.

Corollary 4.18. Let 𝑇 = (𝑉,𝐶 ∪ 𝑆) be a tensegrity graph with no parallel members.
Suppose that 𝑇 is minimally weakly rigid in R1. Then

|𝐶 ∪ 𝑆 | ≤ 2|𝑉 | − 3.

Corollary 4.19. Let 𝑇 = (𝑉,𝐶 ∪ 𝑆) be a tensegrity graph with no parallel members.
Suppose that 𝑇 is minimally weakly rigid in R2. Then

|𝐶 ∪ 𝑆 | ≤ 3|𝑉 | − 6.

Corollary 4.20. Let 𝑇 = (𝑉,𝐶 ∪ 𝑆) be a tensegrity graph with no parallel members.
Suppose that 𝑇 is minimally weakly rigid in R3. Then

|𝐶 ∪ 𝑆 | ≤ 4|𝑉 | − 10.
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Consider the tensegrity graph obtained from 𝐾𝑑+1 of struts, by adding |𝑉 | − 𝑑 − 1
vertices and connecting each of them to every vertex of the 𝐾𝑑+1 with cables. Then it has
(𝑑 + 1) |𝑉 | −

(𝑑+2
2
)

edges. There is an example for 𝑑 = 1 in Figure 5, for 𝑑 = 2 in Figure 6
and for 𝑑 = 3 in Figure 7. Notice that if there are only cables attached to a vertex 𝑣 of an
infinitesimally rigid framework (𝑇, 𝑝), then 𝑣 must be in the interior of the convex hull of
the vertices of𝑇 (otherwise there is no proper stress of (𝑇, 𝑝), contradicting Theorem 2.7).
Since in these examples there are only 𝑑 + 1 vertices that have struts attached to them,
their convex hull must form a 𝑑-dimensional simplex in every general 𝑑-dimensional rigid
realization (rigidity and infinitesimal rigidity are equivalent for frameworks in general
position). Using this observation, it is not too difficult to see that there is no general 𝑑-
dimensional rigid realization of tensegrity graphs from this family, if we remove any one of
their edges. Thus, the upper bounds of Corollary 4.18, Corollary 4.19 and Corollary 4.20
are tight.

Also, from Theorem 4.17 we obtain the following general upper bounds.

Corollary 4.21. Let𝑇 = (𝑉, 𝐵∪𝐶∪𝑆) be a tensegrity graph. Suppose that𝑇 is minimally
weakly rigid in R𝑑 and |𝑉 | ≥ 𝑑 + 2. Then

2|𝐵 | + |𝐶 ∪ 𝑆 | ≤ 2 ·
(
𝑑 |𝑉 | −

(
𝑑 + 1

2

))
.

This is also sharp, see for example minimally rigid bar-and-joint graphs.

5 Open questions
In this last section, we list some open questions related to edge counting of minimally
rigid tensegrity frameworks and graphs.

The most natural related open problem is the generalization of the results in Section 4.1
for 𝑑 ≥ 4. The conjecture is the following.

Conjecture 5.1. Let (𝑇, 𝑝) be a 𝑑-dimensional general realization of the tensegrity graph
𝑇 = (𝑉,𝐶 ∪ 𝑆) with no parallel members. Suppose that (𝑇, 𝑝) is minimally infinitesimally
rigid. Then

|𝐶 ∪ 𝑆 | ≤ (𝑑 + 1) |𝑉 | −
(
𝑑 + 2

2

)
As explained in Section 4.3, this would also give sharp upper bounds on the number of

edges of minimally weakly rigid tensegrity graphs without parallel edges.
It is also a natural and currently open problem to give upper bounds on the number of

edges of minimally infinitesimally rigid frameworks with no parallel edges and no bars,
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but without requiring the framework to be in general position. We saw non-injective and
non-parallel examples in Section 4.1, where the number of edges is more than the upper
bound given by Theorem 4.9 and Theorem 4.10. We also showed that there is no framework
from this family with its edge number reaching the upper bound of Theorem 4.12 (since
the extremal examples are only containing parallel members). However, we do not have a
sharp upper bound on the number of edges of a framework from this family.

A tensegrity graph 𝑇 is minimally strongly rigid in R𝑑 , if 𝑇 is strongly rigid in R𝑑 but
𝑇 − 𝑒 is not strongly rigid in R𝑑 for every edge 𝑒 of 𝑇 . For strongly rigid tensegrity graphs,
it is an open problem to bound the number of edges of the minimal instances for any 𝑑 ≥ 1.

It is natural to ask the same questions with other rigidity definitions. The majority of
these questions have not been answered yet. Problems related to global and universal
rigidity of tensegrity frameworks seem more difficult than the corresponding questions for
infinitesimal rigidity, because while Theorem 2.7 provides a manageable characterization
for infinitesimal rigidity, no such characterization is known for global and universal rigidity
of tensegrity frameworks. There is currently no bound known on the number of edges for
minimally globally and universally rigid tensegrity frameworks for any 𝑑 ≥ 1.

The 1-dimensional weakly globally rigid tensegrity graphs are characterized in Theo-
rem 2.5 by Garamvölgyi. Using this result, it can be shown that a 1-dimensional minimally
weakly globally rigid tensegrity graph has at most 2|𝑉 | − 3 edges, and this upper bound
is sharp [17]. For 𝑑 ≥ 2, no upper bound on the number of edges of minimally weakly
globally rigid tensegrity graphs is known. In regard to strongly globally rigid tensegrity
graphs, it is also an open problem to provide upper bounds for the number of edges of the
minimal instances for any 𝑑 ≥ 1.

Furthermore, all of the corresponding questions about minimally weakly and strongly
universally rigid tensegrity graphs remain unanswered.
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