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1 Introduction

In information theory, mutual information is a measure that quantifies the amount

of information one can learn about a random variable by observing another one. Un-

like correlation, it is not limited to measuring linear dependence and it is invariant

under homeomorphisms. In deep learning, a measure with such properties finds

several applications, from representation learning [2, 33] to studying how neural

networks learn and generalize [16, 44]. In this field of study, measuring the de-

pendence between high-dimensional, continuous, real-valued variables is the primary

focus. Unfortunately, mutual information is notoriously hard to measure for such

variables. While in theory it is calculated from the underlying distributions of the

variables, in practice we usually have to rely on approximations using finite sets of

i.i.d. samples from the joint distribution. We discuss two approaches to estimating

mutual information by presenting four mutual information estimators, and evaluat-

ing these estimators on synthetic datasets with known distributions. One aim of this

thesis is to provide a comprehensive overview of these estimation methods with the

necessary mathematical background, while another is to highlight their connections

and applicability in deep learning.

In Section 2 we lay the theoretical foundations for the rest of the thesis. We

first present elementary information theoretic measures in Subsection 2.1: entropy,

mutual information and Kullback-Leibler divergence, the properties of these mea-

sures and how they are related to one another. Then we discuss the elements

of neural networks and deep learning in Subsection 2.2. with a short introduc-

tion to self-supervised learning also included. In Subsection 2.3 we provide a brief

overview of the role mutual information and information theory plays in the field

of deep learning: we reflect on the information bottleneck, InfoMax principle, the

information-theoretic generalization bounds and understanding of learning dynam-

ics, finally mention limitations of mutual information and some other measures of

dependency that may overcome those. In Section 3 we present in detail four mutual

information estimators: two nearest neighbors-based methods, the k-NN and KSG

estimators, and two lower bounds, MINE and InfoNCE that rely on neural estimates.

Section 4 contains our experimental setups and results for the benchmarking of them

conducted on synthetic data. The distribution of our synthetic data is presented,

along with the analytical computation of mutual information in these cases, then

the performance of the estimators is evaluated. Finally in Section 5 we introduce

the dataset inference problem and encoder ownership attribution as applications of

mutual information estimation, in an attempt to reproduce the results of [7].
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2 Preliminaries

2.1 Information theory

In this section we give a brief information theoretical introduction of the concepts

used later. We define entropy, Kullback-Leibler divergence and mutual information,

some of the most widely used information theoretic measures. Simple motivating

examples and some elementary properties of these measures are also presented.

2.1.1 Entropy and differential entropy

Suppose we have two coins, the first is an ordinary coin that has exactly 1
2

prob-

ability to show heads and 1
2

probability to show tails when flipped. The other coin is

weighted, and has a 9
10

chance to show heads. One could say that the second coin’s

outcome is less random than that of the first. Generally it is not so straightforward

to grasp the uncertainty of random variables. Entropy is a measure used to quantify

the ”randomness” or ”uncertainty” of a random variable X, introduced by Claude

E. Shannon [43]. In the original setting X is a data source, and entropy is a limit

on how well a message composed of n i.i.d. samples from X can be compressed.

(See Shannon’s source coding theorem.) Since then, entropy has seen many other

applications.

For continuous random variables, the meaning of entropy isn’t as intuitive. The

formula for differential entropy presented here was meant to be a continuous ana-

logue of entropy by Shannon, but rather than deriving it, he defined it as is. Later

the limiting density of discrete points [20] was introduced as a proper continuous

analogue of discrete entropy.

Definition 2.1 (Entropy). The entropy of a discrete random variable X over space

X with distribution PX is

H(X) = −
∑
x∈X

PX(x) logPX(x) = −E(logPX(X)).

The differential entropy of a continuous random variable X over space X with density

function fX is defined similarly

H(X) = −
∫
X
fX(x) log fX(x)dx = −E(log fX(X)).

The base of the logarithm is either 2 (defines the entropy in bits) or e (defines the

entropy in nats).
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Remark 2.1. For discrete entropy, the base of the logarithm is usually taken to be

2 and for differential entropy, base e is more common. This has little significance as

long as we remain consistent. For the rest of this work and in all our experiments,

the base of the logarithm is always e.

Remark 2.2. For any given discrete random variable X over X , H(X) ≥ 0 and

H(X) = 0 iff there exists c ∈ X so that P (X = c) = 1. For continuous variables,

differential entropy H(X) may be negative. For example, if X ∼ Unif(a, b), then

H(X) = log(b− a), which is negative if b− a < 1.

Joint entropy of two random variables X and Y can be understood as the entropy

of the joint variable (X, Y ).

Definition 2.2 (Joint entropy). The joint entropy of n discrete random variables

X1, X2, . . . ,Xn over spaces X1, X2, . . . ,Xn respectively, with joint distribution P is

the entropy of the joint distribution

H(X1, . . . , Xn) = −
∑
x1∈X1

· · ·
∑

xn∈Xn

P (x1, . . . , xn) logP (x1, . . . , xn) =

= −E(logP (X1, . . . , Xn)).

The joint entropy of n continuous random variables X1, X2, . . .Xn over spaces X1,

X2, . . .Xn respectively, with joint density function f is defined similarly

H(X1, . . . , Xn) = −
∫
X1×···×Xn

f(x1, . . . , xn) log f(x1, . . . , xn)dx1 . . . dxn =

= −E(log f(X1, . . . , Xn)).

Conditional entropy is also motivated by the mathematics of communication.

Suppose that we send a signal over a noisy communication channel. The signal is

generated by data source X, but the recipient observes the signal as if it followed

the distribution of Y . Conditional entropy quantifies the (expected) remaining un-

certainty of the original message after observing Y .

Definition 2.3 (Conditional entropy). The entropy of a discrete random variable

Y over space Y conditioned on discrete random variables X1, X2, . . .Xn over spaces

X1, X2, . . .Xn respectively, with joint distribution P is

H(Y |X1, . . . , Xn) = −
∑
y∈Y

∑
x1∈X1

· · ·
∑

xn∈Xn

P (y, x1, . . . , xn) logP (y|x1, . . . , xn) =

= −E(logP (Y |X1, . . . , Xn)).
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The entropy of a continuous random variable Y over space Y conditioned on

continuous random variables X1, X2, . . . , Xn over spaces X1, X2, . . . , Xn respectively,

with joint density function f is

H(Y |X1, . . . , Xn) = −
∫
Y×X1×···×Xn

f(y, x1, . . . , xn) log f(y|x1, . . . , xn)dydx1 . . . dxn

= −E(log f(Y |X1, . . . , Xn)).

Remark 2.3 (Chain rule for entropy). H(X, Y ) = H(Y ) + H(X|Y ).

2.1.2 Mutual information

Consider our previous example of communication over a noisy channel: the data

source follows the distribution of X, but the recipient observes the message as if it

followed the distribution of Y . While conditional entropy measured the uncertainty

of X after observing Y , mutual information quantifies the information learned of X

after reading the message generated by Y .

Definition 2.4 (Mutual information). Given discrete random variables X and Y

over spaces X and Y , with distributions PX and PY , joint distribution PX,Y , the

mutual information of X and Y is

I(X;Y ) =
∑
x∈X

∑
y∈Y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
= E

(
log

PX,Y (X, Y )

PX(X)PY (Y )

)
.

Given continuous random variables X and Y over spaces X and Y , with density

functions fX and fY , joint density function fX,Y , the mutual information of X and

Y is

I(X;Y ) =

∫
X×Y

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
dxdy = E

(
log

fX,Y (X, Y )

fX(X)fY (Y )

)
.

Remark 2.4. For any two random variables X, Y I(X;Y ) ≥ 0 and I(X;Y ) = 0

iff X and Y are independent.

Remark 2.5. I(X;Y ) = H(X)−H(X|Y ) = H(X) + H(Y )−H(X, Y ).

Definition 2.5 (Conditional mutual information). Given discrete random variables

X, Y and Z over spaces X , Y and Z, with joint distribution PX,Y,Z , the mutual

information of X and Y conditioned on Z is

I(X;Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

PX,Y,Z(x, y, z) log
PZ(z)PX,Y,Z(x, y, z)

PX,Z(x, z)PY,Z(y, z)
.
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Given continuous random variables X, Y and Z over spaces X , Y and Z, with joint

density function fX,Y,Z , the mutual information of X and Y conditioned on Z is

I(X;Y |Z) =

∫
X×Y×Z

fX,Y,Z(x, y, z) log
fZ(z)fX,Y,Z(x, y, z)

fX,Z(x, z)fY,Z(y, z)
dxdydz.

Remark 2.6 (Chain rule for mutual information).

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) = I(X;Y ) + I(X;Z|Y ).

Theorem 2.1 (Data processing inequality). For a Markov-chain X ←→ Y ←→ Z,

I(X;Y ) ≥ I(X;Z).

A result of the latter theorem is that I(X;Y ) ≥ I(gx(X); gy(Y )) for all functions

gx, gy.

2.1.3 Kullback-Leibler divergence

Suppose that we try to guess the probability of heads when flipping a weighted

coin. The true chance of showing heads is 9
10

. Intuitively, it is clear that guessing

the chance of heads as 8
10

is closer to the truth than a guess of 7
10

. When modeling

more complex problems, the difference between models and reality is much more

elusive to measure. Kullback-Leibler divergence is a way of quantifying the distance

between the distributions of two random variables X and Y over the same space,

introduced by Solomon Kullback and Richard Leibler [26]. While it is often referred

to as a distance, it is not a metric over probability distributions in the mathematical

sense, as it is not symmetric and does not satisfy the triangle inequality.

Definition 2.6 (Kullback-Leibler divergence). Given discrete probability distribu-

tions PX and PY over space X , the KL divergence of PX and PY is

DKL(PX ||PY ) =
∑
x∈X

PX(x) log
PX(x)

PY (x)
.

Given continuous random variables with density functions fX and fY over space X ,

the KL divergence of fX and fY is

DKL(fX ||fY ) =

∫
X
fX(x) log

fX(x)

fY (x)
dx.

Remark 2.7. For any two distributions (or density functions) PX , PY over the same

space, DKL(PX ||PY ) ≥ 0, and DKL(PX ||PY ) = 0 iff PX = PY almost everywhere.
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Remark 2.8.

I(X;Y ) = DKL(PX,Y ||PXPY ),

where PX,Y is the joint distribution (or joint density function) of (X, Y ) and PX ,

PY are the marginals.

2.2 Artificial neural networks

Artificial neural networks are computational models inspired by the structure

and functioning of biological neural networks in the human and mammalian brain.

They consist of interconnected layers of artificial neurons that process and transform

input data to make predictions or classifications. As these models are capable of

pattern recognition in high-dimensional inputs, with the computational resource

development their usage lead to unprecedented breakthrough results in various fields,

including image and speech recognition, natural language processing, and modeling

complex systems like protein folding in 3D. Some of their applications gathered

significant attention in recent years, such as ChatGPT and various image generation

models, leading to a widespread increase in knowledge about them. In this section

we provide only a brief introduction to the basic structure and training method of

such networks, and for more detailed sources we refer the reader to chapters of [32]

and [42].

2.2.1 Elements of neural networks

The basic building block of neural networks is the artificial neuron. As the name

suggests, its definition is motivated by biological neurons, even though it is often

remarked that they don’t model nerve cells accurately. The artificial neuron takes

an input x ∈ Rn, interpreted as the stimuli of other neurons, and if these stimuli

reach a certain threshold (usually 0) the neuron fires or activates, sending stimulus

to further neurons.

Definition 2.7 (Artificial neuron). An artificial neuron is a function h : Rn → R
in the form

h(x) = Φ(wTx + b),

where w ∈ Rn are weights, b ∈ R is the bias and Φ : R→ R is an activation function.

Remark 2.9. While there is no universal definition of activation functions, we gen-

erally expect it to introduce non-linearity to h and be differentiable almost every-

where. If multiple linear layers are stacked, they can be collapsed to a single linear
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layer. Differentiability is necessary for Definition 2.15. The activation function of-

ten holds some similarity to the Heaviside step function, which was the activation

function used in the original Mark 1 Perceptron machine, built in 1957 [41]. Some

popular choices for Φ include:

tanh(x), Sigmoid(x) =
1

1 + e−x
, ReLU(x) = max(0, x), SoftMax(x)i =

exi

K∑
k=1

exk

.

Definition 2.8 (Artificial neural layer). A neural layer is a function h : Rn → Rm

in the form

h(x) = Φ(W Tx + b),

where W ∈ Rn×m are weights, b ∈ Rm are biases and Φ : Rm → Rm is an activation

function, e.g. h(x)i is a neuron for all i ∈ {1, . . .m}. m is the width of the neural

layer.

Definition 2.9 (Feedforward neural network). A feedforward neural network is a

function g : Rn → Rm in the form

g = hmd
◦ hmd−1 ◦ · · · ◦ h1

for some depth md ∈ Z>0, so that {hi : i ∈ {1, . . .md}} are all artificial neural

layers. In this case we say {hi : i ∈ {1, . . .md}} are the layers of g. The width of a

feedforward neural network is the maximum width of its layers.

In Definition 2.8, each neuron’s output is a function of every element of the

input. For this reason, it is also called a fully connected layer. Fully connected layers

remain popular for simple tasks, but to apply deep learning in diverse applications,

a similarly diverse variety of specialized networks and layers had to be developed.

When processing image data, convolutional layers are more practical to leverage the

spatiality inherent to images.

Definition 2.10 (Convolutional layer [8]). A convolutional layer with kernel size

k + 1 is a function h : Rn1×n2 → Rn1−k×n2−k that satisfies

1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : h(x)i,j = Φ(wT
i,jx̄[i...i+k]×[j...j+k]) + bi,j),

where x̄[i...i+k]×[j...j+k] denotes a reindexing or flattening of x[i...i+k]×[j...j+k] so that we

can view it as a vector, rather than a matrix. (The exact method of reindexing is

not important as long as we remain consistent.)
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Inspired by research in neurobiology [19], convolutional neural networks often

use alternating convolutional and max-pooling layers.

Definition 2.11 (Max-pooling layer). A max-pooling layer with kernel size k + 1

is a function h : Rn1×n2 → Rn1−k×n2−k of the form

1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : h(x)i,j = max
i≤i′≤i+k,1≤j′≤j+k

{xi′,j′}.

A shortcoming of feedforward neural networks with large depth md is that the

stochastic gradient descent algorithm used to train the network (see Section 2.2.2)

converges very slowly. To circumvent this problem, residual networks were intro-

duced, where there are connections between layers not directly neighboring each

other.

Definition 2.12 (Residual block [17]). A residual block is a function g : Rn → Rm

in the form

g(x) = ĝ(x) + x,

where ĝ is an artificial neural network itself.

Definition 2.13 (Residual neural network). A residual neural network is a function

g : Rn → Rm in the form

g = gm′
d
◦ gm′

d−1 ◦ · · · ◦ g1

so that {gi : i ∈ {1, . . .m′
d}} are all residual blocks or neural layers.

More intricate connections between layers and neurons are also possible, e.g.

recurrent neural networks allow for backward loop of information flow in the network,

well-suited for modeling sequential data similar to memory utilization, but we do

not detail these further here, as they are not utilized in this work.

2.2.2 Supervised learning via parameter optimization

The number and type of layers, number of neurons in each layer and hyperpa-

rameters such as the kernel size of convolutional layers in a network are collectively

referred to as the architecture of a neural network. The weights and biases of each

layer are collectively referred to as the parameters θ. In deep learning we fix a neural

architecture (and maybe some of the parameters, these are called fixed parameters)

and view the neural network as a parametric function. We then attempt to find

12



a parametrization θ in the set of possible parameters Θ so that we sufficiently ap-

proximate an input-target distribution (X, Y ) with (X, gθ(X)). Naturally, we only

have access to a finite dataset D of i.i.d. samples from (X, Y ). Iterative algorithms

attempting to find such θ are called training algorithms.

Currently we only have (often very developed) heuristic ideas on how to fix a

suitable architecture for any given problem, more so considering the ever-growing

literature of possible models. Finding θ, however, is universally achieved through

empirical risk minimization.

Empirical risk minimization is not specific to neural networks, it is a setting

in statiscical learning, where we seek to estimate and optimize the performance of

a model based on a finite set of training data. We assume there is a loss func-

tion measuring how different our gθ hypothesis function’s output is from the true

outcome.

Definition 2.14 (Loss function). Suppose that the output variable Y takes values

from Y . Then the loss function is a function L : Y ×Y → R≥0, with L(y, y) = 0 for

any y ∈ Y .

Example. For commonly considered classification problems – where Y is a finite

set – the 0-1 loss is a straightforward choice:

L(gθ(x), y) =

{
0 if gθ(x) = y,

1 otherwise.

For such classification problems, smoother loss functions are more ideal. For this

reason, some neural networks gθ, e.g. using SoftMax activation function output class

probabilities, i.e. positive real numbers gθ(x)1, gθ(x)2, . . . gθ(x)m so that
∑m

i=1 gθ(x)i =

1 and predict the class with the highest probability. For networks such as these, the

cross-entropy loss can be used:

L(gθ(x), y) = −
m∑
i=1

gθ(x)i log(yi),

where y > 0 also sums to 1.

In general cases, we may simply sum the differences of the prediction and y:

L(gθ(x), y) =
m∑
i=1

|gθ(x)i − yi|

for a | · | norm of our choice.
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Our goal is to find parameters minimizing the expected loss or risk

arg min
θ∈Θ

{E(L(gθ(X), Y ))} .

As mentioned already, we can’t minimize this risk directly. Rather, we rely on the

sample D and the law of large numbers to approximate the expected loss with the

empirical risk

arg min
θ∈Θ

 1

|D|
∑

(x,y)∈D

L(gθ(x), y))

 .

Directly minimizing the above functional is possible in theory, but not in practice.

For most problems, there are no guarantees that the training algorithm finds this

global minimum, and optimizing over the set of all possible inputs – such as all pos-

sible images for image classification – is computationally infeasible. The difference∣∣∣∣∣∣E(L(gθ(X), Y ))− 1

|D|
∑

(x,y)∈D

L(gθ(x), y))

∣∣∣∣∣∣
for any given neural network g with parameters θ is the generalization gap. In most

cases, the generalization gap can only be measured through heuristic methods, such

as separating part of the dataset D for testing the model once training with the rest

of the dataset is finished. Fortunately neural networks have been found to generalize

well, even on tasks such as image classification, where no dataset can hope to capture

the full range of possible inputs.

Training neural networks is universally achieved with gradient descent and the

backpropagation algorithm. The backpropagation algorithm is a way of comput-

ing gradients of the loss function efficiently for feedforward neural networks and

other neural architectures used in the field. To perform gradient descent, the loss

function L has to be (partially) differentiable. We compute the partial derivatives

of
∑

(x,y)∈D

L(gθ(x), y)) with respect to θ. This derivative represents the direction in

which the loss can be increased from our current set of parameters θ. Intuitively,

loss should decrease if we shift the parameters in the opposite direction.

Definition 2.15 (Gradient descent for neural networks). Let θ0 ∈ Θ some initial

parametrization of neural network g. We fix a learning rate λ > 0. Then gradient

descent follows the iteration

θi+1 = θi − λ

 1

|D|
∑

(x,y)∈D

∇θL(gθi(x), y))

 .
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Definition 2.16 (Backpropagation algorithm). Since we defined feedforward neural

networks as a composition of layers, we may calculate the derivative in Definition

2.15 using the chain rule.

g′ =
md

Π
i=1

(h′
i ◦ hi−1 ◦ · · · ◦ h1).

We can compute the partial derivatives of the loss with regard to each layer’s param-

eters the derivative using dynamic programming, deriving g layer by layer, (or first

block by block, for residual networks) starting with hmd
. Finding the derivative of

each individual neural layer is simple for popular activation functions such as ReLU.

Remark 2.10. Due to the massive amount of training data D in modern appli-

cations, usually it is not feasible to compute the gradient on the entire D at once.

Rather, we divide D into batches B1, . . . Bl of fewer samples, and iterate the following

parameter-update:

θi+1 = θi − λ

 1

|Bi|
∑

(x,y)∈Bi

∇θL(gθi(x), y))

 .

Whenever we run out of batches, we randomly shuffle D and divide it into new

batches to iterate further. Iterating over all batches of the training data once during

training is called a training epoch.

Classic gradient descent often gets stuck in local minima. To overcome this

limitation, several improvements for the update-iteration have been considered. One

major branch of these improvements focus on adding momentum to the update

rule. A momentum is a weighted moving average of past gradients, which is meant

to decrease the risk of the iteration converging to local minima and increasing the

speed of global convergence.

Definition 2.17 (Momentum-based gradient descent for feedforward networks).

Let θ0 ∈ Θ some initial parametrization of neural network g and V0 = 0 the initial

momentum. We fix a learning rate λ > 0 and momentum parameter β ∈ [0, 1).

Then gradient descent with momentum follows the iteration

Vi+1 = βVi + λ

 1

|D|
∑

(x,y)∈D

∇θL(gθ(x), y))


θi+1 = θi − Vi+1.
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While there is no objective best way to add a momentum term to the update

rule, by far the most popular improvement of gradient descent is Adaptive Moment

Estimation (Adam) [22].

Definition 2.18 (Adam stochastic optimization algorithm). Let θ0 ∈ Θ some initial

parametrization of neural network g and V0 = v0 = 0 initial momentum. We fix a

learning rate λ > 0, momentum parameters β1, β2 ∈ (0, 1] and a small ϵ > 0. Adam

follows the iteration

∇̂i+1 =

 1

|D|
∑

(x,y)∈D

∇θL(gθ(x), y))

 ,

Vi+1 = β1Vi + (1− β1)∇̂i+1, vi+1 = β2vi + (1− β2)∇̂2
i+1,

V̂i+1 = Vi+1/(1− βi+1
1 ), v̂i+1 = vi+1/(1− βi+1

2 ),

θi+1 = θi − λV̂i+1/
√
v̂i+1 + ϵ.

Can we hope that there is a parametrization that minimizes the empirical risk
1

|D|
∑

(x,y)∈D

L(gθ(x), y)) efficiently? Several universal approximation theorems exist,

proving that neural networks can approximate a wide variety of functions with

arbitrary accuracy. Many of these theorems formulate statements about feedforward

neural networks of bounded depth, and more recently, of bounded width. Here we

only cite two strong results, the first of which is presented as a slightly weaker

statement for easier readability.

Theorem 2.2 (Universal approximation theorem, bounded depth [37]). Let Φ :

R→ R continuous, non-polynomial and K ⊆ Rn any compact set. Let G be the set

of neural networks g : Rn → Rm with depth 2, where the activation function of each

layer is Φ (coordinate-wise) or the identity function. Then G is dense in C(K,Rm)

w.r.t. the supremum norm. (That is, for any continuous function F : K → Rm and

ϵ > 0, there is a g ∈ G function so that supx∈K |F (x)− g(x)| < ϵ.)

Theorem 2.3 (Universal approximation theorem, bounded width [21]). Let Φ :

R → R continuous, non-affine, continuously differentiable in some x ∈ R so that

Φ′(x) ̸= 0 and K ⊆ Rn any compact set. Let G be the set of neural networks

g : Rn → Rm with width n+m+ 2, where the activation function of each layer is Φ

(coordinate-wise) or the identity function. Then G is dense in C(K,Rm) w.r.t. the

supremum norm.

This shows that neural networks can model most functions of practical interest.
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2.2.3 Self-supervised learning

Finally, we provide a brief introduction to representation learning and self-

supervised learning (SSL), as one of the mutual information estimators, discussed

in Section 3.3, was designed to be a loss function for self-supervised representation

learning.

In Section 2.2.2, we assumed that we have access to a dataset D composed

of input-output pairs (xi, yi). This is the classic theoretical model for supervised

learning. The drawback of supervised learning is that creating large datasets with

task-specific output labels yi is a time consuming and expensive task in and of itself.

Representation learning seeks to mitigate this problem by preprocessing the input

X so that the resulting embeddings, representations or abstract features Z ⊂ Rl are

easier to process for a wide variety of tasks (X, Y ′) with a limited dataset. In the

context of representation learning, these tasks are called downstream tasks. In a

supervised setup, learning Z can be done by training a neural network g with depth

md for a specific task (X, Y ) (with a sufficiently large available dataset D), and later

reusing the first m′
d < md layers. We view this truncated neural network g′ with

depth m′
d as an encoder that maps X to embeddings Z. We can then train other

networks with input X and target Y ′ by using g′ to transform the task (X, Y ′) to

(g′(X), Y ′) = (Z, Y ′), i.e. an easier task.

This helps learning downstream tasks because it is theorized that a neural net-

work’s layers extract increasingly abstract features from the data, and only a few

layers preceding the output layer perform task-specific transformations. While the

exact inner workings of artificial neural networks are not fully understood, this the-

ory is supported by findings such as the hierarchical organization of features across

layers – earlier layers capture low-level (small context) features while deeper lay-

ers represent increasingly abstract (large context) concepts – and the identification

of multimodal neurons in neural networks. A multimodal neuron fires when the

network receives stimulus related to an abstract concept. One such neuron is the

Donald Trump neuron [10], which fired whenever the network’s input was a photo

or drawing of Donald Trump, or an image of text that reads ”Donald Trump”.

In SSL we try to learn useful representations for task-specific problems without

ever relying on a labeled dataset D = {(xi, yi)|1 ≤ i ≤ n} of a specific task (X, Y ).

SSL’s input is a dataset D of samples from a random variable X for which we try

to learn representations.

Example. Large language models are often trained in a self-supervised manner
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using the masking problem. In this problem, we hide a few words of the input text

from the model (masking), and task the model with correctly guessing the masked

word from the context. A similar method can be employed to train image generation

models by masking parts of the input image.

Here we further detail the foundation of multiple SSL frameworks, particularly

contrastive learning techniques, a probabilistic estimation method called noise con-

trastive estimation (NCE) [15], which can be used to approximate intractable prob-

ability distributions. In contrastive learning, we assume that each data point x

from D is associated with a context y, which provides additional information that

helps define the conditional distribution p(x|y). The context y could represent, for

instance, a temporal or spatial neighbor of x, or a related data modality. We aim to

estimate p(x|y), to achieve this we introduce a parametric (neural) scoring function

tθ(x, y) > 0, that assigns a score proportional to the likelihood of x given y:

p(x|y) ≈ pθ(x|y) =
tθ(x, y)∑

x′∈D
tθ(x′, y)

,

where the denominator is the normalization term. Computing this sum directly is

often infeasible for large datasets, motivating simplification with NCE.

In NCE, instead of modeling p(x|y) explicitly, we frame the problem as a binary

classification task. Specifically, we assume that only x ∈ D is a positive sample

drawn from the true conditional distribution p(x|y), while all other samples x′ ∈
D \ {x} are treated as negative samples following a predefined noise distribution

q(x′). The key assumption is that p(x|y) ≥ q(x′) for all x′ ∈ D \ {x}. In place of

directly approximating p(x|y), NCE estimates the probability that a given sample x

originates from p(x|y) rather than the noise distribution q(x). Let I be an indicator

variable denoting whether x follows p(x|y) (I = 1) or q(x) (I = 0). The conditional

probabilities can then be expressed as:

p(I = 0|x, y) =
(|D| − 1)q(x)

p(x|y) + (|D| − 1)q(x)
,

p(I = 1|x, y) =
p(x|y)

p(x|y) + (|D| − 1)q(x)
.

The NCE process requires optimizing the parameters of the scoring function

tθ(x, y) to maximize the likelihood of the observed data, in practice typically done

by minimizing a suitable loss function between the predicted probabilities for the

indicator variable I and the implicitly defined labels (1 for true distribution, 0 for
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noise distribution). This optimization encourages the probabilistic model to assign

higher scores to samples that follow the true distribution p(x|y), thereby learning an

efficient approximation of the conditional distribution without needing to compute

the normalization term explicitly.

To understand how this could be used for self-supervised representation learning,

let us present as example the SimCLR method [3]. In every training step, we sample

a batch B = {x1, x2, . . . , xb} ⊆ D of b data points from the dataset. We then aug-

ment each data point xi ∈ B with transformations that retain all relevant features,

two different stochastic data augmentation functions are applied, resulting in aug-

mented views of xi ∈ D. In the case of image data, such augmentation can include

rotating, cropping or adding noise to the image xi, as long as the augmented version

remains identifiable as a transformed version of the same item. The two augmented

views of the same sample constitute a positive pair, while the augmented views of

all other data points in the batch act as negative samples for them. We denote one

with the same xi as before, and its pair with yi as context for it. The parametric

model, a neural network gθ maps the augmented views {x1, x2, . . . , xb, y1, y2, . . . , yb}
to embeddings {gθ(x1), gθ(x2), . . . , gθ(xb), gθ(y1), gθ(y2), . . . , gθ(yb)} ⊂ Rl. To com-

plete the training step, we minimize a contrastive loss function that essentially

implements the NCE idea of contrasting positive pairs against negative pairs, and

rewards packing the embeddings gθ(xi) and gθ(yi) closely, far away from negative

samples’ embeddings. Some variant of the SGD algorithm is used to update the net-

work’s parameters θ, then the step is repeated with new batches, until convergence.

Naturally, we need to define an appropriate loss function, as Definition 2.14 can

only describe supervised training. Note that we may have more than one pair of

elements in {x1, x2, . . . xb, y1, y2, . . . , yb} that are views of the same data point from

D. These all are called positive pairs. The loss function of SimCLR defined as

follows.

Definition 2.19 (Normalized temperature-scaled cross entropy loss, NT-Xent). For

a set of augmented samples B = {x1, x2, . . . , xb}, let

Lij(x1, . . . , xb) = − log
exp(sim(gθ(xi), gθ(xj))/τ)∑

xk∈B\xi

exp(sim(gθ(xi), gθ(xk)/τ))
,

where xi, xj is a positive pair, sim : Rl × Rl → R is a similarity metric and τ > 0 is

a temperature parameter. Then the NT-Xent loss of network g over {x1, x2, . . . , xb}
is L =

∑
(xi,xj)∈B+

Lij, where B+ is the set of ordered positive pairs in B.
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In this example, the scoring function is tθ(x, y) = exp(sim(gθ(x), gθ(y))/τ), with

the cosine similarity function to the compare embedding vectors, and instead of the

whole dataset D, we calculate it over a batch B. The loss function in Definition

2.19 can be written as

−L =
∑

(x,y)∈B+

log
tθ(x, y)∑

x′∈B\{y}
tθ(x′, y)

 ≈ ∑
(x,y)∈B+

log p(I = 1|x, y)

with the notation of the NCE framework.

A different approach to simplify estimating p(x|y) is to define a random variable

I over the batch B = {x1, x2, . . . xb} given some context y. I = i if and only if (xi, y)

is the positive pair and any other x′ ∈ B \ {xi} comes from the noise distribution.

If we approximate

p(I = i|B, y) =
p(xi|y)Πk ̸=ip(xk)∑b

j=1(p(xj|y)Πk ̸=jp(xk))
=

p(xi|y)
p(xi)∑b

j=1
p(xj |y)
p(xj)

≈ tθ(xi, y)∑b
j=1 tθ(xj, y)

,

then the scoring function tθ(x, y) approximates p(x|y)
p(x)

up to a multiplicative constant.

See Lemma 3.3 for proof.

2.3 Mutual information in deep learning

Mutual information plays an important role in deep learning, especially in the

context of representation learning. This section discusses such forms of utilization.

The InfoMax principle is a theoretical framework that builds on the intuition that a

good representation should retain as much information about the input as possible.

On the other hand, the information bottleneck principle aims to find a balance

between retaining information about a target (relevant information) and discarding

superfluous information. In contrastive learning, the InfoNCE loss is used to train

networks to maximize the mutual information between representations of similar

inputs. (See Section 3.3 for details.) Mutual information is also used to understand

the inner workings of neural networks.

2.3.1 Mutual information as learning principle

The information bottleneck method is an information theoretic framework for

finding the best trade-off between accuracy and complexity (compression) when
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summarizing (e.g. clustering) a random variable X, given a joint probability distri-

bution p(x, y) between X and an observed relevant variable Y over X × Y [47]. In

this method, we are looking for a compression of X represented by random variable

Z to find

inf
p(z|x)
{I(X;Z)− βI(Z;Y )},

where β is a parameter representing the amount of information Z should retain

about Y . One example the authors give is speech compression: for a vast number of

downstream tasks a transcript of the speech is sufficient information. The resulting

text Z occupies memory space several orders of magnitude smaller than the memory

needed to store lossless compression of the audio X. In the context of deep learn-

ing, this framework is easily applicable to supervised representation learning. X is

the input data, Y is the target label and Z is the representation provided by some

neural network. Minimizing the above functional would mean minimizing I(X;Z)

(discarding irrelevant information from X) and maximizing I(Z;Y ) (retaining rele-

vant information about Y ).

We may call a representation sufficient if I(X;Y |Z) = 0. Z = gθ(X) is a

representation, this means Z, X and Y form a Markov-chain Y ←→ X ←→ Z and

I(Y ;Z|X) = 0. Thus

I(X;Y )− I(X;Y |Z) = I(Y ;Z)− I(Y ;Z|X) =⇒ I(X;Y ) = I(Y ;Z) iff Z sufficient.

This means that access to a sufficient representation Z enables us to predict Y at

least as accurately as if we had access to X. In this case, I(X;Z) = I(X, Y ;Z) =

I(Y ;Z) + I(X;Z|Y ). Here I(Y ;Z) represents information predictive of target Y ,

and I(X;Z|Y ) represents superfluous information.

In the original work [47], the authors constrained the amount of information Z

should retain and aimed to compress Z. They remark that alternatively we may

constrain the size of Z and maximize the retained information instead. In deep

learning it is more intuitive to do the latter. We fix a neural architecture that maps

from X to Y , with a narrow neural layer in between. The output of this narrow layer

is the representation Z. The neuron count of the layer applies a natural constraint

on the information that can be transferred between the input and output layers,

thus we seek to maximize I(Z;Y ).

To apply the information bottleneck, we have to measure mutual information

between X, Z and Y . As the underlying distribution of these variables is not known

in the majority of applications, we have to rely on approximations. This task is more
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challenging in machine learning, where the dimension of the representation Z is often

in the hundreds, and the dimension of the input X can easily be in the thousands

in the case of image data. In most cases both the images and the representations

come from continuous distributions, further complicating accurate approximation.

In unsupervised training, the InfoMax principle [28] inspired several training

objectives. The InfoMax principle is the reasonable intuition that a good represen-

tation retains as much information from the input data as possible. The training

objectives based on this philosophy are lower bounds on the mutual information be-

tween the representations and the input, and parameters are adjusted to maximize

this bound. Two such lower bounds are discussed in Sections 3.4 and 3.3.

2.3.2 Understanding learning dynamics and generalization

While deep learning gained popularity for its empirical effectiveness on a variety

of hard problems, there is no comprehensive theoretical foundation for understanding

how neural networks learn and converge. Mutual information may be the measure

necessary to develop such a foundation, or at least to provide a deeper mathematical

analysis of neural networks than test accuracy.

Overfitting is one of the oldest problems in the practical use of neural networks.

During training, the longer we train a neural network, the lower the empirical error

gets on the training dataset. However, it has been observed that after enough itera-

tions, the error starts to increase on the separate test set. (The test set is not used

for training, and is drawn from the same distribution as the training set.) When

this happens, the network or the parameters are said to be overfitted on the train-

ing data, and the network memorized the training data. Neural networks were even

shown to achieve 0 (supervised) training error when the labels of the training data

are randomized [52], i.e. they memorize noise. One proposed measure to understand

generalization and memorization is to provide mutual information-based generaliza-

tion bounds. Several bounds use the mutual information between the input data and

the weights [16] (more specifically, the input data and the corresponding outputs of

the training algorithm).

Some researchers viewed the data X, target label Y and the outputs Z1, Z2,

. . . , Zmd
of each neural layer as a Markov-chain.

Y ←→ X ←→ Z1 ←→ · · · ←→ Zmd
.

Here, Zmd
would be the final estimate of Y based on input X, while Zi, i < md
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are hidden representations. Schwarz-Ziv and Thisby [44] estimated I(X;Zi) and

I(Y ;Zi) repeatedly during training, and found that training with stochastic gradient

descent can be separated into two phases. In the first phase the layers increase

information on label Y . Then in the second, much longer phase, I(X;Zi) decreases,

indicating that the neural network starts discarding superfluous information from

the input. They also found that once the layers converge (when their parameters are

not significantly altered by further training) the representations Zi are very close to

the theoretical information bottleneck bound, for different parameters β.

2.3.3 Limitations and other measures of dependency

While Shannon’s mutual information is theoretically well motivated, in practice

proves to be hard to estimate in high dimensions [5]. The training objectives mo-

tivated by the InfoMax-principle are popular in practice, but mutual information

alone does not guarantee useful representations. It has been shown that one can en-

gineer representations that retain a lot of information, yet lead to poor performance

on downstream tasks [48]. Furthermore, any lower bounds on mutual information

were proven to be at most O(logN) on N samples, see Theorem 1 from [34] and

Theorem 1.1 from [31]. Another shortcoming of mutual information is that it does

not account for the topology of the data. This is a natural consequence of mutual

information’s invariance to invertible transformations. Notably, mutual information

is blind to the Vapnik-Chervonenkis dimension [50] of supervised classification tasks.

Due to the limitations of mutual information, several other dependency measures

are utilized in research. Canonical Correlation Analysis [18], Pearson and Spearman

rank correlations are popular, but quantify only linear and monotonic relationships,

therefore these are not suitable for capturing potentially non-linear and higher-order

interactions between multidimensional variables of complex data e.g. image inputs.

In the era of large quantities of such complex high-dimensional data the focus is

shifting towards developing easily computable measures of non-linear dependencies.

One way is to process the input data via kernels or project to lower dimensions via

learned parametric models e.g. neural networks – for instance, autoencoders are

suitable for such task.

Sliced mutual information [11], and especially its k-sliced [12] and max-sliced

versions [49] aim for such estimation via considering random projections of X and

Y onto k-dimensional subspaces or maximal mutual information preserving pro-

jections, and calculating mutual information between the projections. These are
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easy to approximate and retain many favorable properties akin to mutual informa-

tion, such as nonnegativity, a chain rule similar to Remark 2.6 and a relation to

Kullback-Leibler divergence similar to Remark 2.8. Unfortunately, the data pro-

cessing inequality does not hold for sliced mutual information variants, and the gap

between sliced and classical mutual information may not be bounded.

The Hilbert-Schmidt independence criterion [14] is a kernel-based measure of

dependence for comparing probability distributions by first taking a non-linear

feature transformation of each, then evaluating the norm of the cross-covariance

between those features in a reproducing kernel Hilbert space. For many kernels,

HSIC(X, Y ) = 0 iff X and Y are independent, but unlike mutual information, the

Hilbert-Schmidt independence criterion incorporates geometry via the choice of ker-

nel. It is both statistically and computationally easy to estimate [46] and it has

been successfully utilized for self-supervised learning [27].

The Wasserstein dependency measure [34] replaces the KL-divergence in the

classical definition of mutual information with the Wasserstein distance [51] between

the joint and the product of marginal distributions, therefore measures the cost of

transforming samples from the marginals to samples from the joint, connecting to

optimal transport methods.

Since the main focus of this thesis is the estimation of mutual information, such

novel masures of dependecy were not considered for comparison.
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3 Mutual information estimation

This section gives a theoretical introduction of the four mutual information

estimators we test in Section 4. We aim to estimate the mutual information of

continuous random variables X and Y over Rd1 and Rd2 respectively, given i.i.d.

samples (x1, y1), (x2, y2), . . . , (xn, yn) ∼ (X, Y ). Note that any entropy estima-

tor Ĥ(·) can be used to estimate mutual information using Remark 2.5, if we let

Î(X;Y ) = Ĥ(X) + Ĥ(Y )− Ĥ(X, Y ).

We did not consider estimators that rely on further assumptions about the distri-

bution, such as the assumption that X or Y belongs to a specific family of distribu-

tions. This excludes estimates such as GMM-MI, which fits normal distributions to

the data available [38] or geodesic k-NN, which assumes that the (high-dimensional)

datapoints lie on a manifold of significantly lower dimension [30]. While there is

a variety of estimation approaches for low-dimensional variables [1], due to our fo-

cus on applicability in deep learning, we excluded estimators that are not scalable

for any d1, d2 ∈ N. Histogram-based entropy and mutual information estimators

designed for discrete distributions could be applicable to a continuous distribution

after discretization, but we don’t discuss these methods either, as their results are

heavily dependent on the granularity of discretization.

Lower bounds on mutual information and unbiased estimates are our primary

focus as they have many applications in common, but upper bounds on mutual

information have also been developed, such as the upper contrastive logarithmic ratio

bound [4] and the leave-one-out upper bound [39]. They are applied in contexts,

where one can reasonably assume that X and Y are highly dependent, such as

preventing overfitting or ensuring differential privacy. A lower bound we did not

include is the Nguyen-Wainwright-Jordan lower bound, which – similarly to the

MINE and InfoNCE estimates – trains a neural network to maximize a parametric

lower bound.

3.1 k-nearest neighbors estimator

In this section, we first show the k-nearest neighbors (k-NN) entropy estimate of

Singh et al. [45] which generalizes the Kozachenko-Leonenko entropy estimate [23],

the k-NN estimate for k = 1. We estimate H(X) by approximating the probability
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density function fX of X and applying the Monte Carlo method to the estimated f̂ :

Ĥ(X) = − 1

n

n∑
i=1

logf̂(xi).

Fix k ∈ {1, 2, . . . , n} and let

ri = {|xi − xj| : xj is the k-th nearest neighbor of xi in {x1, x2, . . . , xn} \ {xi}}

for the euclidean norm | · |. Then the closed d-dimensional ball B(xi, ri) contains

exactly k of the n sample points, (other than xi, assuming |xj − xi| = |xj′ − xi| iff

j = j′) thus a reasonable estimate of f̂(xi) is given by

f̂(xi)Vol(B(xi, ri)) = f̂(xi)
πd/2rdi

Γ(d/2 + 1)
=

k

n

assuming the probability density is constant in B(xi, ri), and we can define the

entropy estimator

Ĥ(X) = − 1

n

n∑
i=1

log

(
k

n

Γ(d/2 + 1)

πd/2rdi

)
= log

(
nπd/2

kΓ(d/2 + 1)

)
+

d

n

n∑
i=1

log(ri).

Remark 3.1. The estimator can be generalized for any p-norm, in which case we

measure | · |p-distances and Vol(B(xi, ri, p)) = Γ(1+1/p)d

Γ(1+d/p)
rdi . In its most general form,

this estimate is written as

Ĥ(X) = log
(n
k
cd

)
+

d

n

n∑
i=1

log(ri),

where cd is the volume of the d-dimensional unit ball in the norm of our choice.

Theorem 3.1 ([45]). The asymptotic mean of the above Ĥ(X) for sample size

n→∞ is given by

E( lim
n→∞

Ĥ(X)) = Ψ(k)− log k + H(X),

where Ψ(k) = Γ′(k)
Γ(k)

is the digamma function.

This means that the estimate above is biased. By correcting this bias, we obtain

the asymptotically unbiased k-nearest neighbors entropy estimate.

Definition 3.1 (k-nearest neighbors entropy estimator). Given an i.i.d. sample

x1, x2 . . . , xn of a continuous random variable X over Rd, fix any k ∈ {1, 2, . . . , n}.
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Let

HkNN(X) = log

(
πd/2

Γ(d/2 + 1)

)
+

d

n

n∑
i=1

log(ri)−Ψ(k) + log n,

where ri is the distance from xi to its k-th nearest neighbor and Ψ is the digamma

function.

Theorem 3.2 ([45]). limn→∞Var(HkNN(X)) = 0, i.e. HkNN is consistent.

Definition 3.2 (k-nearest neighbors mutual information estimator). Given an i.i.d.

sample (x1, y1), . . . (xn, yn) of absolute continuous random variables (X, Y ) over

Rd1 × Rd2 , fix any k ∈ {1, 2, . . . , n}. Let

IkNN(X;Y ) = HkNN(X) + HkNN(Y )−HkNN(X, Y ).

Remark 3.2. While I(X;Y ) ≥ 0, the same does not hold for IkNN(X;Y ), as the

negative term HkNN(X, Y ) may be overestimated, or the positive terms HkNN(X),

HkNN(Y ) underestimated.

3.2 Kraskov-Stögbauer-Grassberger estimator

In the nearest neighbors method we limit ourselves to estimating H(X) and H(Y )

using information exclusively from the marginal distributions X and Y . Kraskov,

Stögbauer and Grassberger present two algorithms that seek to improve the kNN

estimator [24] by estimating marginal probability densities with the help of the

joint distribution. The algorithms are similar, so both of them are referred to as

Kraskov-Stögbauer-Grassberger estimator or KSG in literature.

We use the metric ||(x, y) − (x′, y′)|| = max{|x − x′|, |y − y′|} to find ri – the

distance between (xi, yi) and its k-th nearest neighbor – on the joint space Rd1×Rd2 .

In the first algorithm, we count the number of points in the open balls B′
x(xi, ri) ⊆

Rd1 and B′
y(yi, ri) ⊆ Rd2 and denote these numbers nx,i and ny,i respectively. While

usually only one of these balls contains the marginal projection of (xi, yi)’s k-th

nearest neighbor (see Figure 1/a), the authors chose to define the relative density of

these balls as
nx,i+1

n
and

ny,i+1

n
, counting the k-th nearest neighbor in both marginals.

In case one of the marginal projections contain no neighbors, this also ensures that

we do not calculate log 0, see Definition 3.3.

We use the same heuristic for estimating probability density in (xi, yi) as for the

k-NN-estimator:

f̂X(xi)Vol(Bx(xi, ri)) =
nx,i + 1

n
, f̂Y (yi)Vol(By(yi, ri)) =

ny,i + 1

n
.
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Figure 1: Example of KSG1 (left) and KSG2 (right) algorithms calculating nx,i, ny,i

and mx,i, my,i respectively, for k = 2.

For B((xi, yi), ri) ⊆ Rd1 × Rd2 , Vol(B((xi, yi), ri)) = Vol(Bx(xi, ri))Vol(By(yi, ri))

because of the max-norm we defined on Rd1 × Rd2 . Thus

f̂(xi, yi)Vol(Bx(xi, ri))Vol(By(yi, ri)) =
k

n
.

From these probability density estimates, we obtain

Ĥ(X) = log(nVol(Bx(0, 1))) +
d1
n

n∑
i=1

log(ri)−
1

n

n∑
i=1

log(nx,i + 1)

Ĥ(Y ) = log(nVol(By(0, 1))) +
d2
n

n∑
i=1

log(ri)−
1

n

n∑
i=1

log(ny,i + 1)

Ĥ(X, Y ) = log
(n
k

Vol(Bx(0, 1))Vol(By(0, 1))
)

+
d1 + d2

n

n∑
i=1

log(ri).

Now Ĥ(X) + Ĥ(Y )− Ĥ(X, Y ) gives us the following estimate:

Î(X;Y ) = − 1

n

n∑
i=1

(log(nx,i + 1) + log(ny,i + 1)) + log(k) + log(n).

Remark 3.3. In the original article, the estimator is defined using the digamma

function. For positive integers, Ψ(n) =
∑n−1

i=1
1
i
−γ ≈ (log(n−1)+γ)−γ ≈ log(n) for

large n. The authors found that this formula is unbiased based on their numerical

tests.

Conjecture 3.1. The asymptotic mean of the above Î(X;Y ) for sample size n→∞
is given by

lim
n→∞

E(Ĥ(X)) = −Ψ(k) + log k + I(X;Y ).
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We see no proof of this, but the KSG estimator became widely popular in the

forms seen in Definition 3.3 and Definition 3.4. This means that the estimate above

is biased. By correcting this bias, we obtain the asymptotically unbiased KSG

estimate.

Definition 3.3 (Kraskov-Stögbauer-Grassberger mutual information estimator I).

IKSG1(X;Y ) = − 1

n

n∑
i=1

(log(nx,i + 1) + log(ny,i + 1)) + Ψ(k) + log(n).

For the second KSG algorithm, we denote by {(xi1, yi1), (xi2, yi2), . . . (xik, yik)}
the k nearest neighbors of (xi, yi) on the joint space and define

rx,i = max{|xi − xij| : j ∈ {1, . . . , k}} and ry,i = max{|yi − yij| : j ∈ {1, . . . , k}}

so that ri = max{rx,i, ry,i}. We count the number of points mx,i and my,i in the

closed balls Bx(xi, rx,i) ⊆ Rd1 and By(yi, ry,i) ⊆ Rd2 . Following the same line of

thought as for previous estimators, we obtain entropy estimates

Ĥ(X) = log(nVol(Bx(0, 1))) +
d1
n

n∑
i=1

log(rx,i)−
1

n

n∑
i=1

log(mx,i)

Ĥ(Y ) = log(nVol(By(0, 1))) +
d2
n

n∑
i=1

log(ry,i)−
1

n

n∑
i=1

log(my,i).

On the joint space, all k nearest neighbors of (xi, yi) fall in Bx(xi, rx,i)×By(yi, ry,i) ⊂
B((xi, yi), ri) by the definition of rx,i and ry,i. Thus we may improve our heuristic:

instead of using Vol(B((xi, yi), ri)) in the equation, we write

f̂(xi, yi)Vol(Bx(xi, rx,i)×By(yi, ry,i)) = f̂(xi, yi)Vol(Bx(xi, rx,i))Vol(By(yi, ry,i)) =
k

n

Ĥ(X, Y ) = log(
n

k
Vol(Bx(0, 1))Vol(By(0, 1)) +

1

n

n∑
i=1

(d1 log(rx,i) + d2 log(ry,i)).

Again, Ĥ(X) + Ĥ(Y )− Ĥ(X, Y ) gives us an estimate.

Î(X;Y ) = − 1

n

n∑
i=1

(log(mx,i) + log(my,i)) + log(k) + log(n).

Conjecture 3.2. The asymptotic mean of the above Î(X;Y ) for sample size n→∞
is given by

lim
n→∞

E(Ĥ(X)) = −Ψ(k) + log k +
1

k
+ I(X;Y ).

29



Correcting this bias gives us the second KSG estimate.

Definition 3.4 (Kraskov-Stögbauer-Grassberger mutual information estimator II).

IKSG2(X;Y ) = − 1

n

n∑
i=1

(log(mx,i) + log(my,i))−
1

k
+ Ψ(k) + log(n).

Now let us assume the following about the distribution f(x, y) of (X, Y ) and

marginals f(x), f(y): there exist finite constants Ca, Cb, Cc, C ′
c, Cd, C ′

d and Ce,

such that

(a) f(x, y) ≤ Ca almost everywhere,

(b) f(x) ≤ Cb and f(y) ≤ Cb,

(c) for all b > 0 ∫
f(x, y) exp(−bf(x, y))dxdy ≤ Cc/b,∫

f(x) exp(−bf(x))dx ≤ C ′
c/b,∫

f(y) exp(−bf(y))dy ≤ C ′
c/b,

(d) ||∇2f(x, y)||op ≤ Cd, ||∇2f(x)||op ≤ C ′
d, ||∇2f(y)||op ≤ C ′

d,

where || · ||op is the operator norm,

(e) f(x|y) ≤ Ce and f(y|x) ≤ Ce.

Theorem 3.3 ([53]). Under assumptions (a), (b), (c), (d), (e), with fixed k > 1

and sufficiently large sample size n, the KSG estimator’s bias is bounded by

E(IKSG(X;Y )− I(X;Y )) = O

(
log n

ndx+dy

)
.

Theorem 3.4 ([9]). Under assumptions (b), (d) and (e) the KSG estimator is

consistent.

3.3 Information noise contrastive estimation

InfoNCE [33] is a noise contrastive representation learning approach (see Section

2.2.3) introduced by van den Oord, Li and Vinyals [33]. They remark that the

mutual information-based loss function they defined for noise contrastive estimation

(NCE) can also be used for estimating the mutual information between two random

variables. We briefly explain the loss function, then focus on the latter application.
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The InfoNCE loss over a batch of samples B = {x1, x2, . . . xb} given context yi

is

Li = −E

log
gθ(xi, yi)
b∑

j=1

gθ(xj, yi)

 .

Here (xi, yi) is the only positive pair, and the neural network gθ outputs a positive

value. We view (xi, yi) as random variables following the joint distribution p(x, y),

and xj (j ̸= i) as random variables following the noise distribution p(xi)p(yi). The

expectation is taken over these variables. Li is a categorical cross-entropy loss for

identifying the pair correctly. The prediction of the model – the probability that

(xi, yi) forms a positive pair – is
gθ(xi, yi)∑

(x,y)∈B
gθ(x, y)

. The authors note that any positive

real score can be used in place of gθ(x, y).

Remark 3.4. In practice, the loss is calculated over a sample {(x1, y1), (x2, y2), . . . ,

(xb, yb)} as the average

L =
1

b

b∑
i=1

Li.

Lemma 3.1. gθ(x, y) approximates p(x|y)
p(x)

up to a multiplicative constant.
Proof.

p((xi, yi) is the positive pair|B, yi) =
p(xi|yi)Πl ̸=ip(xl)
b∑

j=1

p(xj|yi)Πl ̸=ip(xl)

=

p(xi|yi)
p(xi)

b∑
j=1

p(xj |yi)
p(xj)

.

As we can see, gθ minimizes the expectation in Li if gθ(x, y) = cp(x|y)
p(x)

for some
constant c > 0.

Theorem 3.5. I(X;Y ) ≥ log b− Li.

Proof. Assuming gθ is optimal and minimizes Li,

Li = −E

log

p(xi|yi)
p(xi)

p(xi|yi)
p(xi)

+
∑
j ̸=i

p(xj |yi)
p(xj)

 = E log

(
1 +

p(xi)

p(xi|yi)
∑
j ̸=i

p(xj|yi)
p(xj)

)
.

For all j ̸= i, (xj, yi) is not a positive pair. We can view these xj as i.i.d. data points

coming from the noise distribution p(x)p(y), and use an average to approximate the

previous expression.

EX,Y log

(
1 +

p(xi)

p(xi|yi)
∑
j ̸=i

p(xj|yi)
p(xj)

)
≈ EX,Y log

(
1 +

p(xi)

p(xi|yi)
(b− 1)EX×Y

p(xj|yi)
p(xj)

)
.
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For the noise distribution, p(xj|yi) = p(xj) stands, so we may write

EX,Y log

(
1 +

p(xi)

p(xi|yi)
(b− 1)EX×Y

p(xj|yi)
p(xj)

)
= EX,Y log

(
1 +

p(xi)

p(xi|yi)
(b− 1)

)
.

We assumed yi is the context that maximizes the probability of xi, which means

p(xi|yi) ≥ p(xi).

EX,Y log

(
1 +

p(xi)

p(xi|yi)
(b− 1)

)
≥ EX,Y log

(
p(xi)

p(xi|yi)
b

)
= −Î(X;Y ) + log b

Remark 3.5. Note that Li ≤ −Î(X;Y ) + log b means that even if the loss ap-

proaches 0, the estimated mutual information can only be as high as log b. Accu-

rately estimating high mutual information requires very large batch size b.

3.4 Mutual information neural estimator

The mutual information neural estimator (MINE) was introduced by Belghazi

et al. [2]. It relies on the alternative definition of mutual information presented in

Remark 2.8, and the variational representation of the Kullback-Leibler divergence

known as the Donsker-Varadhan formula, introduced with the following theorem.

Theorem 3.6 ([6]). For probability distributions P , Q over Ω

D(P ||Q) = sup
T :Ω→R

(EP (T )− log(EQ(eT ))),

where the supremum is taken over all functions T such that the two expectations are

finite.

This means that given random variables X and Y with probability density func-

tions fX : Rd1 → R and fY : Rd2 → R respectively, for any set of functions F with

F ⊂ {T : Rd1+d2 → R : EX,Y (T ) <∞, log(EX×Y (eT )) <∞},thefollowingholds :I(X;Y ) =

D(fX,Y (x, y)||fX(x)fY (y)) ≥ supT∈F(EX,Y (T )− log(EX×Y (eT ))), where fX,Y (x, y) is

the probability density function of the joint variable (X, Y ). Let F ′ be the set of

functions parameterized by neural networks that map from Rd1+d2 to R, and for any

gθ ∈ F ′ neural network let L(gθ) = EX,Y (gθ) − log(EX×Y (egθ)). Theorems 2.2 and

2.3 guarantee that the functions in F ′ can (in theory) arbitrarily approximate the

true supremum I(X;Y ) with L(gθ).
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Given a dataset D of samples from (X, Y ), MINE approximates I(X;Y ) by

optimizing the parameters θ of a fixed neural network architecture g. The network

is trained to maximize L(gθ), i.e. minimize −L(gθ) as a loss function. Evidently,

this is achieved through minimizing the empirical expectations −L̂(gθ) over the set

of samples. The samples from (X, Y ) are given, and the samples from X × Y are

obtained by randomly shuffling Y to obtain a dataset D′ = {(xi, yπ(i))|1 ≤ i ≤ n}.
The expectations in L̂(gθ) are calculated using the law of large numbers, by averaging

over a number of samples before updating the network parameters.

Theorem 3.7 ([2]). MINE is strongly consistent.

Now let us assume there exists constants Ca, Cb and Cc such that

(a) |gθ| < Ca,

(b) gθ is Cb-Lipschitz w.r.t. θ,

(c) Θ ⊂ RCp is bounded, ||θ|| < Cc for some Cc ∈ R.

Theorem 3.8 ([2]). Under assumptions (a), (b) and (c), for all ϵ > 0 and δ > 0

P (|L(gθ)− L̂(gθ)| < ϵ) > 1− δ,

whenever the number of samples n satisfies

n >
2C2

aCp log(16CcCb

√
Cp/ϵ) + 2CaCp + log(2/δ)

ϵ2
.

InfoNCE is closely related to MINE. Let expT (x, y) = gθ(x, y).

Li = E

log
expT (xi, yi)
b∑

j=1

expT (xj, yi)

 = E(T (xi, yi))− E

(
log

b∑
j=1

expT (xj, yi)

)

≤ E(T (xi, yi))− E

(
log
∑
j ̸=i

expT (xj, yi)

)

= E(T (xi, yi))− E

(
log

(
1

b− 1

∑
j ̸=i

expT (xj, yi)

)
+ log(b− 1)

)
.

This is equivalent to MINE up to a constant, which means InfoNCE maximizes the

same lower bound as MINE (Theorem 3.6). Theorems 3.7 and 3.8 also carry over.

Regardless, the authors claim that InfoNCE performed better than MINE on trivial

tasks and gave identical performance on non-trivial tasks.
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4 Benchmarking on synthetic data

In this section we focus on comparing the mutual information estimators on

synthetic data. In our experiments, we implemented the formulas for the k-nearest

neighbors and Kraskov-Stögbauer-Grassberger estimators as written in this thesis,

and used the implementations of [4] for the remaining two estimators, available

at https://github.com/Linear95/CLUB. For most of the experiments, we used a

random seed of 2023. Our code is available at http://github.com/sisakls/mi.

We tested on synthetic data derived from uniform or normal distributions. Nor-

mal distributions are popular for benchmarking [13, 36], but recent work [5] intro-

duces more challenging benchmarks for testing, they show that testing on multi-

variate normal distributions gives a biased and overly optimistic view of estimator

performance, and KSG does not perform well on problems involving high-dimensions

or sparse interactions.

4.1 Analytical computation

Evaluating the accuracy of mutual information estimators on real data is usu-

ally not possible, as the underlying distributions are not known. For this reason,

we generate synthetic data from known distributions, where accurately calculating

mutual information is tractable.

4.1.1 Linear synthetic data

For linear synthetic data, X ∼ Unif(0, 1) and Y = X+Z, where Z ∼ Unif(−α/2, α/2)

for α < 1. When generating an d dimensional linear dataset, we draw d i.i.d. samples

from distributions X and Z, one for each dimension. Essentially, each d dimensional

data point is an d-sized sample of the 1 dimensional linear data, and (aside from

dimensionality) the data have a single parameter, α. The mutual information for

d = 1 dimension is

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(Z) = H(Y )− logα.

It remains to calculate H(Y ). We can find the pdf of Y using convolution:

fY (y) =

∫ ∞

−∞
fX(x)fZ(y − x)dx.
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As fZ(y−x) = 1
α

iff −α/2 ≤ y−x ≤ α/2 iff y−α/2 ≤ x ≤ y+α/2, and 0 elsewhere,

we may write

fY (y) =

∫ y+α/2

y−α/2

fX(x)
1

α
dx =

1

α
λ∗([0, 1] ∩ [y − α/2, y + α/2]),

where λ∗ is the Lebesgue measure, or simply the length of these intervals. Which

means

fY (y) =



0 if y ∈ (−∞,−α/2) ∪ (1 + α/2,∞)

1
α

(y + α/2) if y ∈ [−α/2, α/2]

1 if y ∈ (α/2, 1− α/2)

1
α

(−y + 1 + α/2) if y ∈ [1− α/2, 1 + α/2],

thus

H(Y ) = −
∫ ∞

−∞
fY (y) log fY (y)dy =

−
∫ α/2

−α/2

(
y

α
+

1

2

)
log

(
y

α
+

1

2

)
−
∫ 1+α/2

1−α/2

(
1− y

α
+

1

2

)
log

(
y

α
+

1

2

)
=

α/4 + α/4 = α/2. (1)

Substituting (1) in I(X;Y ) we obtain

I(X;Y ) = H(Y )−H(Z) = α/2− logα

for d = 1 dimension. The mutual information for d = 2 dimensions is

I(X;Y ) = I(X1, X2;Y1, Y2) = I(X1;Y1) + I(X2;Y2) = 2(α/2− logα)

because of the independence of (X1, Y1) and (X2, Y2). For general d, by induction

I(X;Y ) = d(α/2− logα).

4.1.2 Gaussian synthetic data

For d-dimensional (multivariate) Gaussian synthetic data, a random 2d × 2d

covariance matrix was generated using Cholesky decomposition. That is, for ev-

ery M ∈ Rn×n symmetric positive definite matrix, there exists L ∈ Rn×n lower-

triangular matrix such that M = LLT . Thus we generate L by defining all diagonal
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entries as 1 and generating all entries under the diagonal as i.i.d. samples from

Unif(−1, 1). The rest of the entries are 0. The covariance matrix is defined as

Σ = LLT ∈ R2d×2d. (X;Y ) ∼ N(0,Σ), where X is the first d entries and Y is the

last d entries. Note that for a normal distribution with 0 expectation and covariance

matrix Σ̂,

H(Z) = −E(logN(0, Σ̂)) = −E(log(2π)−d/2 det(Σ̂)−1/2 exp(−1

2
ZT Σ̂−1Z)) =

=
d

2
log(2π) +

1

2
log det(Σ̂) +

1

2
E(ZT Σ̂−1Z), (2)

where E(ZT Σ̂−1Z) = E(tr(ZT Σ̂−1Z)) = tr(Σ̂−1E(ZZT )) = tr(Σ̂−1Σ̂) = tr(Id) = d.

Substituting the latter in (2) yields

H(X) =
d

2
log(2π) +

1

2
log det(Σ) +

1

2
d =

d

2
(1 + log(2π)) +

1

2
log det(Σ).

We can conclude that the mutual information of this multivariate Gaussian distri-

bution is

I(X;Y ) = H(X) + H(Y )−H(X;Y ) =
1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)
,

where ΣX is the d × d (upper left) submatrix belonging to X and ΣY is the d × d

(lower right) submatrix belonging to Y .

For some experiments, we want the mutual information of the distribution to

scale linearly with dimension d, as it does for linear synthetic data. We achieve this

by ensuring that the distribution generating the i-th coordinate of X is independent

from all other distributions generating coordinates of (X, Y ), save for the i-th co-

ordinate of Y . Doing so will render the distribution a lot less complex, but we will

have some basis to draw conclusions from comparing the estimates between different

dimensions. In these cases, the matrix L used for generating the covariance matrix

of the distribution was fixed as

L =

(
I 0

βI I

)
, thus LLT =

(
I βI

βI (1 + β2)I

)
,

where I is the d-dimensional identity matrix and β ∈ R scalar.

When we fix L this way, one easily checks that based on previous statements

I(X;Y ) =
d

2
log

(
1 · (1 + β2)

1

)
.
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4.2 Comparing analytic and estimated mutual information

4.2.1 Nearest neighbors-based estimates

The accuracy of each estimator was tested on both linear and Gaussian synthetic

data. The parameters for nearest neighbors-based estimators (kNN, KSG1, KSG2)

were k and the norm used on the (marginal) space.

There is an additional parameter ϵ > 0 for such estimators, which is added to

the distance of a point xi and its k-th nearest neighbor. This is because in practice

the k-th nearest neighbor of xi may not be contained in the closed ball B(xi, ri) due

to floating point error, but is surely contained in B(xi, r
′
i), where r′i = ri + ϵ. We

experimentally confirmed that a small ϵ does not significantly alter the estimates

(ϵ between orders of magnitude 10−12 and 10−8), then used ϵ = 10−10 for all other

experiments.

In the first experimental setup, the performance of estimates was evaluated on

both datasets for varying parameters and sample sizes. The estimators approxi-

mated I(X;Y ) for a 20-dimensional (X, Y ) joint distribution (dX = dY = 10). For

the linear dataset, α = 0.6. The nearest neighbors estimates were evaluated on

100, 300, 1000, 3000 and 10000 samples. These were not independently generated

datasets, rather a single dataset of 10000 samples was created, and we estimated

I(X;Y ) on the first 100 samples, then the first 300 samples, etc. until at last all the

samples were used. This means that the x axis of Figures 2-5 is roughly logarithmic.

Figure 2: Accuracy of first nearest neighbors-based estimators on increasingly bigger
samples of 20-dimensional Gaussian joint distribution (X, Y ). Different lines of the
same color mark different norms.
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On Figures 2 and 4 the accuracy of the estimators with various norms are plotted.

On the Gaussian dataset, the kNN estimator performed very poorly regardless of

the norm, but the L1 and L2 norm seemed to be the least inaccurate. The KSG1 and

KSG2 estimators were very insensitive to the norm used. On the linear dataset, L2

norm was the most accurate for the kNN and KSG1 estimators. The KSG2 estimator

was still rather insensitive to the norm, but the L1 norm performed a little better

than the L2 and L∞ norms. Based on the above observations we fixed the L2 norm

for kNN and KSG1 and L1 norm for KSG2 for the remaining experiments.

Next, the estimators were tried with various k parameters. We found that the

greater k is, the worse each approximation gets. The results can be seen on Figures

3 and 5 for k ∈ {1, 2, 3}. We tried k up to k = 5 and even repeated the experiment

fixing different norms, each time finding that the performance of all three estimators

gets strictly worse whenever k increases. This coincides with the findings of Kraskov,

Stögbauer and Grassberger. (See figure 16 in [24].)

Over all, the kNN estimator was clearly the least accurate of nearest neighbors-

based estimators, but all three estimators were very inaccurate over as little as 10

dimensions.

Figure 3: Accuracy of k nearest neighbors-based estimators on increasingly bigger
samples of 20-dimensional Gaussian joint distribution (X, Y ). Different lines of
the same color mark different k parameters. kNN and KSG1 estimates used the
euclidean norm, KSG2 used the L1 norm.
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Figure 4: Accuracy of first nearest neighbor-based estimators on increasingly bigger
samples of 20-dimensional linear joint distribution (X, Y ). Different lines of the
same color mark different norms.

Figure 5: Accuracy of k nearest neighbors-based estimators on increasingly bigger
samples of 20-dimensional linear joint distribution (X, Y ). Different lines of the same
color mark different k parameters. kNN and KSG1 estimates used the euclidean
norm, KSG2 used the L1 norm.

4.2.2 Neural estimates

Again, we tested the accuracy of MINE and InfoNCE on both the Gaussian and

linear datasets. The parameters of the datasets were identical to the ones used in the

previous subsection. The parameters of these neural estimators are the same as the

ones used in any neural network training setup: the choice of neural architecture,

number of training steps, the gradient descent variant and its hyperparameters.
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The architecture was a simple, shallow neural network that first mapped to a

layer of p neurons and then to the single output neuron. p ∈ N was a parameter left

to be experimented with. This is a simple architecture, but the authors evaluated

InfoNCE similarly, proving its effectiveness. The variant of gradient descent used

was the Adam optimization algorithm (see Definition 2.18). While Adam operates

with many parameters, it is a very robust optimization algorithm that was proven

not to require much fine-tuning. Aside from learning rate λ, we fixed all of Adam’s

parameters at their implemented default values: β1 = 0.9, β2 = 0.999, ϵ = 10−8.

The models were trained with a batch size of 3334. We intended to train using

a batch size of 10000 to enable the models the best possible performance given the

setup (as the largest training set in our experiments consisted of 10000 samples),

but this was not possible due to hardware limitations.

The parameter p was determined in an experimental setup similar to that used

in the previous section: Gaussian and linear datasets of 100, 300, 1000, 3000 and

10000 samples, not independently generated, but each of them subsets of the largest

dataset. Both estimators were trained on each dataset with a learning rate of λ =

0.005 and each dataset was processed 300 times before the model was evaluated. The

final mutual information score given by the models was the average of the last 20

estimations of the training. This was needed because the values estimated by MINE

showed a large variance, even after convergence. The results for p ∈ {10, 20, 30} can

be seen on Figures 6 and 7.

Figure 6: Accuracy of neural estimators on increasingly bigger samples of 20-
dimensional Gaussian joint distribution (X, Y ). Different lines of the same color
mark different widths p of the hidden layer.
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Figure 7: Accuracy of neural estimators on increasingly bigger samples of 20-
dimensional linear joint distribution (X, Y ). Different lines of the same color mark
different widths p of the hidden layer.

As one would expect, higher model complexity led to more accurate lower bound

estimates. The models were tried with p values up to 50, but increasing the model

complexity to 40 and 50 showed diminishing returns in the accuracy of estimation.

As unnecessarily complex neural architectures cause overfitting on training data (i.e.

allowing models to learn features that arise from noise in the data), a width of p = 30

was fixed on both models for future experiments.

It remained to determine an appropriate learning rate and the number of train-

ing epochs. These parameters are much less sensitive than model complexity, and

they do not impact model performance as long as we don’t end the training before

convergence. These training parameters were tested after p to avoid misinterpret-

ing overfitting with an increase in accuracy. After some experimentation, we fixed

λ = 0.02 for InfoNCE, with a training duration of 100 epochs and λ = 0.004 for

MINE, with a training duration of 800 epochs.

4.2.3 Comparison of neural and nearest neighbors estimators

In the next experimental setup, we tested the same estimators on datasets of fixed

sample size (10000 samples) and increasing dimension. As mentioned in Section

4.1.2, we used a fixed LLT covariance matrix for the Gaussian distribution, with

β = 2. For the linear dataset, α = 0.6, this ensures that mutual information is

roughly the same in both datasets.

Similarly to previous setups, we did not generate new samples for each dimension,
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Figure 8: Accuracy of all estimators on Gaussian synthetic data of increasing
(marginal) dimension. The y axis is cut off at 0 for readability, despite kNN pre-
dicting a value far below 0 for 1-dimensional marginals.

Figure 9: Accuracy of all estimators on linear synthetic data of increasing (marginal)
dimension. The y axis is cut off at 0 for readability, despite kNN predicting a value
far below 0 for 1-dimensional marginals.

rather we measured the mutual information between the first dimensions, first 2

dimensions, first 3 dimensions ect. of X and Y on a fixed 10-dimensional dataset.

The results can be seen on Figures 8 and 9. Unsurprisingly, the accuracy of all

estimators deteriorated as the dimensions increased. The nearest neighbors-based

estimators could not keep up with neural estimators. On Gaussian data, the kNN

and KSG1 estimated a lower value for 8, 9 and 10 dimensions than for 6 or 7 di-
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mensions, despite the true MI increasing linearly with dimensions. Interestingly,

the kNN estimator was extremely inaccurate on 1-dimensional marginals. The neu-

ral estimators performed better on high-dimensional data than any of the other

estimates, and at high dimensions, achieved noticeably better performance on the

Gaussian dataset than on the linear.

In the next experimental setup, we repeated the experiment with a different 10-

dimensional dataset. We generated a 10000 sample dataset with marginal dimension

2, then padded it to 10 dimensions with i.i.d. samples from a standard normal

distribution. These 8 noise dimensions do not increase the MI of the 2-dimensional

data. Again, we estimated the true MI with all methods on 2, 3, . . . 10 dimensional

marginals. β = 4 for the Gaussian dataset and α = 0.3 for the linear dataset.

The results can be seen on Figures 10 and 11. Again, the neural estimators

outperformed the nearest neighbors-based estimates, and achieved greater accuracy

on the Gaussian dataset. The kNN estimator was the least robust against the noise

added in this experiment, the KSG1 and KSG2 estimates noticeably deteriorated

as noise was added. The neural estimators consistently reached the same estimate

despite the increase in dimensions.

Figure 10: Accuracy of all estimators on Gaussian synthetic data with an increasing
number of noise dimensions.
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Figure 11: Accuracy of all estimators on linear synthetic data with an increasing
number of noise dimensions.

5 Dataset inference with mutual information score

Some commercial service providers grant users paid query access to their model

through public APIs, making these encoders vulnerable to ”model stealing” attacks.

The attacker can query inputs on the hosted neural network and use the observed

outputs to train a network that achieves similar performance. Dataset inference

[29] offers the possibility to resolve ownership by verifying whether a network is

a stolen derivative of another one. The high costs associated with training large

models, such as CLIP [40] or large language models, make them valuable targets

for theft. Unfortunately, dataset inference normally relies on decision boundaries

to verify ownership, which do not exist for encoders trained on a large volume of

unlabeled data. In this section, we aim to utilize mutual information estimation

for dataset inference following [7]. Here we don’t discuss the main result of this

work, only focus on section 4.1, which proposes a mutual information-based dataset

inference method for self-supervised models.

In the attack setup outlined by the authors, the attacker can’t access the weights

of the victim encoder gv or the private dataset Dv used for training gv, but he can

construct a model gs with a similar architecture. The victim model is hosted as a

black box for the attacker. The attacker steals gv by querying his dataset Ds on gv,

obtaining a dataset {x, gv(x)|x ∈ Ds} which he can use to train the stolen model gs.

The attacker trains gs in a contrastive manner. At every training step, a positive

pair for input x is the pair gv(x), gs(x). As gv(x) is independent of gs, such definition

of positive pairs will train gs to copy gv’s outputs.
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The defense method relies on a trusted third party to query part of the private

training data D ⊆ Dv on gv, gs and a randomly initialized model gr. Assum-

ing Dv contains i.i.d. samples from some random variable X, this yields samples

gv(D), gs(D) and gr(D) from random variables (representations) gv(X), gs(X) and

gr(X) respectively. It is assumed that if the encoder gs is stolen, I(gv(X); gs(X))≫
I(gv(X); gr(X)). This mutual information can’t be calculated directly, because for

datasets of practical interest, the distribution of X is unknown. Thus the samples

gv(D), gs(D), gr(D) are used to estimate I(gv(X); gs(X)) and I(gv(X); gr(X)). Fur-

thermore, the authors propose a novel mutual information score, which is mutual

information normalized to be a score between 0 and 1.

Definition 5.1. For the mutual information I(gv(X); gs(X)), the mutual informa-

tion score is

S(gs, gv) =
I(gv(X); gs(X))− Imin

Imax − Imin

,

where Imax = I(gv(X); gv(X)) and Imin = I(gv(X); gr(X)).

We rely on and extend the publicly available codebase accompanying the publi-

cation, our modifications are also available at this link.

5.1 Victim encoder training and evaluation

In the cited and followed article, victim encoders with ResNet34 architecture [17]

were trained on images of the CIFAR10 [25] dataset for 200 epochs in contrastive

manner using the InfoNCE loss receiving temperature-scaled logits – we refer the

reader to Subsection 3.3 for detail on it, as particularly its temperature parameter

plays a crucial role in the successful optimization process. According to the authors,

the temperature changed between 0.1, 0.15, 0.2 and 0.25, but unfortunately it was

not further specified for training victim encoders. The ResNet34 architecture was

used with stride 1 and a 3× 3 kernel size in its first convolution layer instead of the

default 7×7, as usually for CIFAR10 image size, and did not use max-pooling layer.

During training, the ResNet34’s 512-dimensional output was first mapped to 512

neurons with a linear layer using ReLU activation function, then a 128-dimensional

output using a linear layer with no activation function. The head – these two

linear layers – was discarded after training (a common method in self-supervised

learning). The Adam optimization algorithm was used to update the weights of

models. Adam’s initial learning rate was kept constant in all cases and changed

during training via the cosine annealing scheduler, but the weight decay or the exact

initial learning rate was not specified in the paper. The batch size was specified as
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Setting Training loss Linear eval. Linear eval.
after 200 epochs training acc. test acc.

reported - - 87.4
temperature=0.1 1.08 83.7 81.6
temperature=0.15 1.94 85.9 84.3
temperature=0.2 2.79 86.7 84.7
temperature=0.25 3.37 86.4 84.6

Table 1: Our linear evaluation results of victim encoders on CIFAR10, trained with
different temperature parameters. The first row shows the reported result from
Table 7 of [7].

256 or 512. We tested both batch sizes and found that they perform similarly, with

a batch size of 256 yielding slightly better results.

When attempting to reproduce the model trainings, we heavily relied on the

reported linear evaluation results, see Table 8 of [7]. During linear evaluation, the

encoder’s parameters were fixed and only a linear layer was trained to perform the

default classification task of the CIFAR10 dataset. Unfortunately, we could only

reproduce the linear evaluation accuracy of victim encoders with the available code

(github.com/cleverhans-lab/DatasetInferenceForSelfSupervisedModels), we

got similar results only after some experimentation.

In the provided code, the cosine annealing learning rate scheduler is called

with a maximum number of iterations set as the length of the data loader (i.e.⌊
#samples
batch size

⌋
), while the implementation shows that they step the scheduler only

once per epoch. While this was not major error, editing the code to call the sched-

uler with maximum number of iterations set as 200 (the number of epochs) slightly

improved performance.

It remained to correctly set the learning rate and weight decay used by the

optimization algorithm, and set the appropriate temperature for scaling the InfoNCE

logits. We found that the results were most sensitive to the temperature parameter,

and left the learning rate and weight decay at their default values provided in the

code, 3 · 10−4 and 10−4 respectively.

5.2 Stealing the victim encoder

As we mentioned earlier, we failed to recreate the stolen model as described in the

paper. We focused on reproducing the results of Table 8, thus the stolen encoder was

trained by querying 10000 samples from the SVHN dataset on our best performing

victim encoder. The authors remark that the SVHN dataset’s test and train data
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distribution is not the same, therefore they reshuffled the whole dataset and used it

after an 80− 20% train-test split. The authors test stealing for a variety of sample

numbers from 1000 to 50000, we chose 10000 because it was close to the default value

provided in the original code. For the stolen encoder, a ResNet34 architecture has

been used (with the same deviations from default in kernel size, stride and layers as

the victim), and it was trained contrastively for 100 epochs with InfoNCE loss using

a temperature of 0.1. During contrastive training, the the positive pairs consisted

of the representation returned by the victim encoder, and the representation of the

same data point returned by the stolen encoder. Naturally, the victim encoder’s

parameters were fixed. The weights of the stolen encoder were optimized with the

Adam optimization algorithm. For the InfoNCE loss, the authors hard-coded the

learning rate as 3 · 10−4, the weight decay as 10−4 and the batch size as 256, but

these parameters were not exactly specified in the paper. The learning rate was

adjusted with the cosine annealing scheduler.

Again, we had to modify the code to invoke the cosine annealing scheduler with

the appropriate maximum number of iterations. The SVHN dataset was initialized

using PyTorch’s built-in function, which verifies the integrity of the dataset and

prevents the loading of modified or remixed data. To address this, we created

a custom function identical to PyTorch’s implementation but without the integrity

check, enabling us to use a remixed SVHN dataset as reported in the paper. We also

observed that the samples are always queried in the same order across all epochs.

Initially suspected to harm the SGD-based optimization, this behavior was later

understood to serve the purpose of avoiding overlapping data when both stealing

and testing the model on the test dataset only. The stealing experiment targeted

our best-performing victim model, the one trained with a temperature of 0.2.

Model / Setting Training CIFAR10 CIFAR10 SVHN SVHN
loss training acc. test acc. training acc. test acc.

our victim - 86.7 84.7 56.5 52.1
reported stolen - - 55.6 - 58.9

no heads 6.08 41.3 39.2 38.2 36.4
victim head 8.55 36.0 35.2 26.8 24.8
stolen head 6.07 42.8 41.7 37.7 36.4
two heads 6.15 41.1 39.5 30.5 27.4

old scheduler 6.08 40.8 39.7 37.4 35.1
lr = 1.5 · 10−3 6.07 38.8 37.8 30.7 28.6

Table 2: Our linear evaluation results on stolen encoders. victim is the performance
of the targeted victim model, all others are stolen encoders: old scheduler refers
to cosine annealing scheduler called with the original parameters, lr is short for
learning rate. The second row shows the reported result from Table 8 of [7].
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The final parameter to be determined was wether we should add a head to the

ResNet34 architecture, similarly to the victim encoder’s training. The code offered

separate parameters to determine the use of a linear layer for the stolen and victim

models. When only one of the models has a head, the final linear layer has to map to

an 512-dimensional output to ensure matching output dimensions. We tried all four

possible combinations, despite one of them (head on victim only) being seemingly

unsupported. Despite our efforts, we were unable to train a stolen encoder that

reproduced the linear evaluation accuracies reported in the paper, a summary of

the results is provided in Table 2. We also tried training on the original SVHN

dataset, training with the original cosine annealing scheduler parameters and with

higher learning rate, but the stolen encoder never reached 50% accuracy on CIFAR10

during linear evaluation.

5.3 Estimating encoder similarity

We were unable to reproduce the stolen model but proceeded to analyze the

results of mutual information estimation in this setting. The authors implemented

the k-NN estimator to measure mutual information between the representations

generated by the models. Following the Definition 5.1, an untrained model with

randomly initialized weights is used to normalize the score, but here we mainly

report the raw mutual information estimation values instead. We estimated the

mutual information between the victim model and a copy of the victim model,

randomly initialized models, an independent model, and one of our other victim

models, trained with 0.15 temperature on the CIFAR10 dataset (see Section 5.1

for the latter). We trained the independent model on the STL10 dataset, with

temperature 0.2 and all other parameters identical to the victim. We also include

the estimate between the victim and the stolen encoder trained with no heads. As

we could not produce a stolen model that matched the accuracy reported in the

paper, this is more of a curiosity than a conclusive result.

The provided script used to calculate mutual information estimation utilizing

the kNN-estimation method could only query samples from the ImageNet dataset

(it was hard-coded), but after minimal editing, we were able to query samples of

the CIFAR10 dataset. We did not shuffle CIFAR10 to ensure reproducible, con-

sistent results. This means that the values in Table 3 are obtained from the first

2000, 4000 and 8000 datapoints of CIFAR10 respectively. Notably, the available

implementation contained a syntax error.

The results of these experiments can be seen in Table 3. The estimated mutual
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information is almost always negative, but the results indicate that there is a relation

between the data used to train a model and the estimate. The random model showed

inconsistent results varying between -285.64 and -377.3, thus we consider random

models to be an unfitting baseline for calculating Imin as seen in Definition 5.1. On

the other hand, the independently trained encoder consistently produced similar

results.

Model 2000 samples 4000 samples 8000 samples
victim 4.8 5.5 6.2
stl10 -73.2 -76.3 -80.7
cifar10 -21.7 -22.6 -25.3
random -337.1 -359.1 -318.8
stolen -1450.6 -1394.8 -1329.4

Table 3: Mutual information estimated between the victim encoder and various other
encoders. The victim is a copy of our best encoder, cifar10 is the victim encoder
trained with 0.15 temperature and stl10 is the independently trained model. Results
from the random encoder are the average of three trials.
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6 Conclusions

Mutual information has promising theoretical properties, such as a natural con-

nection to entropy and Kullback-Leibler divergence (Remarks 2.5 and 2.8) or the

data processing inequality (Theorem 2.1). In Section 2.3 we reviewed many of the

possible applications of mutual information in the field of deep learning, along with

their limitations. As we expected, our experiments on synthetic data confirmed

that the theoretical limitations ([34], Theorem 1 and [31], Theorem 1.1) carry over

to practice. Current mutual information estimation methods seem inadequate for

accurately estimating high mutual information in high-dimensional settings, which

would be crucial for applicability in deep learning. Deep learning research appears

to be shifting its focus towards projecting random variables onto lower-dimensional

spaces, measuring dependency between these projections, and, more broadly, to-

wards techniques from algorithmic information theory.

Unfortunately, during the writing of this thesis, we encountered issues inher-

ent to deep learning research itself. Deep learning and artificial intelligence have

been popular research topics over the past decade, attracting significant public and

professional attention. The volume of papers published in the field has increased

astoundingly in recent years, making it difficult to follow the literature in the first

place. Despite ongoing efforts [35], the deep learning community seemingly still lacks

appropriate infrastructure to review publications with sufficient academic rigor.
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et al. Nonparametric entropy estimation: An overview. International Journal

of Mathematical and Statistical Sciences, 6(1):17–39, 1997.

[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair,

Yoshua Bengio, Aaron Courville, and R Devon Hjelm. Mine: Mutual infor-

mation neural estimation, 2021.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A

simple framework for contrastive learning of visual representations. In Interna-

tional conference on machine learning, pages 1597–1607. PMLR, 2020.

[4] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and

Lawrence Carin. Club: A contrastive log-ratio upper bound of mutual in-

formation. In International conference on machine learning, pages 1779–1788.

PMLR, 2020.
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