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Introduction

One of the most significant challenges in arithmetic geometry is to comprehend the
absolute Galois group of rational numbers, Gal(Q/Q), or at the very least, its action
on representations derived from geometry. However, posing the question alone presents
significant challenges, and it is advisable to employ a special strategy, namely the theory
of p-adic representation theory. Let us fix a prime number p in the set of integers Z
and let p be a prime ideal lying above p in the ring of integers OQ. The decomposition
subgroup associated with p, Gp = {σ ∈ Gal(Q/Q) | σ(p) = p} is canonically isomorphic
to the absolute Galois group of p-adic numbers, GQp = Gal(Qp/Qp). The objective of
p-adic representation theory is to elucidate the action of GQp on vector spaces over Qp.
This can be regarded as the local version of the global problem previously described.

Fontaine’s theory of (φ,Γ)-modules proved to be a highly valuable resource in under-
standing the nature of continuous representations of Galois groups of finite extensions
of Qp over finite Qp-vector spaces. One of the principal results of the theory is that
the category of continuous p-adic representations of the Galois group GK of a finite ex-
tension K/Qp is equivalent to the category of the so-called étale (φ,Γ)-modules over a
certain field, BK . The field BK is the p-adic completion of the field of Laurent series in
one variable. However, for certain applications in p-adic Hodge theory one has to work
with Laurent-series that are convergent in a specific annulus (of outer radius 1). This
refinement of Fontaine’s equivalence of categories was first established by Cherbonnier
and Colmez [CC98] and can be expressed in terms of the notion of so-called overconver-
gence, namely that all Qp-representations of GK are overconvergent (Corollary 6), i.e.
Fontaine’s equivalence of categories remains valid if one replaces BK with the subfield
B†

K of overconvergent elements. Subsequently, Colmez [Col10] demonstrated the exis-
tence of a natural, almost bijective correspondence between the two-dimensional p-adic
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representations of GQp and p-adic Banach space representations of GL2(Qp). This cor-
respondence represents a significant special case of the p-adic Langlands programme.
A natural generalisation of this approach can be made in a number of different ways.
One possible avenue of enquiry is to investigate the p-adic Laglands correspondence in
the case of GLm(Qp). In an attempt to generalise parts of Colmez’s work to GLm(Qp)
(m > 2), Zábrádi [Záb18] proved a generalisation of Fontaine’s equivalence for p-adic
representations of direct powers of GQp (see also [ZKC21] for a different proof, which
includes the generalisation to finite extensions K/Qp and overconvergence). The mul-
tivariable analogue of the theorem of Cherbonnier and Colmez was first established by
Pal and Zábrádi [PZ19] showing that the p-adic representations of direct powers of GQp

exhibit overconvergence properties. Consequently, the category of these representa-
tions is equivalent to the category of overconvergent multivariable (φ,Γ)-modules. The
findings on overconvergence are of significant importance in general, as they facilitate
the interconnection between the category of Galois representations and the category of
representations derived from geometry.

Another tool of representation theory is to consider a family of representations col-
lectively rather than examining them individually. Let K be a finite extension of Qp

and let S be a Banach Qp-algebra denoting its maximal spectrum by X . A family of
representations of GK is then defined as a free S-module V of finite rank endowed with
a continuous S-linear action of GK . The objective of this thesis is to examine families
of p-adic Galois representations, with a particular focus on the contributions of Berger
and Colmez as outlined in their seminal paper, [BC08]. Furthermore, this study will
offer a comprehensive analysis of the ring theoretical constructions that are essential
for a thorough understanding of the main result of this thesis, namely that the families
of p-adic representations of GK are overconvergent (Theorem 7).

The following provides a description of the essay’s structure. In the initial chapter 1,
the theoretical foundations of p-adic representations and their families are established,
with reference to the article [BC08] by Berger and Colmez. In chapter 2, the Tate-Sen
conditions and their general consequences are presented. This section is also based on
the referenced article [BC08] by Berger and Colmez. Furthermore, the proofs of the
technical lemmas in subsection 2.2 are primarily derived from the notes of Brinon and
Conrad [BC]. In chapter 3 and 4, the requisite ring constructions for the principal results
of Sen’s method are presented. These are mainly based on Berger’s article [Ber04] and
notes [Ber], the notes of Brinon and Conrad [BC], the article of Colmez [Col08], and
for some technicalities on Wang’s note [Yup]. Finally, in chapter 5, I demonstrate two
consequences of Sen’s method: the classical Sen theory and the principal theorems on
overconvergent (φ,Γ)-modules. The structure of the cited article by Berger and Colmez
[BC08] forms the foundation of this chapter. For technical proofs I used [Ber] and [Yup].

Acknowledgment. I would like to express my gratitude to Gergely Zábrádi for bring-
ing this intriguing topic to my attention and for providing me with invaluable supervi-
sion and advice throughout the process of writing my thesis.
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1. Preliminaries

1.1. p-adic representations.

This subsection offers a concise theoretical introduction to the fundamental concepts
and propositions that will be required later in the thesis. In accordance with this
format, the results presented here are not accompanied by proof.

A profinite group, defined as the inverse limit of finite groups, can be viewed as
a topological group. This is achieved by considering the subspace topology of the
product of the groups, where the discrete topology is applied to each group. This yields
a compact, Hausdorff, and totally disconnected topological space.

Definition 1. A p-adic representation of a profinite group Γ is a representation ρ : Γ→
AutQp(V ) of Γ on a finite-dimensional Qp-vector space V such that ρ is continuous.1

The following concept constitutes a fundamental ingredient of this framework. Let K
be a field with a fixed separable closure Ks and let p be a prime ( ̸= charK). The group
of pnth roots of unity in (Ks)× is designated by µpn . Furthermore, let µp∞ := lim−→n

µpn .
The action of GK on µp∞ is given by g(ξ) = ξχ(g), where χ(g) is a unique element of
Z×

p . Indeed, if ξ ∈ µpn , then χ(g) is solely relevant mod pn, and the reduction of χ(g)
mod pn, namely χ ∈ (Z/pnZ)× describes the action of g on the finite cyclic group µpn

of order pn. This map χ : GK → Z×
p is called the p-adic cyclotomic character of K.

Since ker(χ) corresponds to the finite extension K(µpn)/K, it is open. Consequently, χ
is a continuous character and its twisting action is observed in a wide range of contexts
within the theory.

Definition 2. A p-adic field is a field K of characteristic 0 that is complete with respect
to a fixed discrete valuation, with a perfect residue field k of characteristic p > 0.

Let K be a p-adic field (for a fixed prime p) and let us fix an algebraic closure
K. The absolute Galois group Gal(K/K) will be denoted by GK . The completion
K̂ of K is referred to as CK , which is endowed with a unique normalised (v(p) = 1)
valuation extending the given one on K. Moreover, it can be demonstrated that CK is
algebraically closed. Since GK acts on K by isometries, this action uniquely extends to
the field CK . Furthermore, the following classical result holds.

Theorem 1 (Ax-Sen-Tate). Let H be a closed subgroup of GK. Then (CK)
H is the

completion L̂ of L = (K)H .

In the investigation of p-adic representations of GK (which are also known as p-
adic Galois representations) for a finite extension K/Qp, it is often advantageous to
consider the case, where the residue field k is algebraically closed. As the majority
1We consider AutQp(V ) to be GLd(Qp) by choosing a basis, where the choice is inconsequential.
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of the relevant properties of p-adic representations can be identified within the inertia
subgroup IK = GKur = GK̂ur , in practice we are replacing K with the p-adic completion
of its maximal unramified extension K̂ur within K.

Remark 1. Let F be a local field with a perfect residue field k. It can be shown that
there is an equivalence of categories between the extension of k and the unramified
extensions of K. Since the unique extension of Fp of degree n is the splitting field of
xpn − x, it follows that the unique unramified extension of Qp is also by adjoining pnth
roots of unity, namely Qp(µpn). Moreover, Qur

p = Qp(µp∞). In general, if K is a local
field with perfect residue field k, then Kur corresponds to the separable closure ks of k,
which in this case is k. In particular, if k is a finite (thus perfect) field, then k = k(µp∞)
for some p prime to chark. Consequently, Kur = K(µp∞).

The conventional methodology entails the construction of a kind of dictionary that
relates exemplary categories of p-adic representations of GK with assorted categories
of semi-linear algebraic objects "over K". By working over these algebras, it is often
more straightforward to perform operations such as deformation, descent, construction
of families, and so forth, than by working solely with Galois representations. One
objective of this study is to demonstrate one such equivalence of categories, which will
be discussed in greater detail in section 5.

1.2. Algebra of coefficients and completed tensor products.

It is assumed throughout this section that S is a Banach Qp-algebra, that is to say,
an associative Qp-algebra, which is also a Banach space.

Definition 3. Denote X the space associated to S, that is the set of maximal ideals of
S.

The elements of X are considered to be points and the notation mx is employed to
denote the maximal ideal of S corresponding to to the point x. If f ∈ S, then the
image of f in the quotient Ex = S/mx is denoted by f(x). A subspace P of X is
said to be an S-analytic subspace if there exists an ideal I of S such that P = {x ∈
X | I ⊂ mx} or, which is equivalent, if there exists a family of elements {fα}α of S such
that P = {x ∈ X | fα(x) = 0 for all α}. Rather than working with norms, we prefer
to work with valuations over S. For f, g ∈ S, these do not satisfy the usual identity
valS(fg) = valS(f) + valS(g), but only valS(fg) ≥ valS(f) + valS(g). This means that
valS fulfils the following properties:

(1) valS(f) =∞⇔ f = 0;
(2) valS(fg) ≥ valS(f) + valS(g);
(3) valS(f + g) ≥ inf(valS(f), valS(g));

Let OS = {f ∈ S | valS(f) ≥ 0} be the ring of integers in S for valS.
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Definition 4. S is said to be an algebra of coefficients, if

(1) S contains Qp and the restriction of valS from S to Qp is the p-adic valuation
valp;

(2) for all x ∈ X , Ex is a finite extension of Qp;
(3) the Jacobson radical, J(S) =

⋂
x∈X

mx = 0. In particular S is reduced.

Let S be an algebra of coefficients and let Y be a S-analytic subspace of X defined
by an ideal I. Then Y is the space associated to the algebra of coefficients S/

√
I.

Lemma 1. Let S be an algebra of coefficients.

(1) If f ∈ S is such that for all x ∈ X f(x) ̸= 0, then f is a unit of X .
(2) If M is a flat S-module, and y ∈M such that for all x ∈ X, y(x) ∈M/mxM is

0, then y = 0.

Proof. (1) arises from the fact that f is not contained in any maximal ideal, and thus a
unit. (2) results from the fact that the map S →

∏
S/mx is injective, which follows from

the assumption that J(S) = 0, and then the injectivity of the map M →
∏

M/mxM
is maintained if M is a flat module. □

If x ∈ X , then the field Ex is a finite extension of Qp and therefore has the p-
adic valuation valp. If f ∈ S, then the spectral valuation is defined by valsp(f) =
infx∈X valp(f(x)). Finally, if E and F are two Banach spaces, we denote by E⊗̂F their
completed tensor product over Qp. If E and F are two complete topological Zp-modules,
then E⊗̂F denotes their completed tensor product over Zp, which is defined as follows.
(see [BGR84], §2.1.7.)

Definition 5. Let M and N be normed R-modules, and let us consider the (ordinary)
tensor product M ⊗R N . The function | · | : M ⊗R N → R≥0 is defined as follows:
t ∈M ⊗R N , let

|t| := inf(max
1≤i≥n

|xi||yi|),

where the infimum is taken over all possible representations t =
∑n

i=1 xi ⊗ yi (xi ∈
M, yi ∈ N). It can be readily demonstrated that with this | · |, M ⊗R N is a semi-
normed R-module. As a semi-normed group, we can construct the completion M⊗̂RN ,
as detailed in [BGR84], Proposition 1.1.7. This will result in a normed R-module.

1.3. Étale descent.

Let B be a Banach Qp-algebra equipped with a continuous action of a finite group
G. Let B♮ denote the ring B on which G acts trivially. It is assumed that:
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(1) the BG-module B is free of finite rank and faithfully flat2;
(2) B♮ ⊗BG B ∼= ⊕g∈GB

♮ · eg (where e2g = eg, egeh = 0 if g ̸= h and g(eh) = egh).

Proposition 1. If S is a Banach-algebra on which G acts trivially, and if M is a locally
free finitely generated S⊗̂B-module with a semi-linear action of G, then

(1) MG is a locally free3 finitely generated S⊗̂BG-module;
(2) (S⊗̂B)⊗S⊗̂BG MG →M is an isomorphism.

Proof. Let πG = 1
|G|
∑

g∈G g ∈ B[G]. If N is a B[G]-module, then we have a decomposi-
tion N = πGN⊕kerπG and NG = πGN . In particular, we have that M = MG⊕kerπG,
which implies that MG is a S⊗̂BG-module. As a direct component of M , it is a locally
free S⊗̂BG-module of finite type. This demonstrates (1).

We will now proceed to demonstrate item (2). Since the rank of B is finite over BG

and the tensor product is associative, we have an isomorphism

(S⊗̂B)⊗S⊗̂BG MG ∼= B ⊗BG (S⊗̂B)⊗S⊗̂BG MG ∼= B ⊗BG MG.

It is therefore sufficient to show that the map B ⊗BG MG →M is an isomorphism. As
we assume that the BG-module B♮ is faithfully flat, it is sufficient to demonstrate that
the map:

B♮ ⊗BG (B ⊗BG MG)→ B♮ ⊗BG M

is an isomorphism. From associativity, we have that B♮ ⊗BG (B ⊗BG MG) ∼= B ⊗BG

(B♮ ⊗BG M)G. Furhtermore, B♮ ⊗BG M is a B♮ ⊗BG B-module. Since B♮ ⊗BG B ∼=
⊕g∈GB

♮ · eg, it therefore decomposes into B♮ ⊗BG M ∼= ⊕g∈GN · eg, where N · eg =
(B♮ · eg) · (B♮ ⊗BG M). The map from N · e1 to (B♮ ⊗BG M)G, which associates n · e1
with (g(n) ·eg)g∈G induces an isomorphism from N ·e1 to (B♮⊗BG M)G. Thus, we have:

B ⊗BG N · e1 = (B ⊗BG B♮)⊗B♮ N · e1 = (⊕g∈GB
♮ · eg)⊗B♮ N · e1

= ⊕g∈GN · eg = B♮ ⊗BG M,

and the map B♮ ⊗BG (B ⊗BG MG)→ B♮ ⊗BG M is an isomorphism. □

Remark 2. Proposition 1 is particularly applicable in the case where B is a finite
Galois extension of Qp and where G is a subgroup of Gal(B/Qp), which ensures that
B/BG is a Galois extension. Condition (1) stated at the beginning of the paragraph is
self-evident, while condition (2) is a classical result. For a second example, please refer
to Lemma 21.

2That is to say, taking the tensor product with a sequence produces an exact sequence if and only if
the original sequence is exact.
3For all p ∈ Spec, Mp is free.
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1.4. Family of p-adic representations.

Let K be a finite extension of Qp and let GK denote the Galois group, Gal(Qp/K).
Let S be a Banach-algebra. A family of p-adic representations is defined as a free
S-module V of finite rank d, endowed with a continuous linear action of the group
GK . It should be recalled that OS denotes the ring of integers of S with respect to
the valuation valS. It is assumed that there exists a free OS-module T of rank d such
that V = S ⊗OS

T . In the case where S = E is a field, this condition is automatically
satisfied, as demonstrated by the following lemma.

Lemma 2. Let V be an E-representation of dimension d, where E is a field. Then there
exists an OE-module T of rank d that is invariant under GK such that V = E ⊗OE

T .

Proof. If a basis of V is chosen, the representation corresponds to a continuous map
ρ : GK → GLd(E). It follows that there exists an integer n ≥ 0 such that the image of
GK is contained in Md(p

−nOE). If T0 denotes the OE-module generated by the chosen
basis, we see that if g ∈ GK , then g(T0) ⊂ p−nT0. Therefore, setting T =

∑
g∈GK

g(T0),
we have T0 ⊂ T ⊂ p−nT0, and thus T is free of rank d and invariant under the action
of GK . □

2. Sen’s method

This section presents an explanation of Sen’s method, which facilitates the calculation
of specific sets of Galois cohomologies.

2.1. The Tate-Sen conditions.

In this chapter, G0 is a profinite group endowed with a continuous character χ :
G0 → Z×

p having an open image χ(G0). Let H0 = kerχ. For any element g ∈ G0, let
n(g) be the integer defined by n(g) = valp(χ(g) − 1). If G is an open subgroup of G0

and H = G ∩H0, then let NG0(H) be the normaliser of H in G0.

The objective is to ascertain the openness of the group NG0(H) in G0. Since a closed
subgroup of a profinite group is profinite for the subspace topology, open subgroups of
H0 that are normal in G0 constitute a base of open subgroups in H0. Consequently,
since H is an open subgroup in H0, there exists a subgroup N ⊂ H that is open in
H0 and normal in G0. It is now necessary to consider the resulting containment of
finite subgroups H/N ⊂ H0/N inside of G0/N , with H0/N normal in G0/N . Since
the action of (G0/N)/(H0/N) = χ(G0) on the finite group H0/N via conjugation is
continuous, it follows that some open subgroup of G0/N must centralize H0/N (because
the permutation group of the finite set H0/N is finite). The preimage of this in G0 is
an open subgroup that normalizes H, as desired. In particular, Γ̃H = NG0(H)/H is
open in G0/H, and therefore χ : Γ̃H → χ(G0) is an open mapping. Let and CH be the
centre of Γ̃H .
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Lemma 3. CH is an open subgroup of Γ̃H .

Proof. The kernel of the restriction of χ2(p−1) to Γ̃H is a finite group A and the group
Γ̃H can be written as the following exact sequence: 1 → A → Γ̃H → B → 1, where B
is an open subgroup of Z×

p = Z/(p− 1)Z× (1 + pZp) without torsion, which is why the
exponent 2(p−1) was included. Consequently, B is an open subgroup of (1+pZp) ∼= Zp

and thus is isomorphic to Zp. (This statement can be proven with a slight adjustment
in the case where p = 2). The group Γ̃H is therefore a semi-direct product of Zp and
a finite group. An element g of Zp ⊂ Γ̃H is in the centre of Γ̃H if and only if its image
in Aut(A) (g acting by conjugation on A) is trivial. Since the group Aut(A) is finite,
the intersection of CH with Zp ⊂ Γ̃H is of finite index in Zp and thus also in Γ̃H . This
allows us to conclude. □

The smallest integer n > 1 such that χ(CH) contains 1 + pnZp is denoted by n1(H).
The preceding lemma demonstrates that n1(H) ̸=∞.

Let S be a Banach algebra and let Λ̃ be a OS-algebra. The map valΛ : Λ̃→ R∪{+∞}
must satisfy the following weakening of the valuation axioms (in the spirit of semi-norm):

(1) valΛ(x) = +∞ ⇔ x = 0;
(2) valΛ(xy) ≥ valΛ(x) + valΛ(y);
(3) valΛ(x+ y) ≥ inf(valΛ(x), valΛ(y));
(4) valΛ(p) > 0 and valΛ(px) = valΛ(p) + valΛ(x), if x ∈ Λ̃.

It should be noted that condition (4) encompasses the case where p equal to zero in
Λ. Condition (3) permits the use of valΛ to provide Λ̃ with a topology by using the
additive subgroups Λ̃≥a := valΛ([a,+∞]) as a base of opens around 0. Condition (1)
demonstrates that this topology is Hausdorff and every point has a countable base of
open neighborhoods, so we can probe the topology with using sequences. Furthermore,
it implies that valΛ(−x) ≥ valΛ(x) for all x, so valΛ(x) = valΛ(−x). It is assumed that
Λ̃ is complete with respect to this topology.

Let d ≥ 1 be an integer and U ∈Md(Λ̃), and let
valΛ(U) = min

1≤i,j≤d
valΛ(ui,j), where U = (ui,j)1≤i,j≤d.

The following immediate result will be used extensively in what follows.

Lemma 4. If d ≥ 1 integer and U ∈Md(Λ̃) verifies valΛ(U −1) > 0, then U ∈ GLd(Λ̃)
and its inverse is equal to

∑+∞
n=0(1− U)n.

Now, let us suppose that Λ̃ has a continuous OS-linear action of G0 such that
valΛ(g(x)) = valΛ(x) ("isometry") for all g ∈ G0 and x ∈ Λ̃. Then the group G0

acts continuously on GLd(Λ̃), where d ≥ 1.
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Remark 3. Given that G0 acts continuously on GLd(Λ̃), it is reasonable to form the
pointed set of continuous cohomology H1(G,GLd(Λ̃)) when G is a subgroup of G0

(with subspace topology). This, in fact, classifies the isomorphism classes of finite free
Λ̃-modules equipped with a semi-linear action of G that is continuous for the natural
topology of finite free Λ̃-modules. To illustrate, in Sen’s context with G = G0 = GK ,
this is the problem of classifying d-dimensional continuous semi-linear representations
of GK over CK .

We are interested in pointed sets of continuous cohomology H1(G0, GLd(Λ̃)). Sen’s
method allows for a significant reduction in the apparent complexity of these sets under
certain so-called Tate-Sen conditions.

Definition 6. The Tate-Sen conditions are the following three conditions:

(TS1) For every open subgroup H1 ⊂ H2 of H0, there exists c1 > 0 such that there
exists an element α ∈ Λ̃H1 satisfying valΛ(α) > −c1 and

∑
τ∈H2/H1

τ(α) = 1.
(TS2) For any open subgroup H of H0, there exists a number c2 > 0 and an in-

teger n(H) ∈ N, along with an increasing sequence of closed OS-subalgebras
of Λ̃H , denoted by (ΛH,n)n∈N, and for each n ≥ n(H), an OS-linear map
RH,n : Λ̃H → ΛH,n satisfying the properties:

1. if H1 ⊂ H2, then ΛH2,n ⊂ ΛH1,n and the restriction of RH1,n to Λ̃H2 coincides
with RH2,n;

2. RH,n is ΛH,n-linear and RH,n(x) = x if x ∈ ΛH,n;
3. g(ΛH,n) = ΛgHg−1,n and g(RH,n(x)) = RgHg−1,n(gx) if g ∈ G0; in particular,

RH,n commute with the action of Γ̃H ;
4. if n ≥ n(H) and x ∈ Λ̃H , then valΛ(RH,n(x)) ≥ valΛ(x)− c2;
5. if x ∈ Λ̃H , then limn→+∞ RH,n(x) = x.

(TS3) There exists a constant c3 > 0 and, for any open subgroup G of G0 an integer
n(G) ≥ n1(H), where H = G ∩ H0, such that, for every n ≥ n(G), if γ ∈ Γ̃H

verifies n(γ) ≤ n, then γ − 1 is invertible on XH,n = (1 − RH,n)(Λ̃
H) and we

have valΛ((γ − 1)−1(x)) ≥ valΛ(x)− c3 if x ∈ XH,n.

Proposition 2. If Λ̃ is an Zp-algebra that satisfies the Tate-Sen conditions, and if
S is a Banach-algebra, then OS⊗̂Λ̃ satisfies the Tate-Sen conditions (with the same
constants c1, c2 and c3).

Proof. This follows directly from extending the map RH,n by OS-linearity. □

Remark 4. Upon initial observation, the conditions appear somewhat complicated. In
order to provide some context and clarity, we will offer some explanatory remarks.

(TS1) The sum in this axiom may be considered a sort of trace, and elsewhere this
axiom is related to the construction of "normalized traces". In Sen’s case, this
is a direct consequence of Tate’s "almost étale" result.
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(TS2) This condition encodes information concerning the "completed normalized
traces". We wish to highlight that according to part 2., the map RH,n is a ΛH,n-
linear projector. Consequently, XH,n = ker(RH,n) is a closed ΛH,n-submodule of
Λ̃H and there is a topological decomposition Λ̃H = ΛH,n ⊕XH,n. Furthermore,
part (3) merely states that an action by Γ̃H = G0/H makes sense on RH,n and
that it is trivial.

(TS3) This final condition describes the action of G0 on the complement to ΛH,n in
Λ̃H , as defined by the splitting provided by the section RH,n. It is stated that
γ − 1 has a bounded linear inverse on ker(RH,n) (controlled by c3) provided
that n is sufficiently large (depending on G) and that γ is not too close to 1
(depending on n). In order to make any statements about an inverse to γ − 1,
it is necessary to restrict to ker(RH,n). This is because on the complement ΛH,n

of ker(RH,n) in Λ̃H the action of some open subgroup of Γ̃h may be trivial. It
should be noted that since n ≥ n(G) ≥ n1(G), it follows that 1 + pnZp ⊂ χ(G).
Consequently, there are numerous elements γ in the open subgroup G/H ⊂ Γ̃H

for which n(γ) = n. The sole purpose of requiring n(G) ≥ n1(G) is to guarantee
the existence of a multitude of γ ∈ G/H with n(γ) ≤ n.

2.2. Consequences of Tate-Sen axioms.

We will work now in the general setting of the Tate-Sen axioms. The firs lemma posits
that, provided a 1-cocyle is sufficiently close to the trivial cocycle, it may be considered
approximately a coboundary. The strategy of the proof is analogous to that employed
in the classical proof of Hilbert’s Theorem 90 (see in Hungarian [Záb], Theorem 2.3.8.),
which relies on a cocycle construction involving an element with trace 1.

Lemma 5. Let H be an open normal subgroup of H0, a > c1 and k ∈ N. If τ 7→ Uτ

is a continuous 1-cocycle on H in GLd(Λ̃) satisfying Uτ − 1 ∈ pkMd(Λ̃) and valΛ(Uτ −
1) ≥ a for every τ ∈ H, then there exists a matrix M ∈ GLd(Λ̃) satisfying M − 1 ∈
pkMd(Λ̃) and valΛ(M − 1) ≥ a − c1 such that the cocycle τ 7→ M−1Uττ(M) satisfies
valΛ(M

−1Uττ(M)− 1) ≥ a+ 1.

Proof. It should first be noted that for any h ∈ H, we have valΛ(Uτ ) ≥ min{valΛ(Uτ −
1), valΛ(1)} ≥ 0. By continuity, there exists an an open subgroup H1 of H (which we
may be further reduced to be normal in G0) such that for any τ ∈ H1, valΛ(Uτ − 1) ≥
a + 1 + c1. By (TS1), there exists an α ∈ Λ̃H1 satisfying

∑
τ∈H/H1

τ(α) = 1 and
valΛ(α) > −c1.

Let Q be a system of representatives for H/H1, let

MQ =
∑
σ∈Q

σ(α)Uσ.

The assumptions on α imply that MQ − 1 ∈ pkMd(Λ̃) and valΛ(MQ − 1) ≥ a − c1. In
particular, valΛ(MQ − 1) > 0 and MQ is invertible and valΛ(M

−1
Q − 1) > 0 by Lemma
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4. Thus, valΛ(M−1
Q ) ≥ 0. The 1-cocycle condition implies that

Uττ(MQ) =
∑
σ∈Q

τσ(α)Uττ(Uσ) =
∑
σ∈Q

τσ(α)Uτσ = MτQ

Let τ ∈ H be fixed. For any element σ ∈ Q (as for any element of H), there exists a
unique σ′ ∈ Q and h1 ∈ H1 such that τσ = σ′h1. From the cocycle condition, we have
that

valΛ(Uσh1 − Uσ′) = valΛ(Uσ′σ′(Uh1 − 1)) ≥ valΛ(Uσ′) + valΛ(Uh1 − 1) ≥ a+ c1 + 1.

Moreover, τσ(α)Uτσ = σ′(α)Uσ′h1 . From these two observation and the fact that
valΛ(α) > −c1, we can conclude that

valΛ(τσ(α)Uτσ − σ′(α)Uσ′)) > a+ 1.

Consequently,
valΛ(Uττ(MQ)−MQ) > a+ 1.

Therefore valΛ(M
−1
Q Uττ(MQ)− 1) ≥ a+ 1, since valΛ(M

−1
Q ) ≥ 0. □

Corollarry 1. In accordance with the hypotheses of Lemma 5, it is possible to identify
an M such that τ 7→M−1Uττ(M) is trivial for all τ ∈ H. In other words, the 1-cocycle
h 7→ Uτ is a 1-coboundary of the form Uτ = Mτ(M)−1, where M ≡ 1 mod pk and
valΛ(M − 1) ≥ a− c1.

Proof. The Lemma 5 is applied repeatedly to construct a sequence (Mm)m∈N such that
for all m ∈ N, the following holds:

(1) valΛ(Mm − 1) ≥ a− c1 +m and Mm − 1 ∈ pkMd(Λ̃);
(2) val((

∏n
m=0Mm)

−1Uττ(
∏n

m=0Mm)) ≥ a+ n+ 1 for all τ ∈ H.

Since Λ̃ is complete with respect to the topology defined by valΛ, property (1) implies
that the product M =

∏∞
m=0Mm converges in GLd(Λ̃). Furthermore, by passing to the

limit, we obtain that M − 1 ∈ pkMd(Λ̃) and that valΛ(M − 1) ≥ a − c1. Property (2)
guarantees that M−1Uττ(M) = 1 for all τ ∈ H. □

In addition to considering approximating descent (to ΛH,n) using approximations rel-
ative to valΛ, it is also necessary to keep track of p-adic approximations when doing
descent. A preliminary lemma in this direction (which will be improved by bootstrap-
ping in the subsequent corollary) is as follows:

Lemma 6. Let δ ∈ (0,+∞], a ∈ [c2+c3+δ,+∞] and b ∈ [max(a+c2, 2c2+2c3+δ),+∞].
Let H be an open subgroup of H0, let n ≥ n(H), and let U = 1+ pkU1 + pkU2 such that

U1 ∈Md(ΛH,n), valΛ(U1) ≥ a− valΛ(p
k);

U2 ∈Md(Λ̃
H), valΛ(U2) ≥ b− valΛ(p

k).
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Then for any γ ∈ Γ̃H satisfying n(γ) ≥ n, there exists M ∈ 1 + pkMd(Λ̃
H) such that

valΛ(M − 1) ≥ b− c2 − c3 and M−1Uγ(M) = 1 + pkV1 + pkV2, where V1 and V2 satisfy

V1 ∈Md(ΛH,n), valΛ(U1) ≥ a− valΛ(p
k);

V2 ∈Md(Λ̃
H), valΛ(U2) ≥ b− valΛ(p

k) + δ.

The inclusion of the (generally trivial) case where various estimation parameters
(a, b, δ) are infinite is justified by the fact that it allows us to avoid making separate
remarks when working with the 1-cocycle g 7→ Ug at a value Uγ that might equal 1 (i.e.,
Uγ − 1 = 0).

Proof. If p = 0 in Λ̃, the assertion is self-evident. Therefore, we proceed on the assump-
tion that p ̸= 0 in Λ̃. The given estimates on the values of valΛ(Ui) force valΛ(U) = 0.
By (TS2) 4., we have that

valΛ(RH,n(U2)) ≥ b− valΛ(p
k)− c2 ≥ a− valΛ(p

k).

By (TS3), there exists V ∈Md(Λ̃
H) such that (γ − 1)(V ) = (RH,n − 1)(U2) and

valΛ(V ) ≥ valΛ(RH,n(U2)− U2)− c3 ≥ min(valΛ(RH,n(U2)), valΛ(U2))− c3,

with valΛ(U2) ≥ b−valΛ(pk) > b−valΛ(pk)−c2. Consequently, valΛ(V ) ≥ b−valΛ(pk)−
c2 − c3. Let us now define

V1 := U1 +RH,n(U2) ∈Md(ΛH,n) and M := 1 + pkV ∈Md(Λ̃
H).

In this event, we have that valΛ(M − 1) = valΛ(p
kV ) ≥ b − c2 − c3 > 0 (thus M is

invertible and valΛ(M) = 0) and the matrix V1 ∈Md(ΛH,n) satisfies

valΛ(V1) ≥ min{valΛ(U1), valΛ(RH,n(U2))} ≥ a− valΛ(p
k).

Since M−1 = 1− pkV + p2kV 2− . . ., it is possible to express M−1 as 1− pkV + p2kV 2N ,
where N ∈Md(Λ̃

H) satisfying valΛ(N) = 0. We proceed to compute:

M−1Uγ(M)− 1− pkV1 = (1− pkV + p2kV 2N)U(1 + pkγ(V ))− (1 + pkV1)

= U + pkUγ(V )− pkV U − p2k(V Uγ(V )− V 2NUγ(M))− 1− pkU1 − pkRH,n(U2)

= pk(U2 −RH,n(U2) + Uγ(V )− V U − pk(V Uγ(V )− V 2NUγ(M))),

where the final equality employs the identity U = 1+pk(U1+U2). Since U2−RH,n(U2) =
(1− γ)(V ), we obtain that M−1Uγ(M) = 1 + pkV1 + pkV2, where

V2 := (U − 1)γ(V )− V (U − 1)− pk(V Uγ(V )− V 2NUγ(M)) ∈Md(Λ̃
H).

However, by the definition of U , we have that

valΛ(U − 1) ≥ valΛ(p
k) + min{valΛ(U1), valΛ(U2)},

and this is at least a since b ≥ a. Therefore, we have obtained two lower bounds:

valΛ((U − 1)γ(V )) ≥ b− valΛ(p
k)− c2 − c3 + a ≥ b− valΛ(p

k) + δ,
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thus, valΛ(V (U − 1)) ≥ b− valΛ(p
k) + δ. Furthermore,

valΛ(V Uγ(V )− V 2NUγ(M)) ≥ 2valΛ(V ),

since the other terms vanish. Consequently,

valΛ(p
k(V Uγ(V )− V 2NUγ(M))) ≥ valΛ(p

k) + 2(b− valΛ(p
k)− c2 − c3)

= b− valΛ(p
k) + b− 2c2 − 2c3 ≥ b− valΛ(p

k) + δ.

Thus, it follows that valΛ(V2) ≥ b− valΛ(p
k) + δ, thereby concluding the proof.ˇ □

The application of the lemma will result in a discernible enhancement that is devoid
of any of U1, U2 and a.

Corollarry 2. Let δ ∈ (0,+∞] and let b ∈ [2c2 + 2c3 + δ,+∞]. Let H be an open
subgroup of H0 and pick n ≥ n(H). Let U ∈ 1+pkMd(Λ̃

H) be such that valΛ(U−1) ≥ b,
then for any γ ∈ Γ̃H satisfying n(γ) ≤ n, there exists an M ∈ 1 + pkMd(Λ̃

H) such that
valΛ(M − 1) ≥ b− c2 − c3 and

M−1Uγ(M) ∈ 1 + pkMd(ΛH,n).

It should be noted that, given that valΛ(M − 1) ≥ b − c2 − c3 > 0, it follows that
M ∈ GLd(Λ̃

H). Consequently, the appearance of M−1 in the conclusion is justified.

Proof. The case p = 0 in Λ̃ is again trivial, so we may and do assume p ̸= 0 in Λ̃. Let
us define a := b − c2 ≥ c2 + c3 + δ. Furthermore, let us define U1,1 = 0 ∈ Md(ΛH,n)

and U2,1 = U ∈ Md(Λ̃
H). By repeatedly applying the results of Lemma 6, we obtain

matrices Mn (n ≥ 0) such that Mn ∈ 1 + pkMd(Λ̃
H) such that

(1) valΛ(Mn − 1) ≥ b− c2 − c3 + nδ > 0 and
(2) (M0M1 . . .Mn)

−1Uγ(M0 . . .Mn) = 1 + pk(U1,n + U2,n) with U1,n ∈ Md(ΛH,n)

and U2,n ∈ Md(Λ̃
H) satisfying valΛ(U1,n) ≥ a − valΛ(p

k) and valΛ(U2,n) ≥ b −
valΛ(p

k) + nδ for all n ≥ 0.

Since Λ̃H is complete, (2) implies that the product M :=
∏∞

n=0Mn converges in
GLd(Λ̃

H). Furthermore, we have that M ∈ 1+pkMd(Λ̃
H) and valΛ(M−1) ≥ b−c2−c3 >

0, therefore, M ∈ GLd(Λ̃
H). From (2), it follows that M−1Uγ(M) ∈ 1 + pkMd(ΛH,n)

because ΛH,n is closed in Λ̃H with respect to the topology defined by valΛ. □

We now establish another result concerning the cohomological triviality of certain
1-cocycles. This incorporates a p-adic estimate on the trivialising 0-cochain.

Proposition 3. Let U : G0 → GLd(Λ̃) be a continuous 1-cocycle, with σ 7→ Uσ. Let
us assume that that for some open normal subgroup G of G0, we have valΛ(Uσ − 1) >

c1 + 2c2 + 2c3 and Uσ ∈ 1 + pkMd(Λ̃) for all σ ∈ G with some k ∈ N. In this case,
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there exists a matrix M ∈ 1 + pkMd(Λ̃) such that valΛ(M − 1) > c2 + c3 (consequently,
M ∈ GLd(Λ̃

H)) and that the 1-cocycle σ 7→ Vσ = M−1Uσσ(M) is trivial on H := G∩H0

in GLd(ΛH,n(G)).

Proof. Given that valΛ(Uσ − 1) > 0, it follows that valΛ(Uσ) = 0. By Corollary 1,
there exists M1 ∈ 1 + pkMd(Λ̃) such that valΛ(M1 − 1) > 2c2 + 2c3 > 0 (which implies
that valΛ(M1) = 0) and that the 1-cocycle τ 7→ U ′

τ = M−1
1 Uττ(M1) is trivial on H.

Furthermore it is evident that valΛ(U
′
σ) = 0 for all σ ∈ G0. Since the restriction to H

is trivial, the 1-cocycle U ′ is the inflation of a 1-cocyle Γ̃H = G0/H → GLd(Λ̃
H), we

will continue to denote by U ′.

We now select a γ ∈ G/H ⊂ Γ̃H such that n(γ) = n(G). It follows that U ′
γ − 1 ∈

pkMd(Λ̃
H) and that

valΛ(U
′
γ − 1) = valΛ(M

−1
1 (Uγ − 1)γ(M1) +M−1

1 γ(M1 − 1) +M−1
1 − 1)

≥ min{valΛ(Uγ − 1), valΛ(M1 − 1)} > 2c2 + 2c3.

It is therefore possible to apply Corollary 2 with n = n(γ) = n(G), U = U ′
γ, b =

valΛ(U
′
γ − 1) (which is infinite, if U ′

γ = 1) and δ = b2c2 − 2c3 > 0. This yields a matrix
M2 ∈ 1 + pkMd(Λ̃

H) such that valΛ(M2 − 1) > c2 + c3 > 0 (and thus valΛ(M2) = 0),
and that M−1

2 U ′
γγ(M2) ∈ GLd(ΛH,n(G)).

Define M := M1M2 ∈ 1 + pkMd(Λ̃
H). This ensures that the following conditions are

met:

(1) valΛ(M − 1) ≥ min{valΛ(M1 − 1), valΛ(M2 − 1)} > c2 + c3,
(2) the 1-cocycle τ 7→ Vτ = M−1Uττ(M) is trivial on H (so it is the inflation of a

1-cocycle Γ̃H → GLd(Λ̃
H)), Vγ ∈ GLd(ΛH,n(G)), and

(3)

valΛ(Vγ − 1) = valΛ((M
−1
2 − 1)U ′

γγ(M2) + (U ′
γ − 1)γ(M2) + γ(M2 − 1))

≥ min{valΛ(M2 − 1), valΛ(U
′
γ − 1)} > c2 + c3 > c3 > 0

For any τ ∈ Γ̃H , since G/H lies in CH , it follows that τγ = γτ . Consequently, Vττ(Vγ) =
Vτγ = Vγτ = Vγγ(Vτ ), which implies γ(Vτ ) = V −1

τ Vττ(Vτ ). We are now in a position to
apply Lemma 6 with n = n(γ) = n(G), Vτ , U1 = V −1

γ and U2 = τ(Vγ) to conclude that
Vτ ∈ GLd(ΛH,n(G)) (nota bene, U2 ∈ GLd(ΛH,n(G)) as a consequence of (TS2) 3.). Since
the choice of τ was arbitrary from Γ̃H , this completes the proof. □

2.3. Application to S-representations.

Let S be a Banach algebra and let Λ̃ satisfy the Tate-Sen conditions. A OS-
representation of G0 is a free OS-module of finite rank with a continuous OS-linear
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action of G0. The term dimension is employed to denote the rank of the underlying
OS-module.

Let Λ̃+ (respectively Λ+
H,n, if H ⊂ H0 is open and n ∈ N) be the ring of integers in Λ̃

(respectively ΛH,n) for the valuation valΛ (i.e. the set of x satisfying valΛ(x) ≥ 0).

With regard to OS-representations, the following theorem can be stated in order to
prove the existence of descent, with a strong form of uniqueness.

Theorem 2. Let T be a d-dimensional OS-representation of G0, V = S⊗OS
T and k be

an integer such that valΛ(pk) > c1+c2+c3. Let G be a distinguished subgroup of G0 that
acts trivially on T/pkT , let H = G ∩H0 and let n ≥ n(G). Then Λ̃+ ⊗OS

T contains a
unique free Λ+

H,n-submodule D+
H,n(T ) of rank d satisfying the following properties

(1) D+
H,n(T ) is fixed under H and stable under G0;

(2) the natural map Λ̃+ ⊗Λ+
H,n

D+
H,n(T )→ Λ̃+ ⊗OS

T is an isomorphism;
(3) D+

H,n(T ) has a basis over Λ+
H,n which is c3-fixed by G/H (i.e if γ ∈ G/H, then

the matrix W of γ in this basis verifies valΛ(W − 1) > c3).

It should be noted that the uniqueness of the proposition ensures that D+
H,n(T ) is an

actual subset of Λ̃+ ⊗OS
T , rather than merely an abstract Λ+

H,n-linear isomorphism.

Proof. Let v1, . . . , vd be a basis of T over OS and let Uσ = (uσ
i,j) be the matrix describing

the action of an element σ ∈ G0, that is, σ(vj) =
∑d

i=1 u
σ
i,jvi. Then σ 7→ Uσ is a

continuous morphism from G0 to GLd(OS), which can also be regarded as a continuous
1-cocycle on G0 with values in GLd(OS) ⊂ GLd(Λ̃

+). by virtue of our hypothesis, for
any σ ∈ G, the corresponding Uσ lies in 1 + pkMd(OS). Consequently, we may apply
Proposition 3 to obtain a matrix M ∈ GLd(Λ̃) that satisfies valΛ(M − 1) > c2 + c3
(and thus M ∈ GLd(Λ̃

+)) such that the cocycle σ 7→ Vσ = M−1Uσσ(M) is trivial on
H and has values in GLd(ΛH,n(G)) ∩ GLd(Λ̃

+) = GLd(Λ
+
H,n(G)). Let M = (mi,j) and

ek =
∑d

j=1 mj,kvj. Then we have that for σ ∈ H

σ(ek) =
d∑

j=1

σ(mi,j)σ(vj) =
d∑

i=1

(
d∑

j=1

uσ
i,jσ(mj,k)

)
vi = ek,

that is, the basis e1, . . . , ed of Λ̃+ ⊗OS
T over Λ̃+ is fixed under the action H.

Furthermore, if γ ∈ G/H, then the matrix W describing the action of γ in the basis
e1, . . . , ed is of the form M−1Uσσ(M), where σ ∈ G is a lift of γ. Consequently, we have
that valΛ(W −1) > c2+c3 > c3. It can therefore be concluded that the Λ+

H,n-submodule
generated by e1, . . . , ed verifies the desired properties and, thus, the existence of such a
submodule is established.
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In order to demonsrate the uniqueness, let us fix γ ∈ CH satisfying n(γ) = γ. Let
us now consider two bases, of Λ̃+ ⊗OS

T over Λ̃+, namely e1, . . . , ed and e′1, . . . , e
′
d,

which are fixed under the action of H. Let W and W ′ be the matrices in GLd(Λ
+
H,n)

(where n ≥ n(G)), which describe the action of γ in the two bases, respectively. Then
valΛ(W − 1) > c3 and valΛ(W

′ − 1) > c3 hold. Let B ∈ GLd(Λ
+
H,n) be the change-of-

basis matrix that converts the ei-coordinates to the e′i-coordinates. Thus, B is invariant
under the action of H and W ′ = B−1Wγγ(B). According to Proposition 3, this implies
that the coefficients of B are in ΛH,n (and therefore in Λ+

H,n), which implies that the
respective ΛH,n-spans of e1, . . . , ed and e′1, . . . , e

′
d coincide. □

Remark 5. For the sake of simplicity, let us retain the assumptions of Theorem 2. If
we define DH,n(T ) = ΛH,n ⊗Λ+

H,n
D+

H,n(T ), then DH,n(T ) is a free ΛH,n-module of rank

d and is the unique ΛH,n-submodule of Λ̃ satisfying the properties

(1) DH,n(T ) is fixed under H and stable under G0;
(2) the natural map Λ̃⊗ΛH,n

DH,n(T )→ Λ̃⊗OS
T is an isomorphism;

(3) DH,n(T ) has a basis over ΛH,n which is c3-fixed by G/H.

3. Ring theoretic constructions

3.1. Brief overview of the theory of Witt vectors.

As will become evident in due course, we will frequently be making use of Witt
vectors. Therefore, it seems prudent to provide a brief summary of the basic outline of
the theory, but we assume here that the reader has some previous experience with the
ring of Witt vectors. For a comprehensive and self-contained development, we direct
the reader to [Ser79], Ch. II, §4-§6.

Let A be a (commutative) ring of characteristic p, where p is a prime number. We
call A perfect if the Frobenius map φ : a 7→ ap is an isomorphism. The objective of the
theory of Witt vectors is to construct a ring W (A), which is a so-called strict p-ring.

Definition 7. A p-ring is a ring B that is Hausdorff and complete for the topology
defined by a specified decreasing collection of ideals, namely, b1 ⊃ b2 ⊃ . . ., such that
bnbm ⊆ bn+m for all n,m ≥ 1 and B/b1 is a perfect Fp-algebra (i.e. p ∈ m1).

A ring B is said to be a strict p-ring if it satisfies the additional conditions that
bi = piB for all i ≥ 1 (that is, B is p-adically Hausdorff and complete, and B/pB is a
perfect Fp-algebra) and p is not a zero-divisor.

The principal result is that if A is a perfect ring of characteristic p, then there exists
a unique (up to a unique isomorphism) strict p-ring W (A) with residue ring A. This
ring is called the ring of Witt vectors over A. Due to the uniqueness of this functor,
every map f : A→ B induces a map f̃ : W (A)→ W (B). In particular, the Frobenius
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map φ : x → xp lifts to an automorphism of W (R), given by (ai) 7→ (0, ap0, a
p
1, . . .),

so the subset pnW (A) ⊂ W (A) consists of Witt vectors (ai), where ai = 0, when
0 ≤ i ≤ n−1. Since A is perfect, it follows by projection to the first n Witt components
that W (A)/pnW (A) ∼= Wn(A). Hence, W (A) ∼= lim←−n

Wn(A).

Example 1. If A = Fp, then W (A) = Zp. In general, if k is a perfect finite field of
characteristic p, then W (k) is the ring of integers of the unique unramified extension of
Qp whose residue field is k. (See the proposition below.)

As is commonly known, for every p-ring B, there is a unique set-theoretic section
[·]B : B/b1 → B of the natural reduction map, where [1]B = 1. This is defined by

[x]B = limn→∞ x̃p−n
pn

∈ B, where b̃ ∈ B is any choice of lifting of b ∈ B/b1. This is
referred to as the Teichmüller map. Consequently, every element of a strict p-ring B
endowed with the p-adic topology (relative to which it is Hausdorff and complete) can
be expressed as x =

∑∞
n=0 p

n[xn] with xn ∈ B/pB.

Now, given two elements x, y of W (A), one can also write from the theory of Witt
vectors

x+ y =
∞∑
n=0

pn[Sn(xi, yi)] and xy =
∞∑
n=0

pn[Pn(xi, yi)],

where Sn and Pn ∈ Z[Xp−n

i , Y p−n

i ]0≤i≤n are universal homogeneous polynomials of degree
1 (if degXi = deg Yi = 1). As an illustration, we have S0(X0, Y0) = X0 + Y0 and

S1(X0, X1, Y0, Y1) = X1 + Y1 +
1
p
((X

1
p

0 + Y
1
p

0 )p) − X0 − Y0. It is therefore possible to
define W (A) as the set

∏∞
n=0 A with the addition and multiplication defined by Sn and

Pn.

Proposition 4. If A is a perfect Fp-algebra and B is a p-ring, then the natural reduction
map Hom(W (A), B) → Hom(A,B/m1) (which makes sense since A = W (A)/pW (A)
and p ∈ b1) is bijective. In general, for a strict p-ring B, the natural map

Hom(B, B)→ Hom(B/pB, B/b1)

is bijective for every p-ring B.

In particular, since B and W (B/pB) satisfy the same universal property in the cate-
gory of p-rings for any strict p-ring B, strict p-ring are precisely of the form W (A) for
perfect Fp-algebras A.

Proof. If h ∈ Hom(B, B), then the associated reduction map h : B/pB → B/b1 uniquely
determines h due to the functorial property of [·]B. Conversely, if h ∈ Hom(B/pB, B/b1),
then it is necessary to ascertain whether the B → B map defined by the following way
is a ring homomorphism:

β =
∑

[βn]Bp
n 7→

∑
[h(βn)]Bp

n
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It respects multiplicative identity elements. The additivity and multiplicativity of the
map can be demonstrated by the universal polynomials Sn, Pn ∈ Z[Xp−n

i , Y p−n

i ]0≤i≤n,
whose existence can be proven in a manner analogous to the case of Witt vectors. These
polynomials determine the ring structure for any p-ring. □

As a consequence of this proposition, if K is a p-adic field with a perfect residue
field k, then OK (the ring of integers of K) endowed with the filtration by powers
of its maximal ideal mK , namely {mi

K}i≥1, is a p-ring. It follows that there exists
a unique and injective W (k) → OK map as the lifting of W (k)/pW (k)

∼−→ Ok/mK .
Consequently, OK/pOK is a vector space over k, with basis {1, π, . . . , πeK−1}, where π is
a uniformiser and eK = vK(p) is the ramification index of mK . Therefore, by successive
approximation and the p-adic completeness and separatedness of OK , it follows that
OK is a free W (k)-module of rank eK . Similarly, K is a totally ramified (because the
residue fields coincide) finite extension of K0 = W (k)[1

p
] of degree e. We call K0 the

maximal unramified subfield of K.

Remark 6. Witt vectors can also be approached from a category-theoretic perspective
via differential rings. This is because the Witt vector functor is in fact a right-adjoint
functor of the forgetful functor from the category of λ-rings to the category of (com-
mutative) rings. For further insight into this intriguing approach, one may consult the
work of Borger ([Bor]).

It has been shown that if k is perfect, then W (k) is the unique complete discrete
valuation ring which is absolutely unramified, with residue field k. However, if k is not
perfect, the situation becomes considerably more complex. It is sufficient to mention
here that one of Matsamura’s theorem, namely

Theorem 3 ([Mat87], pp 223-225). Let (A,mA, kA) be a complete local ring, and
(B,mB, kB) an absolutely unramified discrete valuation ring of characteristic 0 (i.e.,
mB = pB). Then for every homomorphism f : kB → kA, there exists a local (i.e.,
g(mB) ⊂ mA) homomorphism g : B → A which induces f on the ground field.

implies the existence of the following ring.

Definition 8. Let k be a field of characteristic p. The Cohen ring C(k) is the unique
(up to non-unique [!] isomorphism) absolutely unramified discrete valuation ring of
characteristic 0, whose residue field is k.

3.2. The ring R.

Notation 1. From this point onwards, K will be used to denote a p-adic field (for
a fixed p prime), OK its ring of integers, mK the maximal ideal of OK , and k its
residue field, which is perfect with characteristic p. We fix an algebraic closure K. The
Galois group of any extension L/K in K is denoted by Gal(K/L) = GL, and let CK

be K̂ endowed with its unique absolute value extending the given one on K. For the
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remainder of this discussion, we will use χ to denote the cyclotomic character on GK0 .
W = W (k) is the ring of Witt vectors and K0 = FrW = W [1/p] is its quotient field.
From the theory of Witt vectors rkW (OK) = [K : K0] = eK = vK(p). Furthermore, if π
is a generator of mK , then 1, π, π2, . . . , πeK−1 is a basis of OK over W and also K over
K0. From now on, v is the normalised (i.e. v(p) = 1) valuation of CK (or any subfield).
Consequently, v(π) = 1

eK
.

Let A be a perfect ring of characteristic p.

Definition 9.
R(A) := lim←−

φ

A,

That is, an element of R(A) is a (xn)n∈N sequence in A satisfying xp
n+1 = xn.

Remark 7. From xp = 0 follows that xp
n = xn−1 = 0 for any n ≥ 1, thus R(A) is

perfect.

The following well-known fact will be referenced frequently in the following sections;
therefore, it is beneficial to include it here for the sake of future reference.

Lemma 7. For a, b ∈ OK, if a ≡ b mod mK, then ap
n ≡ bp

n
mod mn+1

K , where
p = chark.

Now let A be a Hausdorff and p-adically complete ring, i.e. A ∼= lim←−A/pnA.

Proposition 5. There is a bijection between R(A/pA) and the set

S = {(x(n))n∈N | x(n) ∈ A, (x(n+1))p = x(n)}.

Proof. For an x = (xn)n∈N ∈ R(A/pA) choose an arbitrary lifting x̂n ∈ A for every xn.
Now because of x̂p

n+1 ≡ x̂n mod pA, for n,m ∈ N

x̂pm+1

n+1 ≡ x̂pm

n mod pm+1A

is also satisfied (here we use Lemma 7). Hence x̂pn

n is Cauchy, that is, the limit

x(n) := lim
n→∞

x̂pn+m

n+m

exists and independent of the choice of the liftings. Then the map x 7→ (x(n))n∈N defines
a R(A/pA) → S bijection with the inverse map induced by the modulo p reduction
A→ A/pA. □

As a consequence of the proposition we can identify R(A/pA) with the set S and
operations

(xy)(n) = (x(n)y(n)), (x+ y)(n) = lim
m→∞

(x(n+m) + y(n+m))p
m

.
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Definition 10. R := R(OCK
/pOCK

) = R(OK/pOK) and vR(x) := vp(x
(0)). Sometimes

we call R the perfectisation of OCK
/pOCK

.

Notice that R is a (non-discrete) valuation ring as vR(R) = Q≥0 ∪ {∞}. Moreover,
vR(x) = ∞ ⇔ x = 0 and vR(xy) = vR(x) + vR(y). It is also straightforward to
demonstrate that vR(x+ y) ≥ min{vR(x), vR(y)}, and since

vR(x) ≥ pn ⇔ vp(x
(n)) ≥ 1⇔ xn = 0,

therefore
{x ∈ R | vR(x) ≥ pn} = Ker(θn : R→ OCK

/pOCK
, x 7→ xn).

Consequently, the topology induced by vR coincides with the inverse limit topology
where the factors are given the discrete topology, hence R is complete. Consider the
quotient field FrR (R is a domain, because it has a valuation)

FrR = {x = (x(n))n∈N | x(n) ∈ CK , (x
(n+1))p = x(n)},

with the extension of vR: v(x) = vp(x
(0)).

FrR is a complete nonarchimedean perfect field of characteristic p > 0, with OFrR =
R whose maximal ideal is mR = {x ∈ FrR; | v(x) > 0} and its residue field is isomorphic
to k (residue field of K). This is evident from the fact that the map

R
θ0→ OK/pOK

∼= k

is surjective and has mR as kernel. k is perfect and R is complete, so one can define
the section s : k → R given by a 7→ ([ap

−n
])n∈N, where [ap

−n
] = (ap

−n
, 0, 0, . . .) is the

Teichmüller representative of ap−n . What is more, it will also be a homomorphism.

Proposition 6. FrR is algebraically closed.

Proof. It is sufficient to demonstrate that a monic polynomial f(x) ∈ R[x] of degree
d possesses a root in R, given that R is a valuation ring. Let us define the map
θn : R → OCK

/pOCK
by (xi)i∈N 7→ xn. We may then define fm ∈ (OCK

/pOCK
)[x] as

θm(f), where we apply θm to coefficients. According to the Hensel lemma, for each fm
there exists a lifting f̃m with coefficients in OCK

. Since CK is known to be algebraically
closed, there exists a set of roots of f̃m (with multiplicity) in OCK

: {α1,m, . . . , αd,m}.
The mod pOCK

reduced elements of the set, namely {α1,m, . . . , αd,m} ⊂ OCK
/pOCK

,
are therefore roots of fm. If we were to arrange a sequence of these roots of fm in a
p-power compatible manner, we would obtain a root of f that is desired. It should be
noted that αp

i,m+1 is a root of fm+1, however, it is unfortunate that OCK
/pOCK

is not a
domain, which means that fm always has infinitely many roots.

Note that, due to the fact that fm(α
p
i,m+1) = fm+1(αi,m+1)

p = 0 in OCK
/pOCK

, we
have that

d∏
j=1

(αp
i,m+1 − αj,m) ∈ pOCK

.
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(This is because, in fact, f̃m(x) can be expressed as
∏

j(x − αj,m).) Given that, there
are d terms in the product, one of them, say αp

i,m+1 − αj(i),m, must lie in p
1
dOCK

.
Consequently, the application of the Lemma 7 demonstrates that αpd

i,m+1 − αpd−1

j(i),m lies
in pOCK

. In other words, for each integer 1 ≤ i ≤ d, there exist an integer 1 ≤ j(i) ≤ d

such that αpd

i,m+1 = αpd−1

j(i),m. Therefore, the finite set

{αpd

1,m+1, . . . , α
pd

d,m+1}
forms an inverse system under the p-power maps. These are the roots of fm+1−d,
consequently, if we set ri,m = αpd

i,m+1−d ∈ OCK
/pOCK

for all m ≥ 0 and 1 ≤ i ≤ d, then
the sets {r1,m, . . . , rd,m} constitute an inverse system under the p-power mapping. It is
thus possible to select a sequence r = (ri(m),m) for all m ≥ 0 such that rpi(m+1),m+1 =

ri(m),m for all m. Consequently, r ∈ R and θm(f(r)) = fm(ri(m),m) = 0 for all m, which
implies that f(r) = 0 in R. □

Example 2. An important element of R is

ε = (ε(n))n∈N = (1, ζp, ζp2 , . . .),

where ζp is a p-th root of unity. vR(ε− 1) = v((ε− 1)(0)) = lim
n→∞

(ε(0) + (−1)(n))pn .
Hence if p > 2, then

lim
n→∞

pnv(ζnp − 1) = lim
n→∞

pn

pn−1(p− 1)
=

p

p− 1
,

where the second equation follows from the facts that Galois conjugates have the same
absolute value and that the product of the Galois conjugates of ζpn − 1 is the value
obtained by substituting 1 into the pn-th cyclotomic polynomial, which is p. (The pn-
th cyclotomic polynomial is also irreducible over Qp due to the Eisenstein criterion.) If
p = 2, then

lim
n→∞

2nv(ζ2n + 1) = lim
n→∞

2nv((ζ2n − 1) + 2) = lim
n→∞

2nmin{v(ζ2n − 1), 1} = 2.

In conclusion, vR(ε− 1) = p
p−1

. This implies that ε− 1 lies in the maximal ideal mR of
R. This can also be seen by the fact that θ0(ε) = 1, so the image of ε is 1 in the residue
field k of R. Consequently, ε− 1 lies in mR.

Notation 2. From now on, let ε be as in Example 2. Furthermore, let us denote
π := ε− 1.

3.3. The Galois action on R.

Let RL be defined as R(OL/pOL) = R(ÔL/pÔL) for any intermediate field K ⩾ L ⩾
K0. It is worth noting that this is functorial with respect to inclusions L ⊂ L′ among
extensions of K0 = W (k)[1

p
], via the natural injection:

RL = R(OL/pOL) ↪→ RL′ = R(OL′/pOL′).
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As noted, R is the valuation ring of FrR with respect to vR((x
(n))n∈N) = v(x(0)). In a

similar manner,

Lemma 8. Let K ⩾ L ⩾ K0 be an intermediate field, and ℓ its residue field inside k.
Then RL is the valuation ring in FrRL with respect to the restriction of the valuation
vR on FrR, and its residue field is ℓ. In particular, RL is integrally closed in FrRL.

Notice that vR may have trivial restriction to RL, e.g., when L is a finite extension
of K0.

Proof. We have already seen the second part of the theorem, namely that

RL
θ0→ OL/pOL → ℓ

gives us that ℓ is the residue field.

In order to demonstrate the first part, it is sufficient to show that if x, y ∈ RL − {0}
and x divides y in R, then x also divides y in RL. To demonstrate this, we may
consider p-power compatible sequences in ÔL, as this respects divisibility due to the
multiplication defined after Proposition 5. It is evident that if a divides b in OCK

, then
the analogous statement holds in ÔL. □

As previously demonstrated, R and FrR are perfect rings, Hausdorff and complete
with respect to vR. Consequently, they are also Hausdorff and complete with respect
to any ϖ ∈ m− {0}. Since ÔL is closed in OCK

, it follows that RL is also closed in R,
hence RL is ϖ-adically separated and complete for any ϖ ∈ mRL

− {0}, and similarily
FrRL is complete with respect to vR.

The group GK0 = Gal(K/K0) acts naturally on R and FrR.

Proposition 7. Let K ⩾ L ⩾ K0 be an intermediate field. Then

RGL = RL, (FrR)GL = Fr(RL).

The residue field of RGL is kL = k
GL, the residue field of L.

Proof. This is a straightforward consequence of Theorem 1, which states that CGL
K = L̂

and (OCK
)GL = OL̂ = lim←−

n

OL/pOL. Furthermore, k ↪→ R ↠ k induces the map

kL ↪→ R ↠ kL, with the identity map as composition. Consequently, the residue field
of RH is kL. The proof is analogous for the case of FrR. □

Remark 8. In the event that v(L×) is discrete (which occurs when L is a finite exten-
sion of K0), then RGL = kL. Indeed, it remains to be shown that if x = (x(n))n∈N ∈ RGL

with v(x) = v(x(0)) > 0, then x = 0. However, since v(L̂×) = v(L×) is discrete, it fol-
lows from v(xn) = p−nv(x(0)) that v(x) = v(x(n)) =∞.
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The action of GK0 on FrR leaves the valuation vR invariant, and thus the action is
continuous with respect to the vR-adic topology. It should be noted, however, that the
action of GK0 on R is not continuous with respect to the discrete topology. This is
due to the fact that it is possible to provide an explicit element, namely ε, which has a
non-open stabiliser. Indeed, as observed, ε ∈ 1 +mR and clearly g(ε) = εχ(g) holds for
any g ∈ GK0 , where χ : GK0 → Z×

p is the p-adic cyclotomic character. As charR = p,
1+mR with its natural Zp-module structure is torsion-free. Consequently, for x, y ∈ Zp

we have that εx = εy if and only if x = y. Hence g(ε) = ε if and only if χ(g) = 1.
Nevertheless, χ does not possess an open kernel, and thus the stabiliser of ε is not open.

Since R is complete, we obtain a unique local k-algebra map k[[π]] → R satisfying
π 7→ ε− 1, which depends on the choice of ε. However, its image does not:

Lemma 9. The image of k[[π]] in R is independent of the choice of ε.

Proof. Consider a second choice of ε, denoted by ε′. In this case, ε′ = εa for some
a ∈ Z×

p (this is sensible, given that ε belongs to the multiplicative group of 1 + mR,
which has p-adically separated and complete 1+cmR neighbourhoods of 1). The unique
local k-algebra automorphism of k[[π]] given by u 7→ (1 + π)a − 1 composed with the
map k[[π]]→ R resting on ε gives us the map which rests on ε′. □

In view of the lemma, we may define the canonical subfield

Definition 11.
E0 := k((π))

in FrR, to be the fraction field of the canonical image of k[[π]] in R for any choice of
ε. From the definition of π we can calculate at ease the action of GK0 and φ:

g(π) = (π + 1)χ(g) − 1, if g ∈ GK0 and φ(π) = (π + 1)p − 1.

Set
Kcyc

0 = lim−→
n∈N

K0(ε
(n)).

Then, by the above calculation, ε = (ε(n))n∈N is a unit of RKcyc
0

(since vR(ε− 1) > 1).

For GKcyc
0

= Gal(K/Kcyc
0 ), R

G
K

cyc
0 = RKcyc

0
by Proposition 7. Since v(π) = p

p−1
,

π ∈ R
G

K
cyc
0 , k ⊂ R

G
K

cyc
0 , and R

G
K

cyc
0 is complete,

k[[π]] ⊂ R
G

K
cyc
0 and E0 ⊂ (FrR)

G
K

cyc
0 .

The following notion exists uniquely for every field K (up to a unique isomorphism).

Definition 12. Let Kperf be the smallest perfect field containing K. This is called the
perfect closure of K.
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Since R
G

K
cyc
0 and (FrR)

G
K

cyc
0 are perfect and complete, we have

̂k[[π]]perf ⊂ R
G

K
cyc
0 and Êperf

0 ⊂ (FrR)
G

K
cyc
0 .

Moreover, equality is established in place of mere containment.

Proposition 8.

̂k[[π]]perf = R
G

K
cyc
0 = RKcyc

0
, Êperf

0 = (FrR)
G

K
cyc
0 .

Proof. It suffices to prove that O
Êperf

0

is dense in RKcyc
0

, for which it would even be

sufficient to demonstrate that OEperf
0

is dense in RKcyc
0

. Since RKcyc
0

= lim←−OKcyc
0
/pOKcyc

0
,

it would follow from

θm(OEperf
0

) = OKcyc
0
/pOKcyc

0
∀m ∈ N.

To demonstrate this, it suffices to show that OKcyc
0
/pOKcyc

0
⊂ θm(OEperf

0
). Set πn =

ε(n) − 1, then
OK0 [ε

(n)] = W [πn], OKcyc
0

= ∪nW [πn].

In light of the discussion in Section 3.1, OKcyc
0
/pOKcyc

0
, viewed as a k-algebra, is gen-

erated by πn-s, the reduction of πn mod pOKcyc
0

. In conclusion, it suffices to show
that πn is contained in θm(k[[π]]

perf) for all m,n ∈ N. This can be achieved through a
straightforward calculation. □

Since FrR is algebraically closed, there exists a unique unique separable closure of
E0 inside FrR, which we denote by Es

0. In order to provide a more focused thesis, we
will only present the following theorem without providing a proof. The proof, however,
can be found in [FO] (§ 4.2.3.).

Theorem 4. Es
0 is dense in FrR and stable under GK0. Moreover, for any g ∈ GKcyc

0
,

the restriction g|Es
0

is in Gal(Es
0/E0), and the map

Gal(K/Kcyc
0 )→ Gal(Es

0/E0)

is an isomorphism.

In fact, this theorem is a special case of a much deeper theorem in the theory of norm
fields. There is a functorial equivalence between the categories of finite extensions of
Kcyc

0 in K and finite separable extensions of E0 in FrR. (see [BC], Theorem 13.4.3.)

4. Fontaine’s rings

4.1. Étale φ-modules.

In this section, we fix a field E with char(E) = p and a separable closure Es. Let
GE denote Gal(Es/E). It must be emphasised that we do not assume E to be perfect;
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thus, in general, the p-power endomorphism φ is not surjective. It follows from Fermat’s
little theorem and the fact that there are at most p roots of xp = x that (Es)φ=1 = Fp.

The Cohen ring C(E) of E will be denoted here by OE . This is the unique (up
to isomorphism) absolutely unramified discrete valuation ring of characteristic 0, with
residue field equal to E. Furthermore, let E be the field of fractions of OE . In summary,
the setup is as follows: OE = lim←−n

OE/p
nOE , OE/pOE = E, E = OE [

1
p
], and OE ’s

maximal ideal is generated by p. Moreover, if E ′ is another field with the same property
as before, then there exists a continuous isomorphism E → E ′ that induces the identity
map on E. (If E is perfect then this isomorphism is unique and OE may be identified
with W (E).) In addition, a continuos Frobenius endomorphism φ can be provided on
E . It satisfies φ(OE) ⊂ OE . (Once again, in the case of a perfect field, there is a unique
such endomorphism.)

For the remainder of this subsection, we shall fix a choice of E and φ.

Let F be a finite extension of E with ring of integers OF . It should be recalled that
an extension F/E is said to be unramified if it satisfies conditions

(1) p generates the maximal ideal of OF ;
(2) F = OF/pOF is a separable extension of E.

The functoriality of Cohen rings (see Theorem 3) implies that for any homomorphism
f : E → F , where F is a field of characteristic p, there is a unique local homomor-
phism C(E) → C(F ), which induces f on the residue fields. Consequently, for each
finite separable extension F of E, there exist a unique (up to a unique isomorphism)
unramified extension of F = Fr C(F ) of E whose residue field is F . Furthermore, there
exists a unique φ′ : F → F Frobenius endomorphism such that φ′

E = φ. We may write
F = EF and continue to denote φ′ as φ. By the same argument if σ : F → F ′ is a
homomorphism such that σ|E = Id, we obtain an induced map EF → EF ′ . Moreover,
this commutes with φ. In paricular, if F/E is Galois, then EF/E is also Galois, and

Gal(F/E) = Gal(EF/E).

Since Es =
⋃

F⩽Es finite F , we set

Eur :=
⋃

F⩽Es finite

EF .

It follows that Eur/E is Galois with Gal(Eur/E) = GE. Let Êur be the completion of
Eur. Then we have

OÊur = lim←−OÊur/pOÊur

as its ring of integers. Furthermore, there persists the Frobenius φ on Eur satisfying
φ(OEur) ⊂ OEur , which extends by continuity to OÊur and Êur. Similarly, the group GE

acts on both OÊur and Êur. In addition, this action commutes with the aforementioned
φ.



28 PIGLER

Firstly, we shall formulate the statement corresponding to the basic identities
(Es)GE = E and (Es)φEs=1 = Fp in this context.

Lemma 10.

OGE

Êur
= OE ; (Êur)GE = E ;

(OÊur)
φ=1 = Zp; (Êur)φ=1 = Qp.

Proof. Since both GE and φ fix p, and Êur = OÊur [
1
p
], it is sufficient to prove the

integral claim. Moreover, the inclusions OE ↪→ OGE

Êur
and Zp ↪→ (OÊur)φ=1 are local

homomorphisms between p-adically separated and complete rings, consequently, it suf-
fices to show surjectivity mod pn (n ≥ 1), given that surjectivity (exactness) is a local
property. This is to be demonstrated by induction on n.

The formation of GE-invariants is a left-exact functor, which implies that the exact
sequence

0 −→ OÊur

mod p−→ OÊur −→ Es −→ 0

of OE -modules gives a linear injection (OÊur)GE/p(OÊur)GE ↪→ (Es)GE = E of modules
over OE/pOE = E. However, the ranks of these modules are identical, thus establishing
a bijection. Since (Es)φ=1 = Fp = Zp/pZp, the surjectiveness of Zp ↪→ (OÊur)φ=1 follows
in an analogous manner.

We now consider the case where n > 1. Let us assume that the map OE/p
n−1OE ↪→

(OÊur)GE/pn−1(OÊur)GE is surjective and let ξ ∈ (OÊur)GE . We must identify an ele-
ment x ∈ OE such that ξ ≡ x mod pnOE . We can choose y ∈ OE such that ξ ≡ y
mod pn−1OE , so now ξ − y = pn−1ξ′ with ξ′ ∈ (OÊur)GE . By virtue of the preceding
paragraph, there exists a z ∈ OE such that ξ′ ≡ z mod pOE . Consequently, we have
that ξ ≡ y + pn−1z mod pnOE with y + pn−1z ∈ OE . Analogous arguments can be
employed in the case of Frobenius invariants. □

Before proceeding, it is essential to define a concept that is of paramount importance
to us.

Definition 13.

(1) A module M over OE is said to be a φ-module over OE , if it is equipped with a
semi-linear map φ : M →M , that is:

φ(x+ y) = φ(x) + φ(y), φ(λx) = φ(λ)φ(x), ∀ x, y ∈M, λ ∈ OE .

(2) A module D over E is said to be a φ-module over E, if it is equipped with a
semi-linear map φ : D → D.

Set
Mφ := OE ⊗OE M, Dφ := E ⊗E D.
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Consequently, the assignment of a semi-linear map φ : M → M is equivalent to the
assignment of an OE -linear map Φ : Mφ →M . A similar argument can be made in the
case of D.

Definition 14.

(1) A φ-module M over OE is said to be étale if it is of finite type and Φ : Mφ →M
is an isomorphism.

(2) A φ-module D over E is said to be étale if dimE D < ∞ and if there exists an
OE-lattice M of D, which is stable under φ such that M is an étale φ-module
over OE .

Remark 9. It should be noted that an OE -lattice M is a OE -submodule of finite type
that contains a basis.

Furthermore, it is a simple matter to verify that if M is an OE -module of finite type
with an action of φ, then M is étale if and only if M/pM is étale as an E-module.

While not discussed in detail here, it should be noted that the category of p-adic
representations of GE is equivalent to the category of étale φ-modules over E . The
equivalence of categories is established by the functor M(V ) = (Êur⊗Qp V )G, while the
quasi-inverse is given by V(D) = (Êur ⊗E D)φ=1.

4.2. The rings A,B,AK and BK.

Let us consider the case where E = E0 = k((π)). We denote E0 the corresponding
field. Thus E0 = OE0/pOE0 . Let K∞ = lim−→n

K(µn). We shall now fix the following
notational conventions:

Definition 15.

A = OÊur
0
; B = Êur0 ;

AK = AGK∞ ; BK = BGK∞ ;

EK = AK/pAK .

In particular,

AK0 = AGE0 = OE0 , BK0 = BGE0 = E0, Aφ=1 = Zp, Bφ=1 = Qp and EK0 = E0.

In conclusion, BK0 = AK0 [
1
p
] and B is the p-adic completion of the maximal unramified

extension of BK0 inside B̃ = W (FrR)[1
p
] (see the next section), and A ⊂ B is the ring

of integers.

From Theorem 4, we can infer that the completion of Es
0 with respect to the

valuation vR is FrR and Gal(Es
0/E0) = GKcyc

0
. Moreover, EK = (Es

0)
GK∞ and

GK∞
∼= Gal(Es

K/EK) ∼= Gal(EurEK
/EEK

). The following lemma is a corollary of the
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structure theorem for local fields of equal characteristic (see [Ser79], §4.) and the ob-
servation that the residue field of EK is k

GK∞ = kK∞ .

Lemma 11. If πK is a uniformiser of EK, the EK = kK∞((π)).

In fact, the ring AK0 = OE0 can be explicitly described as follows.

AK0 =

{∑
n∈Z

λnπ
n | λn ∈ W (k), λn → 0 as n→ −∞

}
.

Indeed,

Proposition 9. If πK ∈ AK is such that πK ∈ EK is a uniformiser, then AK is the
p-adic completion of W (k)[[πK ]][

1
πK

].

Proof. The notation SK will be used to denote the p-adic completion of W (k)[[πK ]][
1
πK

].
It follows from the preceding lemma that SK/pSK = EK , which implies that the inclu-
sion SK ↪→ AK is surjective mod p. Since SK is p-adically complete, this map is in
fact an isomorphism. □

Proposition 10. Every element of AK can be uniquely expressed as
∑

n∈Z anπ
n
K, where

(an)n∈Z is a sequence in W (k) such that limn→−∞ an = 0.

Proof. Let s : EK → AK denote the section of the reduction x 7→ x mod p, given by
the formula

s(
∑
k∈Z

bnπ
n
K) =

∑
n∈Z

[bn]π
n
K .

If x ∈ AK , then let us define recursively the sequence (xn)n∈N in AK by putting x0 := x

and xn+1 :=
xs(xn)

p
. Then we have

x =
∑
n≥0

pns(xn).

□

In conclusion, we shall once more define a category. To this end, we shall employ the
following notation:

ΓK := Gal(K∞/K).

Definition 16. An étale φ-module D over OEEK
(or EEK

) is said to be an étale (φ,Γ)-
module over OE (respectively E) if it is endowed with a continuous semi-linear action
of ΓK, which commutes with φ.

As was the case in the preceding section, we can also state an analogous equivalence
of categories.

Proposition 11. The category of p-adic representations of GK is equivalent to the
category of étale (φ,Γ)-modules over EEK

.
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4.3. The field B̃ and some of its subrings.

Definition 17. Let K ⩾ L ⩾ K0 be an intermediate field (possibly of infinite degree
over K0). Let us define

Ã+
L := W (RL), and ÃL := W (FrRL).

In the event that L = K, we will shortly denote Ã+ = W (R) and Ã = W (FrR).

The functoriality of Witt vectors allows for the unique endowment of these rings with
the Frobenius φ and the Galois action of GK0 = Gal(K/K0), as demonstrated in section
3.1. In explicit terms,

φ(
∞∑
n=0

pn[xn]) =
∞∑
n=0

pn[xp
n] σ(

∞∑
n=0

pn[xn]) =
∞∑
n=0

pn[σ(xn)], if σ ∈ GK0 .

Then φ commutes with the action of GK0 . We may now apply Proposition 7 to the
Witt coordinates to derive the following proposition.

Proposition 12. Let K ⩾ L ⩾ K0 be an intermediate field. Then

(Ã+)GL = Ã+
L , (Ã)GL = ÃL.

For k ≥ 0, let the map wk : Ã→ R ∪ {∞} (resp. for ÃL, Ã
+
L) be defined by

wk(x) = min
i≤k

vR(xi), where x =
∑
i≥0

pi[xi].

It is evident that for any elements x, y ∈ Ã (resp. in ÃL, Ã
+
L),

(1) wk(x) =∞ if and only if x ∈ pk+1Ã (resp. in pk+1ÃL, p
k+1Ã+

L);
(2) wk(x+ y) ≥ min{wk(x), wk(y)};
(3) wk(xy) ≥ mini+j≤k{wi(x) + wj(y)},

that is, wk is a semi-valuation on Ã (resp. on ÃL, Ã
+
L). Furthermore, it can be demon-

strated with ease that

(4) wk(φ(x)) = pwk(x);
(5) wk([λ]x) = wk(x) + vR(λ) ∀λ ∈ FrR (resp. in FrRL);
(6) wk(σ(x)) = wk(x) ∀σ ∈ GK0 .

Definition 18. The weak topology on ÃL and Ã+
L is the one defined by the semi-

valuations wk.

This means that for a sequence {an}n∈N and element a in ÃL or Ã+
L , an → a for

the weak topology if and only if ∀k ≥ 0 wk(an − a) → 0 as n → ∞. In fact,
the weak topology on Ã is the product topology of the vR-adic topology under the
identification of W (FrR) =

∏
n≥0 FrR. In other words, it is the inverse limit topology
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of the product topologies on each Wn(FrR) = (FrR)n. It can be therefore stated that
Ã for the explicit topology described above is complete and Hausdorff. Moreover, the
map (xn)n∈N 7→

∑∞
n=0 p

n[xn] is a homeomorphism between (FrRL)
N (resp. RN

L) and ÃL

(resp. Ã+
L).

Remark 10. The ring Ã (resp. Ã+) is naturally endowed with another topology,
which is the finest topology, for which the projection Ã → FrR (resp. Ã+ → R) is
continuous, where FrR (resp. R) is endowed with the discrete topology. This is referred
to as the strong topology, which is in fact the p-adic topology on Ã or Ã+. However,
the Galois action will not be continuous with respect to this topology, as it is not even
for R.

Proposition 13. φ acts continuously on ÃL and Ã+
L , endowed with the weak topology.

Furthermore, we have that

Ãφ=1
L = (Ã+

L)
φ=1 = Zp.

Proof. The continuity of φ is evident from the preceding property (4) of wk. If x =∑∞
n=0 p

n[xn] is invariant under φ, then xp
n = xn, so xn ∈ Fp for all n ∈ N. The claim

thus follows from the fact that W (Fp) = Zp. □

The following definition is now to be added.

Definition 19.

B̃+
L := Fr Ã+

L = Ã+
L [
1

p
] B̃L := Fr ÃL = ÃL[

1

p
],

and if L = K, then the subscripts are omitted, in accordance with previous notation.

Every element B̃L (resp. B̃+
L) is of the form

∑∞
n=n0

pn[xn], where n0 ∈ Z and (xn)n≥n0

is a sequence of elements of FrRL (reps. RL). The actions of φ and GK0 extends by
Qp-linearity to B̃L (resp. B̃+

L). Furthermore,

B̃φ=1
L = (B̃+

L)
φ=1 = Qp, B̃GL = B̃L and (B̃+)GL = B̃+

L .

Furthermore, we define the element π as [ε]− 1 in Ã. Consequently, the image of π in
FrR is given by π = ε− 1. Hence, we have

φ(π) = (1 + π)p − 1 and g(π) = (1 + π)χ(g) − 1, if g ∈ GK0 .

4.4. The field of overconvergent elements and some of its subrings.

Let r > 0 and x =
∑

n≥0 p
n[xn] ∈ Ã.
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Definition 20.

Ã†,r :=

{
x ∈ Ã | inf

n≥0

(
wn(x) +

nrp

p− 1

)
≥ 0 and lim

n→∞

(
wn(x) +

nrp

p− 1

)
=∞

}
=

{
x ∈ Ã | inf

n≥0

(
vR(xn) +

nrp

p− 1

)
≥ 0 and lim

n→∞

(
vR(xn) +

nrp

p− 1

)
=∞

}
The equality in question is upheld by the following lemma:

Lemma 12. limn→∞(vR(xn) + nr) = ∞ if and only if limn→∞(wn(x) + nr) = ∞.
Moreover, if the aforementioned condition is satisfied, then infn≥0(vR(xn) + nr) =
infn≥0(wn(x) + nr).

Proof. Since wn(x) ≤ vR(xn) by definition, it is sufficient to prove the non-trivial direc-
tion (and inequality). To this end, define Kn = sup{k | wn(x) = vR(xk), k ≤ n}, which
is evidently at most n. If limn→∞ Kn =∞, then

lim
n→∞

(wn(x) + nr) = lim
n→∞

(vR(xKn) + nr) ≥ lim
n→∞

(vR(xKn) +Knr) =∞.

In the event that limn→∞ Kn = N <∞, then for sufficiently large values of n
lim
n→∞

(wn(x) + nr) = lim
n→∞

(vR(xN) + nr) =∞.

With regard to the remaining part of the lemma, it can be observed that
inf
n≥0

(wn(x) + nr) = inf
n≥0

(vR(xKn) + nr) ≥ inf
n≥0

(vR(xKn) +Knr) ≥ inf
n≥0

(vR(xn) + nr).

□

Remark 11. It should be noted that Ã+ ⊂ Ã†,r for all r > 0.

For the sake of simplicity, we set s(r) = nrp
p−1

.

Definition 21.

vr : Ã
†,r → R≥0 ∪ {∞}, vr(x) := inf

n∈N
(vR(xn) + s(r)) = inf

n≥0
(wn(x) + s(r))

If r1 ≥ r2, then

(1) Ã†,r1 ⊂ Ã†,r2 and
(2) vr1(x) ≤ vr2(x) for all x ∈ Ã†,r.

Hence we can define a function fx : R≥r → R by fx(t) = vt(x).

Proposition 14 (Newton polygon of x). Assume r > 0 and x =
∑

n∈N p
n[xn] ∈ Ã†,r.

(1) The function fx is an increasing, piecewise linear, concave, and continuous func-
tion. All slopes of fx belong to p−1

p
Z≥0. Furthermore, fx has finitely many slopes

and cusps.
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(2) Let us denote with ∂lfx (resp. ∂rfx) the left (resp. right) derivation of fx.
Then p−1

p
∂lfx(t) (resp. p−1

p
∂rfx(t)) is the maximal (resp. minimal) integer N

satisfying vt(x) = vR(xN) +
tpN
p−1

. Consequently, fx(t) is derivable at t0 > r if
and only if there exists exactly one n ≥ 0 such that vt0(x) = vR(xn) + ns(t0),
and n = p−1

p
f ′
x(t0).

(3) If x0 ̸= 0, then ∃r0 ≥ r such that for any t ≥ r0 : fx(t) = vR(x0). In particular,
the slope of the last segment of fx is 0.

Proof. The aforementioned observation regarding vr leads to that fx is increasing. If
r0 ≥ r and x ∈ Ã†,r0 , then there are only finite number of n ∈ N for which fx(r0) =
vR(xn) + ns(r0). These integers may be denoted by n1 < n2 < . . . < nk. Consequently,
for any t ≥ r, we have that

fx(t) = min
1≤i≤k

{vR(xni
) + nis(t)} = fx(r0) + min

1≤i≤k

{
pni

p− 1
(t− r0)

}
.

Therefore, it can be stated that

fx(t)− fx(r0)

t− r0
=

{
pn1

p−1
, if t ≥ r0

pnk

p−1
, if t ≤ r0

,

which implies (1) and (2).

For (3), it can be observed that for t ≥ r, we have that

vt(x) = inf(vR(x0), inf
n≥1

vR(xn) + ns(t)).

Here infn≥1(vR(xn) + ns(t)) ≥ vr(x) + s(t) − s(r) holds. It follows that, for t ≥ r
sufficiently large, the second term is invariably greater, thus establishing fx(t) = vR(x0).

□

Lemma 13. Ã†,r is a subring of Ã, which is stable under the action of GK0, and
φ : Ã†,r → Ã†,pr is a bijection.

Proof. If x, y ∈ Ã†,r, then both wn(x + y) + sn ≥ min{wn(x) + s(r)n,wn(y) + s(r)n}
and wn(xy) + s(r)n ≥ min i+ j ≤ n{(wi(x) + is(r)) + (wj(y) + js(r))}. In particular,
both x + y and xy belong to Ã†,r. wn is invariant under the Galois action, hence Ã†,r

is indeed stable under GK0 . Moreover, the last part of the lemma is implied by

wn(φ(x)) + ns(pr) = pwn(x) + ns(pr) = p(wn(x) + ns(r)).

□

Furthermore, the following assertion is also true.

Lemma 14. Let x, y ∈ Ã†,r and α ∈ FrR.

(1) vr(x) =∞ if and only if x = 0;
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(2) vr(x+ y) ≥ min{vr(x), vr(y)};
(3) vr(xy) = vr(x) + vr(y);
(4) vpr(φ(x)) = pvr(x);
(5) vr(px) = vr(x) + s(r);
(6) vr([α]x) = vR(α) + vr(x);
(7) vr(σ(x)) = vr(x) for all σ ∈ GK0.

Proof. (1), (2), (4), (5), (6) and (7) is evident from the definition of vr and partly
a by-product of the proof of the preceding lemma. The sole noteworthy item is (3).
Furthermore, it was demonstrated that vr(xy) ≥ vr(x) + vr(y). The objective is to
demonstrate fxy(t) = fx(t) + fy(t). By Proposition 14 we know that for any r′ ≥ r
(except for the finitely many cusps), there exists a unique n and m, respectively, such
that vr′(x) = vR(xn) + ns(r′) and vr′(y) = vR(ym) +ms(r′). Observe that

xy = [xnyn]p
m+n + (x[xn]p

n)y + [xn]p
n(x[ym]p

m).

By virtue of the fact that vr(xy) ≥ vr(x) + vr(y) and that vr′(x) < vr′(x − [xn]p
n)

and vr′(y) < vr′(y − [ym]p
m), it follows that the last two terms of the left-hand side of

the aforementioned expression is strictly greater then vr′(x) + vr′(y). This implies, in
accordance with (2) and (5), that

vr′(x) = vR(xnyn) + (n+m)s(r′) = vr′(x) + vr′(y).

In other words, fxy(t) = fx(t) + fy(t) for every t ≥ r,with the exception of the cusps.
By virtue of the continuity, the desired equality holds for all t ≥ r. □

The preceding lemma demonstrates that vr is a valuation on Ã†,r. By virtue of
Lemma 14, (5), the valuation can be extended to the following subring of B̃, such that
the results of Proposition 14 and Lemma 14 will also hold on this ring.

Definition 22.

B̃†,r = Ã†,r[
1

p
],

Remark 12. If x =
∑∞

n=n0
pn[xn]B̃

+, where n0 ∈ Z, then we can also define v0(x) as
well, as infn vR(xn). Then the usual properties are still hold, with the exception that
fx has infinitely many slopes and cusps in the neighbourhood of 0.

Remark 13. Note that for every 0 ̸= a ∈ FrR, there is an integer N ≥ 0 such that
pN [a] belongs to Ã†,r, hence [a] ∈ B̃†,r and it is a unit.

It should be noted that Ã†,r is not the ring of integers of B̃†,r for vr. This is illustrated
by the case, where r = p−1

p
. In this instance, vr( [p̃]p ) = vR(p)+ (−1)s(r) = 0). However,

x ∈ Ã†,r if and only if it belongs to the ring of integers of x ∈ B̃†,r ∩ Ã (that is,
vr(x) ≥ 0). Furhtermore, we have the following lemma:
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Lemma 15. For x =
∑∞

n=n0
pn[xn] ∈ B̃†,r, define x− =

∑
n≥0 p

n[xn] and x+ =∑
n≤−1 p

n[xn]. If x ∈ B̃†,r satisfies vr(x) ≥ 0, then x− ∈ Ã†,r, x+ ∈ B̃+, and
vt(x

±) ≥ vt(x) for all t ≥ r.

Proof. The condition vR(xn) + ns(r) ≥ 0 for all n ∈ Z implies that x− ∈ Ã†,r and
that if n ≥ −1, then xn ∈ R, thus x+ ∈ B̃+. It is evident that the other part of the
proposition also holds. □

Remark 14. It can be observed that, in accordance with property (6) of Lemma 14,
if x ∈ Ã†,r and a ∈ R (with vR(a) ≥ 0), then vr(x) ≥ vR(a) if and only if x ∈ [a]Ã†,r.

Proposition 15. Ã†,r is Hausdorff and complete with respect to the vr-adic topology.

Proof. From (1) in the Lemma 14, it is clear that Ã†,r is Hausdorff.

Let (ai)i∈N be a sequence in Ã†,r that converges to 0. Then ai also tends to 0 in Ã as
well with respect to the weak topology. Consequently, since Ã is complete with respect
to the weak topology, the series

∑∞
i=0 ai converges to an element a ∈ Ã. The objective

is now to show that a is even in Ã†,r. This element satisfies wn(a) ≥ infi∈N wn(ai) for
all n. Since limn→∞wn(ai) + ns(r) = ∞ and limi→∞(infn∈N wn(ai) + ns(r)) = ∞, it
follows that limn→∞wn(a) + ns(r) =∞. Therefore, a ∈ Ã†,r. □

Remark 15. It is additionally beneficial to highlight another straightforward fact. If
x ∈ Ã†,r and

∑∞
n=0 p

n[xn] converges to x in Ã, then the sum converges to x in Ã†,r as
well.

Lemma 16. Let r < 0.

(1) The action of GK0 is continuous on Ã†,r.
(2) The Frobenius map φ : Ã†,r → Ã†,pr is a homeomorphism.

Proof. (2) is an immediate consequence of Lemma 14, (5).

In order to prove (1), since vr(σ(x)) = vr(x), it is sufficient to show that for a fixed
x =

∑∞
n=0 p

n[xn] ∈ Ã†,r, the function σ 7→ [σ(x)] is continuous. In the event that x =
[α], with α ∈ FrR, then since σ 7→ σ(α) is also continuous, it follows that σ 7→ [σ(α)]

is also, provided that the weak topology is considered on Ã. Consequently, for every
n ∈ N wn([σ(α)]− [α])→∞ as σ → 1. Moreover, we have from basic properties of wn

that wn([σ(α)]− [α]) ≥ vR(α), which implies that vr([σ(α)]− [α])→∞ as σ → 1. The
general case can be derived from the observation, that if x =

∑∞
n=0 p

n[xn], then the
function σ 7→ σ(x) is the sum of the functions

∑∞
n=0(σ 7→ pn[σ(xn)]), which converges

uniformly in Ã†,r. □
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Definition 23.
Ã† := lim−→

r>0

Ã†,r,

which is endowed with topology of direct limit.

Lemma 17. x =
∑

n≥0 p
n[xn] is a unit in Ã†,r if and only if x0 ̸= 0 and vR(xn)+ns(r) >

vR(x0) for all n ≥ 1.

Proof. We shall first assume that x0 ̸= 0 and vR(xn) + ns(r) > vR(x0) is satisfied for
all n ≥ 1. Since x0 ∈ R, [x0] is a unit in Ã†,r. Hence we may assume that x0 = 1 by
multiplying with [x0]

−1 if necessary. Consequently, we may express x as 1 − x′, where
x′ ∈ Ã†,r and vr(x

′) > 0. Then
∑

n≥0(x
′)n converges in Ã†,r to the inverse of x.

Now, for the converse, if x =
∑

n≥0 p
n[xn] is a unit in Ã†,r with inverse y =∑

n≥0 p
n[yn], then x0y0 = 1 mod p, which implies that x0 ̸= 0. As limn vR(xn) +

ns(r) limn vR(yn) +ns(r) = +∞, there are only a finite number of xm and yn for which
vr(x) = vR(xm) + ms(r) and vr(y) = vR(yn) + ns(r). Let m0 and n0 be the largest
such elements, respectively. In the event that m0 + n0 > 1, the coefficient of pm0+n0 in
xy = 1 is

[xm0+n0 ] + . . .+ [xm0yn0 ] + . . .+ [ym0+n0 ] = 0.

Consequently,

vR(xm0yn0) + (m0 + n0)s(r) ≥ min
i+j=m0+n0,

i ̸=m0

{vR(xiyj) + (m0 + n0)s(r)}

. In contrast, due to the choice of m0 and n0, we have that vR(xi)+vR(xj)+(m0+n0)r(s)
is strictly greater than vR(xm0) + vR(xn0) + (m0 + n0)r(s), which is a contradiction. It
can be concluded, therefore, that m0 = n0 = 0 and that for all n ≥ 1 vR(xn) + ns(r) >
vR(x0). □

Example 3. For r > p−1
p

, π
[π]

is a unit in Ã†,r. Indeed. π = [ε]− 1 =
∑

n≥ pn[xn] and

x0 = π = ε− 1. Furthermore n ≥ 1, xn is a polynomial in ε
1
pn − 1 of degree pn with no

constant term. Consequently, vR(xn) ≥ vR(ε
1
pn − 1) = 1

pn−1(p−1)
. Therefore, if r > p−1

p
,

it follows that vr( π
[π]
) = vR(xn) +ns(r)− vR(π) ≥ 1

pn−1(p−1)
+ p

p−1
(nr− 1) > 0, and thus

π
[π]

is a unit in Ã†,r.

Proposition 16. Every x ∈ Ã†,r
K can be expressed as x =

∑
n≥0 xn(p/π

r)k, where
xn ∈ Ã+

K and xn → 0 with respect to the weak topology.

Proof. Let x =
∑

n≥0 p
n[yn] ∈ Ã†,r

K , where yn ∈ FrRK , and such that vR(yn)+ns(r) ≥ 0
and vR(yn) + ns(r) → ∞ as n → ∞. By the preceding example, it follows that
x =

∑
n≥0(p/[π

r])[πryn], where [πryn] ∈ Ã+
K and tends to 0 with respect to the
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weak topology. It is therefore sufficient to demonstrate that p/[πr] can be written
as
∑

n≥1 xn(p/π
r)n, where xn ∈ Ã+

K and xn → 0. However,

p

[πr]
=

p

πr

πr

[πr]
=

p

πr

(
1 +

p

[πr]
β

)r

=
p

πr

(
1 +

p

[πr]
y

)
,

where β =
∑

k≥1 p
k−1[πr−1βk] ∈ (p, [π])Ã+

K . Consequently, p/[πr] =
∑

n≥1 y
n−1(p/πr)n.

□

Remark 16. As a direct consequence of the preceding lemma, we may conclude that
x is a unit in Ã†,r if and only if the only slope of fx is 0, and only for n = 0 does
0 = vr(x) = vR(xn) + ns(r) hold.

Corollarry 3. If x =
∑

n≥0 p
n[xn] ∈ Ã†,r such that [x0] ̸= 0, then there is an r0 > r

such that x
[x0]

is a unit in Ã†,r0.

Proof. For the sake of simplicity, we shall denote y = x
[x0]

. The preceding remark will
be used to prove the statement. By Proposition 14 (3), we may select an r1 ≥ r such
that for any t ≥ r1: fx(t) = vR(x0). Since fy(t) = fx(t) + vR(x0), it follows that
vt(y) = 0 and that y lies in Ã†,t for all t ≥ r1. Proposition 14 (2) indicates that, by
choosing a number r0 > r1, it also holds that n = p−1

p
f ′
y(r0) is the only integer for which

0 = vr0(y) = vR(yn) + ns(r0) holds. Consequently, since f ′
y(r0) = 0, it follows that x

[x0]

is indeed a unit in Ã†,r0 . □

Definition 24.
B̃† := lim−→

r>0

B̃†,r = Ã†[
1

p
]

is called the field of overconvergent elements. It is endowed with the direct limit topology.

Proposition 17. B̃† is a field.

Proof. Since p is invertible, it is sufficient to show that for a given x ∈ Ã†,r (with r > 0)
,it is invertible in Ã†,r0 for a suitable r0 ≥ r.

Claim: If y ∈ Ã†,r ∩ pÃ, then there exists a 0 ̸= a ∈ FrR such that [a]y
p
∈ Ã†,r.

Proof of the Claim. Given that wn(
y
p
) = wn+1(y), if we choose an 0 ̸= a with vR(a) >

s(r), then
wn([a]

y

p
) + ns(r) ≥ wn+1(y) + (n+ 1)s(r).

□

If 0 ̸= a ∈ FrR, then [a] is invertible in B̃†,r (Remark 13). Consequently, in light of
the claim, we may assume that for x =

∑
n≥0 p

n[xn], x0 ̸= 0. Accordingly, by Corollary
3, there exists an r0 > r such that x

[x0]
is invertible in Ã†,r0 and thus in B̃† as well. □
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Remark 17. These rings also have a geometrical interpretation.. Let Ar be the ring of
Laurent series f(T ) =

∑
n∈Z anT

n, where an ∈ W (k) = OK0 such that v(an) + nr ≥ 0
and that limn→−∞ v(an) + nr = +∞. If f ∈ Ar, we define ωr(f) := infn{vp(an) +
nr}. Then it can be demonstrated that ωr is a valuation on Ar and this ring can be
interpreted as the ring of analytic functions on the annulus {0 < v(T ) ≤ r}, which
are bounded by 1 with coefficients in W (k). Similarly, if we define Br as Ar[1

p
], then

Br is the ring of analytic functions on the annulus {0 < v(T ) ≤ r} whose coefficents
belong to K0. It can be demonstrated that (A1/reK , s(r)ω1/reK ) is homeomorphic to
(A†,r

K , vr). In a similar fashion, B1/reK is isomorphic to B†,r
K . This is the origin of the

term "overconvergence".

Let K be a finite extension of Qp. In a similar manner to that previously outlined in
this thesis, the following rings are now to be defined:

Definition 25.

B̃†,r
K := (B̃†,r)GK∞ ; B†,r = B̃†,r ∩B; B†,r

K = (B†,r)GK∞ ;

Ã†,r
K := (Ã†,r)GK∞ ; A†,r = Ã†,r ∩A; A†,r

K = (A†,r)GK∞ ;

B† = lim−→
r>0

B†,r; B†
K = lim−→

r>0

B†,r
K ;

A† = lim−→
r>0

A†,r; A†
K = lim−→

r>0

A†,r
K .

Let V be a p-adic representation of GK . Then

Definition 26.

D†(V ) := (V ⊗B†)GK∞

is a vector space of dimension ≤ dim(V ) over B†
K .

Definition 27. V is an overconvergent p-adic representation, if

D†(V )⊗B†
K
B† ∼= V ⊗B†.

Equivalently, if dimB†
K
(D†(V )) = dim(V ).

5. Applications of Sen’s method

In this chapter, we provide two applications of Sen’s method, as previously outlined.
The first is the classical example of Sen’s theory, while the second concerns the con-
struction of (ϕ,Γ)-modules.
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5.1. The field Cp and the Sen operator.

This section will present the classic example of Sen theory. This topic is not a central
focus of the thesis, and thus will be discussed from a purely historical perspective. The
results will be presented without detailed proof.

The first non-trivial example of a ring that satisfies the Tate-Sen conditions is the
field Cp = Q̂p with the p-adic valuation, valp, and the action of GK . This example
was first proposed by Tate in [Tat67]. Let L be a finite extension of K. For n ≥ 1,
let Ln = L(µpn) and set L∞ = lim−→n

Ln. Let HL = Gal(K/L∞) and ΓL = Gal(L∞/L).
Theorem 1 then implies that CHL

p = L̂∞, the completion of L∞ for valp. Moreover,
if n ∈ N and x ∈ L∞, it can be demonstrated that [Ln+k : Ln]

−1TrLn+k/Ln(x) is
independent of the choice of integer k, where x ∈ Ln+k, and that the map from L∞
to Ln thus defined extends uniform continuously to a map RL,n : L̂∞ → Ln. (see in
Hungarian, [Hev], §5.)

Proposition 18. Λ̃ = Cp satisfies the conditions (TS1), (TS2) and (TS3), with Λ̃HL =

L̂∞, ΛHL,n = Ln, RHL,n = RL,n and valΛ = valp, the constants c1, c2 > 0 and c3 >
1/(p− 1) can be chosen arbitrarily.

In the remainder of this section, we will assume that the constants c1, c2 > 0 and
c3 > 1/(p − 1) satisfy the inequality c1 + 2c2 + 2c3 < valp(12p). We will denote
n(L) = n(GL).

Proposition 19. Let S be a Banach algebra, T a d-dimensional OS-representation of
GK and V = S ⊗OS

T . Let L be a finite Galois extension of K such that GL acts
trivially on T/12pT and let n ≥ n(L). Then (S⊗̂Cp) ⊗S V contains a unique free
S ⊗ Ln-submodule DLn

Sen(V ) of rank d satisfying the following properties

(1) DLn
Sen(V ) is fixed under HL and stable under GK;

(2) the natural map (S⊗̂Cp)⊗S⊗Ln DLn
Sen(V )→ (S⊗̂Cp)⊗S V is an isomorphism;

(3) DLn
Sen(V ) has a basis over S ⊗ Ln which is c3-fixed by ΓL.

It follows that S/mx ⊗S DLn
Sen(V ) ≃ DLn

Sen(Vx).

Proof. This follows from Sen’s method (more precisely from Theorem 2 and Remark 5
and from the fact that Cp verifies the Tate-Sen conditions. The final part follows from
the proposition being applied to S/mx and from the fact that the image of S/mx ⊗S

DLn
Sen(V ) in (Ex ⊗ Cp)⊗Ex Vx satisfies conditions (1), (2) and (3). □

Let γ ∈ ΓL such that n(γ) ≥ n, then γ acts trivially on Ln and linearly on DLn
Sen(V ). If

Mγ is the matrix describing the action of γ in a DLn
Sen(V )-basis such that valp(Mγ−1) > 0,

then the logarithm log γ of γ can be defined as the series −
∑+∞

m=1(1 − γ)m/m. It is
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straightforward to show that log(γk) = k log γ. Since ΓL being a p-adic Lie group of
dimension 1, it follows that operator (logp χ(γ))

−1 is independent of the choice of γ.
We will denote it by ΘSen. Since the choice of γ is unrestricted, we may select γ from
the centre of Γ̃L. Consequently, the operator ΘSen commutes with the action of Γ̃L.
This in turn implies that the coefficients of its characteristic polynomial and minimal
polynomial are in S⊗K. The operator ΘSen is referred to as the Sen operator. If x ∈ X ,
the eigenvalues of ΘSen(x) are designated as the generalised Hodge-Tate weights of Vx.

Remark 18. Let n = n(L) and γ ∈ ΓL be such that n(γ) = n(L), and using the fact
that the matrix Mγ of γ in a c3-fixed basis of DLn

Sen(V ) satisfies valp(Mγ − 1) > c3 >
1/(p− 1), it can be concluded that the eigenvalues of logMγ valued > c3 and thus the
generalised Hodge-Tate weights of V possess p-adic value > 1/(p− 1)− n(L).

5.2. Tate-Sen condition for B̃†,r.

In order to facilitate comprehension, we are now recalling some of the notations that
have been employed thus far and introducing some new ones: K is finite extension
of Qp, with residue field kK . K0 = W (k)[1

p
] is the maximal unramified subfield of K

with ring of integers OK0 = W (k) and with residue field k. EK = kK((πK)) with
ring of integers denoted by E+

K := kK [[πK ]]. AK = (OK [[π]][π
−1])∧ and let us denote

A+
K := OK [[π]]. BK = AK [

1
p
]. EK/EK0 is totally ramified with index eK = [K : K0]

and EK0/EQp is unramified of degree fK . Therefore, dK = eKfK = [K : Qp] = [EK :

EQp ] = [BK : BQp ].4 Moreover, Ã+
K = W (RK) and ÃK = W (FrRK).

In this section, we demonstrate that if r > 0, then Λ̃ = B̃†,r satisfies the Tate-Sen
conditions with ΛHK ,n = φ−n(B̃†,pnr

K ) for valΛ = vr and for some maps RK,n : B̃†,r
K →

φ−n(B̃†,pnr
K ), defined below. For the sake of simplicity, we assume that r is an integer

≥ 1.

Proposition 20 (TS1). Let L/K be finite extensions of Qp. Fix an r > 0. Then, for
any δ > 0, there exists an α ∈ B̃†,r

L such that vr(α) > −δ and TrL∞/K∞(α) = 1.

It should be noted that δ > 0 was chosen here arbitrarily.

Proof. Proposition 7 implies that the map TrL∞/K∞ on the field FrRL coincides with
TrFrRL/FrRK

. Since the extension FrRL/FrRK is separable, there exists a β ∈ FrRL

such that TrL∞/K∞(β) = 1. Given that vR(φ
−n(β)) = p−nvR(β), it is possible to

assume that vR(β) is as small as desired; in particular, that vR(β) > max{−s(r),−δ}.
Consequently, we have TrL∞/K∞([β]) = 1 +

∑
k≥1 p

k[xk] in Ã with vR(xk) ≥ vR(β) >

−ks(r). Therefore, TrL∞/K∞([β]) ∈ Ã†,r and it is a unit, since vr(
∑

k≥1 p
k[xk]) > 0

(Lemma 17). Hence, the choice α = [β]/TrL∞/K∞([β]) is appropriate. □

4The latter two equalities are demonstrated by the Artin’s lemma.
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Let us define I = Z[1
p
] ∩ [0, 1) and let In = {x ∈ I | vp(x) ≥ −n} for n ≥ 0.

Consequently, In is a system of representatives for p−nZp/Zp and I is a system of
representatives of Qp/Zp. Note that if x lies in a perfect ring and i ∈ I, then xi is well
defined. If {xi}i∈I is a sequence, we say that xi → 0, if for any U open neighbourhood
of 0, |{i ∈ I | xi ̸∈ U}| <∞.

Lemma 18. Every x ∈ FrRQp can be written in a unique way as x =
∑

i∈I ε
iai(x),

where ai(x) ∈ EQp and ai(x)→ 0. Moreover, x ∈ RQp if and only if ai(x) ∈ E+
Qp

.

Proof. Since Fp is perfect, an element x ∈ φ−n(E+
Qp
) can be expressed as

∑
i∈In ε

iai(x),
where ai(x) ∈ E+

Qp
. The functions ai(·) are extended linearly to φ−n(EQp). Let k ∈ Z,

then x ∈ πkRQp if and only if ai(x) ∈ πkE+
Qp

for all i ∈ In. Consequently,

vR(x)− vR(π) < min
i∈In
{vR(ai(x))} ≤ vR(x).

Thus, the function x 7→ ai(x) is uniformly continuous on (EQp)
perf = ∪n≥0φ

−n(EQp). By
Proposition 8, (EQp)

perf is dense in FrRQp , therefore the functions ai extend to FrRQp ,
and every element x ∈ FrRQp may be written as

∑
i∈I ε

iai(x), where ai(x) ∈ EQp and
ai(x)→ 0.

Finally, if
∑

i∈I ε
iai(x) = 0 and xn :=

∑
i∈In ε

iai(x), then xn ∈ φ−n(EQp). Since
xn → 0, it follows that ai(x) = 0 for all i ∈ I. □

Corollarry 4. Every x ∈ ÃQp can be expressed in a unique way as x =
∑

i∈I [ε
i]ai(x),

where ai(x) ∈ AQp and ai(x)→ 0 with respect to the weak topology. Moreover, x ∈ Ã+
Qp

if and only if ai(x) ∈ A+
Qp

for any i ∈ I.

Proof. Let M := {x =
∑

i∈I [ε
i]ai(x) | ai(x) ∈ AQp , ai(x) → 0 w. r. t. vr}. Then, by

the preceding lemma, the map M → ÃQp is bijective mod p, and hence in general. A
similar argument can be employed to demonstrate the second part of the proposition.

□

Let
RQp,n : ÃQp → φ−n(AQp), ∀n ∈ N,

such that RQp,n(x) =
∑

i∈In [ε
i]ai(x). These maps extends to B̃Qp by Qp-linearity.

Proposition 21. The map RQp,n : B̃Qp → φ−n(BQp) is φ−n(BQp)-linear and is the
identity on φ−n(BQp). Let r be an integer, greater than 1. Then,

(1) RQp,n(Ã
†,r
Qp
) ⊂ Ã†,r

Qp
;

(2) if x ∈ B̃†,r
Qp

, then vr(RQp,n(x)) ≥ vr(x)− p/(p− 1);
(3) if x ∈ B̃†,r

Qp
, then vr(RQp,n(x)− x)→ +∞ as n→ +∞.
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Proof. From the preceding corollary, it can be deduced that the map is RQp,n : B̃Qp →
φ−n(BQp) is indeed φ−n(BQp)-linear and is the identity on φ−n(BQp).

If x ∈ Ã†,r
Qp

, then Proposition 16 implies that it can be expressed as
∑

k≥0 xk(p/π
r)k,

where xk ∈ Ã+
Qp

and xk → 0 with respect to the weak topology. The fact that
RQp,n(x) =

∑
k≥0RQp,n(xk)(p/π

r)k and that RQp,n(Ã
+
Qp
) ⊂ Ã+

Qp
(by Corollary 4) demon-

strates item (1).

Let x ∈ B̃†,r
Qp

. Since vr(π) = p/(p− 1) there exist k, ℓ ∈ Z such that pkπℓx ∈ Ã†,r
Qp

and
0 ≤ vr(p

kπℓx) < p/(p − 1). Consequently, by (1), vr(RQp,n(p
kπℓx)) ≥ 0, which implies

(2).

Finally, (3) follows from the fact that RQp,n(x)→ x as n→∞. □

Lemma 19. Let e1, . . . , edK be a basis of B†
K over B†

Qp. Them, for any m ≥ 0,
φ−m(e1), . . . , φ

−m(edK ) is a basis of B̃K over B̃Qp.

Proof. It can be demonstrated with ease that the map B†
K⊗B†Qp

B̃Qp → B̃K is injective.
Furthermore, by comparing dimensions, it can be shown that this map is surjective as
well. This proves the case where m = 0. For m ≥ 0, it is sufficient to observe that
φ : B̃K → B̃K is a bijection. □

The dual basis with respect to the perfect pairing (x, y) 7→ TrK∞/K0,∞(xy) is denoted
by e∗1, . . . , e

∗
dK

. Thus, an element x ∈ B̃K may be expressed as
∑dK

i=1 xiφ
−m(e∗i ), where

xi = TrK∞/K0,∞(xφ−m(ei)).(For further details, please refer to [FO], A. 3. 4.)

Definition 28. Define

RK,n(x) =

dK∑
i=1

RQp,n(xi)φ
−m(e∗i ),

where xi = TrK∞/K0,∞(xφ−m(ei)).

A straightforward calculation reveals that the map RK,n defined in this manner is
independent of the choice of basis and the choice of m ≥ 0. Moreover, it can be shown
that RK,n(B̃K) ⊂ φ−n(BK).

We will now prove that B̃†,r satisfies condition (TS2).

Proposition 22 (TS2). Let c2 ∈ ( p
p−1

,+∞) and r ∈ Z≥1. The map RK,n : B̃K →
φ−n(BK) is φ−n(BK)-linear and is the identity on φ−n(BK). Furthermore, there exists
n(K) such that if n ≥ n(K), then

(1) RK,n(B̃
†,r
K ) ⊂ B̃†,r

K ∩ φ−n(BK) = φn(B†,pnr
K );
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(2) if x ∈ B̃†,r
K , then vr(RK,n(x)) ≥ vr(x)− c2;

(3) if x ∈ B̃†,r
K , then vr(RK,n(x)− x)→ +∞ as n→∞.

Proof. The initial portion of the proposition is derived from Proposition 21.

Let e1, . . . , edK be a basis of B†
K over B†

Qp
, then there exists an s > 0 such that ei

and e∗i belong to B†,s
K . Furthermore, if pmr ≥ s, then φ−m(ei) ∈ φ−m(B†,pmr

K ) ⊂ B̃†,r
K .

This yields (1) with n(K) = m. It is possible to multiply the ei’s by pkπℓ such that
vr(φ

−m(ei)) ≥ 0 and e∗i ∈ Ãk for 1 ≤ i ≤ dK . Consequently, vr(φ−n(e∗i )) ≥ 0 for all
n ≥ m. Moreover, if δ = c2−p/(p−1) > 0, then vr(φ

−n(e∗i )) ≥ −δ for sufficiently large
n. In conclusion, for n(K) = max(n(δ),m), item (2) and (3) follow from Proposition
21 (2) and (3), respectively. □

Remark 19. It should be noted that with a modicum of ingenuity, it is possible to
make c2 arbitrary.

In order to prove the third condition (TS3), it is necessary to invoke a technical tool
concerning the action of ΓK = Gal(K∞/K) on B̃†,r

K . The proof can be found in [Col08]
(§9.) or in [Ber] (§23.).

Proposition 23. There exists an m(K) such that if γ ∈ ΓK with n(γ) ≥ m(K) and
s ≥ pn(γ)+1 and 1 ≤ i ≤ p− 1, then

(1) the map γ − 1 : [ε]iφ(B
†,s/p
K )→ [ε]iφ(B

†,s/p
K ) is invertible;

(2) For x ∈ [ε]iφ(B
†,s/p
K ), vs((1− γ)−1x) ≥ vs(x)− pn(γ)vR(π).

Proposition 24 (TS3). There exists c3 > 0 and m(K) ≥ n(K) such that if γ ∈ ΓK

and n ≥ max(n(γ),m(K)), then

(1) (1− γ) is invertible on (1−RK,n)(B̃
†,r
K );

(2) vr((1− γ)−1x) ≥ vr(x)− c3 if x ∈ (1−RK,n)(B̃
†,r
K ).

Proof. Let m(K) ≥ n(K) be as in Proposition 23. By Proposition 22, item (3) and
by the fact that for any m ≥ 1, Im = Im−1 ⊔ (

⊔p−1
i=1 ip

−m + Im−1), we may express an
element x of B̃†,r

K in the following form:

x = RK,n(x) +
∑

m≥n+1

p−1∑
i=1

xm,i, where

xm,i = [εip
−m

]RK,m−1([ε
−ip−m

]x) ∈ φ−m([ε]iφ(B†,rpm−1

K )),

where vr(xm,i) ≥ vr(x)− c2.
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It remains to select a γ ∈ ΓK such that n(γ) ≥ m(K) and let n ≥ n(γ). Once more,
by Proposition 23, 1− γ is invertible on [ε]iφ(B†,rpm−1

K ) and

vrpm((1− γ)−1φm(xm,i)) ≥ vrpm(φ
m(xm,i))− pn(γ)vR(π).

This implies that

vr((1− γ)−1xm,i) ≥ vr(xm,i)− pn(γ)−mvR(π),

moreover,

(1−RK,n)(x) = (1− γ)
∑

m≥n+1

p−1∑
i=1

(1− γ)−1xm,i.

This demonstrates the proposition with the constant c3 = c2+p/(p−1)+p−m(K)C. □

5.3. Overconvergent representations.

Proposition 25. The ring Λ̃ = B̃†,r satisfies the conditions (TS1), (TS2) and (TS3) for
Λ̃HL = φ−n(B̃†,pnr), valΛ = vr and RHL,n = RL,n, with arbitrary constants c1 > 0, c2 > 0
and c3 > 1/(p− 1).

Proof. The veracity of conditions (TS1), (TS2), and (TS3), respectively, follows from
Proposition 20, 22 and 24. □

Lemma 20. Let M ∈ 1 + pMd(ÃK) be such that there exist U, V ∈ 1 + pMd(AK)
satisfying Uγ(M) = MV , for any ΓH . It follows that M ∈ 1 + pMd(AK).

Proof. Let RK,0 : ÃK → AK be the mapping defined in the previous section and
N := (1−RK,0)(M). It must be verified that N = 0. For the sake of contradiction, let
k ∈ N be the largest integer such that N ∈ pkMd(AK) and let N be the image of p−kN
in Md(EK). Since RK,0 commutes with the action of γ and it is AK-linear, it follows
that Uγ(N) = NV , and therefore also Uγ(p−kN) = (p−kN)V . Upon reduction of this
identity mod pAK , we obtain that γ(N) = N . On the other hand, since RK,0(N) = 0,
it follows that RK,0(N) = 0. This implies that

0 = RK,0(γ(N)) = γ(RK,0(N)) = γ(N) = N.

Therefore, N ∈ pk+1Md(AK), which is contrary to the initial assumption. □

In the remainder of this section, we will fix some constants c1 > 0, c2 > 0 and
c3 > 1/(p− 1), such that c1 + c2 + 2c3 < vp(12p). Let T be a Zp-representation of GK ,
s > 0, and let L be a finite Galois extension of K.

Definition 29.

D†,s
L (T ) := (A†,s ⊗Zp T )

HL , D†,s
L,n(T ) := φ−n(D†,pns

L (T )).
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D†,s
L (T ) is an A†,s

L -module with Galois action of Γ̃L. D†,s
L,n(T ) is an A†,s

L,n = φ−n(A†,pns
L )-

module.

Theorem 5. Let K be a finite extension of Qp and let T be a Zp-representation of GK.
Let L be a finite Galois extension of K such that GL acts trivially on T/12pT . If n ≥
n(L), then D

†,(p−1)/p
L,n (T ) is the unique A

†,(p−1)/p
L,n -submodule of rank d of Ã†,(p−1)/p⊗Zp T

satisfying the following properties:

(1) D
†,(p−1)/p
L,n (T ) is fixed under HL and stable under G0;

(2) the natural map Ã†,(p−1)/p ⊗
A

†,(p−1)/p
L,n

D
†,(p−1)/p
L,n (T )→ Ã†,(p−1)/p ⊗Zp T is an iso-

morphism;
(3) the A†,(p−1)/p

L,n -module D†,(p−1)/p
L,n (T ) has a basis such that the corresponding matrix

Wγ of γ in this basis satisfies v(p−1)/p(Wγ − 1) > c3, for any γ ∈ ΓL.

Proof. Given that vp(12p) > c1 + 2c2 + 2c3, it follows immediately from Proposition
25 and Theorem 2 that the uniqueness of the module satisfying the above conditions
is guaranteed. It remains to verify that the module defined by Theorem 2 coincides
with (φ−n(A†,pn−1(p−1) ⊗Zp T ))HL . Nevertheless, the proof of Theorem 2 provides a
concrete construction of the module. If Uτ denotes the matrix corresponding to the
action of τ ∈ GK in a basis of T , then from Proposition 3 provides us with a matrix
M ∈ 1 + 12pMd(Ã

†,(p−1)/p) such that v(p−1)/p(M − 1) > c2 + c3 and that the cocycle
τ 7→M−1Uττ(M) is trivial on HL and has values in GLd(A

†,(p−1)/p
L,n ). Consequently, the

cocycle τ 7→ Cτ = φn(M−1Uττ(M)) = φn(M)Uτφ
n(τ(M)) is also trivial on HL and has

values in GLd(A
†,pn−1(p−1)
L ).

On the other hand, in the theory of (φ,Γ)-modules as presented in [FO], it is shown
that there exists a matrix P ∈ 1 + 12pMd(A) such that the cocycle τ 7→ Dτ =
P−1Uττ(P ) is trivial on HL and takes values in GLd(AL).

The elimination of Uτ between Cτ and Dτ , accompanied by the assumption that N =
φn(M)−1P , results in the relation NDτ = Cττ(N). In particular, since Cτ = Dτ = 1 if
τ ∈ HL, it follows that N is stable under the action of τ ∈ HL, that is, N ∈ GLd(ÃL).
Moreover, since Uτ−1 is divisible by 12p if τ ∈ GL and since the same is true for M and
P , the matrices N and, Cτ and Dτ belong to 1+12pMd(ÃL), if τ ∈ GL. However, since
the coefficients of Cτ and Dτ are drawn from AL, it follows from Lemma 20 that the
coefficients of N are also drawn from AL and that M has coefficients from φ−n(AL).

This leads to the conclusion that the basis e1, . . . , ed in Ã†,(p−1)/p ⊗Zp T , which
was defined by the matrix M as in the proof of Theorem 2, consists of elements of
D

†,(p−1)/p
L,n (T ). Furthermore, the matrix M belongs to GLd(Ã

†,(p−1)/p) and its coef-
ficients are elements of φ−n(A†,pn−1(p−1)). This implies that e1, . . . , ed form a basis of
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φ−n(A†,pn−1(p−1))⊗ZpT over φ−n(A†,pn−1(p−1)). From this, we can infer that D†,(p−1)/p
L,n (T )

is a A
†,(p−1)/p
L,n -submodule generated by e1, . . . , ed. This completes the proof. □

Corollarry 5. Let K be a finite extension of Qp and let T be a Zp-representation of
GK. Let L be a finite Galois extension of K such that GL acts trivially on T/12pT . If
s ≥ (p − 1)pn(L)−1, then D†,s

L (T ) is a free A†,s-module of rank d, and the natural map
A†,s ⊗A†,s

L
D†,s

L (T )→ A†,s ⊗Zp T is an isomorphism.

Proof. Theorem 5 and the fact that D
†,(p−1)pn(L)−1

L (T ) = φn(L)(D
†,(p−1)/p
L,n(L) (T )) demon-

strate that if s = (p − 1)pn(L)−1, then D†,s
L (T ) is a free module of rank d and the map

Ã†,s ⊗Ã†,s
L

D†,s
L (T ) → A†,s ⊗Zp T an isomorphism. By writing a basis of T in terms

of a basis of D†,s
L (T ), we obtain a matrix in Md(A

†,s). This matrix is also due to the
previous isomorphism in GLd(Ã

†,s), and thus in conclusion in GLd(A
†,s). This implies

the corollary if s = (p − 1)pn(L)−1. In general, the statement can be demonstrated by
extension of scalars. □

We now proceed to descent from L to K.

Lemma 21. Let L be a finite Galois extension of K, then there exists a number s(L/K)
such that

(1) if s ≥ s(L/K), then there exists an α ∈ B†,s
L which generates a normal basis5 of

B†,s
L over B†,s

K and the discriminant of the minimal poynomial of α is invertible
in B†,s

K ;
(2) if s ≥ s(L/K) and G = Gal(L/K), then

(B†,s
L )♮ ⊗B†,s

K
B†,s

L
∼= ⊕g∈G(B

†,s
L )♮eg.

Proof. Select an element α from B†
L that forms a normal basis over B†

K . Then, the
discriminant of the minimal polynomial of α is in B†

K , that is, for sufficiently large s,
it is invertible in B†,s

K , which proves the first part.

Let s ≥ s(L/K) and let f(x) =
∏
(x−αi) ∈ B†,s

K [x] be the minimal polynomial of α.
That is, B†,s

L = B†,s
K [x]/f(x) and thus we have that

(B†,s
L )♮ ⊗B†,s

K
B†,s

L
∼= (B†,s

L )♮ ⊗B†,s
K

B†,s
K [x]/f(x)

∼= (B†,s
L )♮[x]/f(x) ∼= ⊕i(B

†,s
L )♮[x]/(x− αi) ∼= ⊕g∈G(B

†,s
L )♮eg,

where the third isomorphism is due to the fact that the discriminant of f(x) is invertible,
which implies that the ideals (x− αi) are relatively prime in pairs. □

5That is, the Galois conjugates form a basis.
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Theorem 6. Let K be a finite extension of Qp and let T be a Zp-representation of GK.
Let L be a finite Galois extension of K such that GL acts trivially on T/12pT . Let
n ≥ n(L) and let V = Qp ⊗Zp T . If s ≥ max{(p− 1)pn(L)−1, s(L/K)}, then

(1) the A†,s
K -module D†,s

K (T ) and the B†,s
K -module D†,s

K (V ) are of rank d;
(2) the natural map B†,s ⊗B†,s

K
D†,s

K (V )→ B†,s ⊗Qp V is an isomorphism.

Proof. Lemma 21 implies that M = D†,s
L (V ) and B = B†,s

L satisfy the conditions of
Proposition 1. Consequently,

B†,s
L ⊗B†,s

K
D†,s

K (V ) ∼= D†,s
L (V ).

This, in conjunction with Corollary 5 (tensoring additionally with Qp), implies item (2)
and that the B†,s

K -module D†,s
K (V ) is of rank d. (It should be noted that since B†,s

K is
principal, D†,s

K (V ) is necessarily free.)

It remains to be shown that the A†,s
K -module D†,s

K (T ) is free. A sufficiently large
integer n should be chosen, and D†,s

K (V )/Qn should be regarded, where Qn = ((1 +

x)p
n − 1)/((1 + x)p

n−1 − 1). As demonstrated in [Ber02] (cf. Lemma 4.9.), this is a d-
dimensional vector space over K(µpn). Furthermore, the image of D†,s

K (T ) in D†,s
K (V )/Qn

is an OK(µpn )-lattice. Select d elements of D†,s
K (T ), whose images generate this lattice.

Since A†,s
K is complete with respect to the Qn-adic topology and the kernel of the map

D†,s
K (T )→ D†,s

K (V )/Qn is QnD
†,s
K (T ), it follows that the chosen d elements also generate

D†,s
K (T ) over A†,s

K . □

The subsequent corollary is a previously established classical result by Cherbonnier
and Colmez [CC98].

Corollarry 6. If V = Qp⊗Zp T , then D†(V ) = (B†⊗Qp V )HK is a d dimensional vector
space over B†

K that is stable under both ΓK and φ. Moreover,

D(V ) = BK ⊗B†
K
D†(V ) and B† ⊗B†

K
D†(V ) = B† ⊗Qp V.

In particular, the functor V 7→ D†(V ) is an equivalence of categories between the cate-
gory of Qp-representations of GK and the category of étale (φ,Γ)-modules over B†

K.

Let S be a Banach Qp-algebra, K a finite extension of Qp, V an S-representation
of GK , T an OS-lattice of V that is table under GK , and let L be a finite Galois
extension of K such that GL acts trivially on T/12pT . Let s(V ) be defined as max{(p−
1)pn(L)−1, s(L/K)}. If necessary, increase s(V ) slightly to ensure the existence of an
integer n(V ) such that pn(V )−1(p− 1) = s(V ).

Proposition 26. Let V be a d dimensional S-representation of GK and n ≥ n(L).
Then, (OS⊗̂Ã†,(p−1)/p)⊗OS

T has a unique free OS⊗̂A†,(p−1)/p
L,n -submodule D

†,(p−1)/p
L,n (T )
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of rank d, that is fixed by HL, stable under GK, and possesses an invariant basis under
ΓL. Furthermore,

(OS⊗̂Ã†,(p−1)/p)⊗OS⊗̂A
†,(p−1)/p
L,n

D
†,(p−1)/p
L,n (T ) ∼= (OS⊗̂Ã†,(p−1)/p)⊗OS

T.

Proof. This is another immediate consequence of the application of Theorem 2, using
Proposition 2 and 25. □

Let V be an d dimensional S-representation of GK , let s ≥ s(V ), and let n(V ) be
defined as above.

Definition 30.

D†,s
K (V ) = (S⊗̂B†,s

L ⊗S⊗̂B
†,s(V )
L

φn(V )(D
†,(p−1)/p
L,n(V ) (V )))HK

In conclusion, the main theorem, which gave the title to the thesis, can now be stated.
It should be noted that in this instance, the functor V 7→ D†(V ) that arises from the
theorem will cease to be an equivalence of categories.

Theorem 7. Let S be a d dimensional S-representation of GK and s ≥ s(V ). Then,

(1) D†,s
K (V ) is an S⊗̂B†,s

K -module of rank d;
(2) the map

(S⊗̂B†,s)⊗S⊗̂B†,s
K

D†,s
K (V )→ (S⊗̂B†,s)⊗S V

is an isomorphism;
(3) if x ∈ X , then the map S/mx ⊗S D†,s

K (V )→ D†,s
K (Vx) is an isomorphism.

Proof. Proposition 26 implies that D†,s
L (V ) is an S⊗̂B†,s

L -module of rank d and that

(S⊗̂B†,s)⊗S⊗̂B†,s
L

D†,s
L (V )→ (S⊗̂B†,s)⊗S V

is an isomorphism. In a similar manner to the previous argument, items (1) and (2)
follow from Proposition 1. Finally, in the event that K = L and s = pn(V )−1(p−1), item
(3) follows from the uniqueness property in Proposition 26. The general case follows
from extension by scalars and taking the invariants under HK . □
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