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1 Introduction

1.1 Overview of Known Results

The multi-armed bandit problem is one of the most studied problems in control and
decision theory, which encompasses the fundamental dilemma between exploration
and exploitation [1]. The term multi-armed bandit originates from the name of the
slot machine called one-armed bandit, because the studied problem is similar to the
situation a gambler might face in a casino when he wants to decide which machines
to play from a row of slot machines. Each of these machines is associated with a
probability distribution and pulling the arm of a machine yields a reward from its
distribution. Initially the distributions are unknown, but as the gambler plays the
machines, he gathers information which can guide future decisions. The gambler may
have different objectives, such as maximizing the total reward over a fixed number
of trials or identifying a near-optimal machine.

There are well-known algorithms to achieve these goals. The Upper Confidence
Bound (UCB) algorithm can be used if the goal is to maximize the total reward.
In this case we use the regret to measure how good an algorithm is. The regret is
the difference between the maximal reward, that can be achieve over n rounds by
playing the optimal arm all the time and the expectation of the sum of the rewards
collected by the algorithm. The smaller the regret, the better the algorithm. It can
be shown, that the Upper Confidence Bound algorithm is asymptotically optimal,
meaning that as the number of rounds tend to infinity, the regret becomes a constant
multiple of the regret of the best possible algorithm.

If the goal is to identify a close-to-optimal arm, we can use the Median
Elimination algorithm. In each round of this algorithm, we sample each remaining
arm a specified number of times, calculate the sample mean for each arm, and
eliminate the half of the arms with the lowest sample means.

Of course, for these algorithms to work, we must make some assumptions
about the arms. We assume that they belong to a defined family of probability
distributions. One of the most common assumptions is that the arms are 1-
subgaussian, meaning that the tails of the distributions decay at least as quickly
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as those of the standard normal distribution.
These algorithms can be used not only in casinos, the multi-armed bandit

problem has many applications including A/B testing, advert placement and
recommendation services [2]. In online advertising, multi-armed bandit algorithms
can dynamically adjust ads to maximize click through rates by balancing exploration
and exploitation [3, 4]. Multi-armed bandits power recommendation systems too,
such as those used by streaming services or e-commerce platforms, to dynamically
recommend products or content while learning user preferences over time [5, 6, 7].
They can also be used in adaptive clinical trials to dynamically allocate patients to
treatments, aiming to find the most effective treatments while minimizing exposure
to less effective ones [8, 9]. Bandit algorithms are applied in financial portfolio
management to dynamically allocate assets in a way that maximizes returns while
managing risk through diversification and adaptive learning of asset performance
[10, 11]. In e-commerce and retail, these algorithms help in setting optimal prices
for products by balancing the exploration of different pricing strategies and the
exploitation of known profitable pricing [12].

In my thesis I present some of the principal results related to the stochastic
multi-armed bandit problems, focusing on the Upper Confidence Bound and Median
Elimination algorithms.

1.2 Contributions of the Thesis

In many applications, we can use the Median Elimination Algorithm to find a close-
to-optimal arm, since this algorithm doesn’t assume anything about the structure of
the arms. However, in some applications we can assume that an unknown concave
function describes the expectations of the arms and in this case we might use this
information to find a close-to-optimal arm much faster.

For example, consider a company aiming to determine the optimal price to charge
for a product in order to maximize its profit. In this scenario, each possible price
point can be viewed as an arm in the multi-armed bandit problem. Initially, reducing
the price from a higher value often leads to a substantial increase in the number of
units sold, as more customers are attracted by the lower cost. However, after reaching
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a certain threshold, further price reductions yield diminishing returns in terms of
sales. This happens because customers become more price-sensitive, and after a
point, additional reductions in price no longer correspond to proportional increases
in demand. Instead, they might simply reduce the perceived value of the product.
This way we can assume that the company’s profit is a concave function of the price.
In this case, the number of arms is infinite because the price is a continuous variable.
However, if the company can only choose from a limited number of pricing strategies
or variations (e.g., different levels of product quality), the problem becomes finite,
as there is a fixed number of possible arms to test.

In my thesis, I examine some special cases of the multi-armed bandit problem
and present my own algorithms which leverage the extra information to identify
close-to-optimal arms more efficiently than Median Elimination. In all of these cases
I assumed that the arms are 1-subgaussian. I have developed (ε, δ)−PAC algorithms
for the following cases:

• There are finitely many arms, and we know that the expectations of the arms
increase up to a certain arm, after which the expectation decreases, and the
difference between the expectations of neighboring arms is at least ∆, where ∆
is known in advance. In this case the provided new algorithm finds the optimal
arm much faster than the Median Elimination algorithm (by choosing ε < ∆)
with a sample complexity of

O
(
log n+

1

∆2
log

n

δ

)
instead of

O
(

n

∆2
log

1

δ

)
.

• The arms are the points of the [0, 1] interval and an unknown concave function
describes the expectations of the arms.

• The arms are the points of the [0, 1] interval and an unknown concave function
describes the expectations of the arms, which is Lipschitz continuous with a
known Lipschitz constant L. I have also calculated the sample complexity of
the algorithm in this case.
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• There are finitely many arms and an unknown concave function describes the
expectations of the arms. The algorithm I developed finds an ε-optimal arm
with probability at least 1− δ more efficiently than Median Elimination, with
a sample complexity of

O
(

1

ε2

(
(log n)2 + log n · log 1

δ

))
instead of

O
(
n

ε2
log

1

δ

)
.

I have also implemented the algorithms and conducted experiments to assess their
performance by plotting the relationship between the algorithm inputs and the
sample complexity.
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2 Definitions

We start this section by giving a more formal definition of the bandit problem. The
definitions and results in this and the following two sections can be found in [2].

2.1 Stochastic Bandits

The bandit problem is a sequential game between a learner and an environment.
The stochastic bandit model consists of a set of distributions ν = (Pa : a ∈ A),
where A is the set of available actions, which are often called arms in the literature.
In each round t the learner chooses an action At ∈ A and a reward Xt is sampled
from distribution PAt by the environment. Both the learner and the environment
may use randomization.

The expectation of arm a will be denoted by µa(ν) and the largest expectation
will be denoted by µ∗(ν) = maxa∈A µa(ν). We assume throughout that µa(ν) exists
and that it is finite for all a ∈ A. We also assume that µ∗(ν) exists. If the context is
clear, we will drop the dependence on ν and write µa instead of µa(ν) and µ∗ instead
of µ∗(ν).

In each round, the learner can only use the past observations to make a decision,
so At only depends on the history Ht−1 = (A1, X1, ..., At−1, Xt−1). A policy is a
mapping from histories to actions, which defines the decisions made by the learner
based on the previous observations. Policies can use randomization when choosing
the next action to be sampled and when making the final selection. An environment
is a mapping, which maps histories ending in actions to the reward received by the
learner. The environment is unknown to the learner, the learner only knows, that the
true environment is in a given set of environments, called the environment set. The
term bandit is often used instead of environment. For example an environment is
called a stochastic Bernoulli bandit, if the rewards are binary and the distributions
are Bernoulli distributions. The class of stochastic Bernoulli bandits is the set
including all stochastic Bernoulli bandits characterized by their mean vectors.

We distinguish between structured and unstructured bandits. An environment E
is called unstructured, if A is finite and there exist a set of distribution Ma for all
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a ∈ A such that E is the Cartesian product of these sets

E = ×a∈AMa.

In this case by playing action a the leaner cannot learn anything about the
distribution of arm b ̸= a. One example of unstructured bandits is the Bernoulli
bandit defined above.

Environment classes that are not unstructured are called structured. One
simple example is the stochastic linear bandit, where A ⊂ Rd, θ ∈ Rd and
νθ = (N (⟨a, θ⟩, 1) : a ∈ A), E =

{
νθ : θ ∈ Rd

}
. Here the learner can deduce the

true environment by playing just d arms spanning Rd.

2.2 Subgaussian Random Variables

One of the most important and most often used model for unstructured bandit
problems is the subgaussian bandit, where the distributions are subgaussian. In this
section, we give the definition of subgaussian random variables and prove theorems
about them, which will be used in later chapters.

Definition 1. A random variable X is σ-subgaussian if for all λ ∈ R :

E [exp(λX)] ≤ exp

(
λ2σ2

2

)
.

A few examples of subgaussian random variables:

• If X is Gaussian with mean zero and variance σ2, then X is σ-subgaussian.

• If X has mean zero and |X| ≤ B, then X is B-subgaussian.

• If X has mean zero and X ∈ [a, b], then X is (b− a)/2-subgaussian.

Remark 1. For random variables that are not centered (E[X] ̸= 0), the notation is
abused by saying that X is σ-subgaussian if the noise X −E[X] is σ-subgaussian. A
distribution is called σ-subgaussian if a random variable drawn from that distribution
is σ-subgaussian.
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The following theorem states that the tails of a σ-subgaussian distribution decay
at least as fast as the tails of a Gaussian distribution with zero mean and σ standard
deviation. This property gives subgaussian distributions their name.

Theorem 1. If X is σ-subgaussian, then for any ε ≥ 0

P(X ≥ ε) ≤ exp

(
− ε2

2σ2

)
.

Proof. Based on Markov’s inequality and the definition of subgaussianity, for all
λ > 0:

P(X ≥ ε) = P (exp(λX) ≥ exp(λε))

≤ E[exp(λX)] exp(−λε)

≤ exp

(
λ2σ2

2
− λε

)
.

By choosing λ = ε/σ2 we get that

P(X ≥ ε) ≤ exp

(
− ε2

2σ2

)
.

To study the tail behaviour of µ̂− µ we will use the following statements, which
easily follow from the definition of subgaussian random variables.

Statement 1. Assume that X is σ-subgaussian and X1 and X2 are independent σ1

and σ2-subgaussian random variables. In this case:

• cX is |c|σ-subgaussian for all c ∈ R.

• X1 +X2 is
√

σ2
1 + σ2

2-subgaussian.

The following theorem provides concentration bounds for the sample mean µ̂ of
independent, σ-subgaussian random variables. It characterizes the probability that
the sample mean deviates from the true mean µ by more than a specified amount ε.
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Theorem 2. Assume that Xi−µ are independent, σ-subgaussian random variables.
Then for any ε > 0,

P(µ̂ ≥ µ+ ε) ≤ exp

(
−nε2

2σ2

)
,

P(µ̂ ≤ µ− ε) ≤ exp

(
−nε2

2σ2

)
where µ̂ = 1

n

∑n
i=1Xi.

Proof. It follows from Statement 1, that µ̂ − µ =
∑n

i=1(Xi − µ)/n is σ/
√
n-

subgaussian. Using Theorem 1 for µ̂− µ, we get the statement.

The above result says that for any δ ∈ (0, 1) with probability at least 1− δ,

µ ≤ µ̂+

√
2σ2 log(1/δ)

n
.
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3 Upper Confidence Bound Algorithm

In this section we will examine the case, when the goal is to maximize the expected
cumulative reward, E[Sn] = E [

∑n
t=1Xt], over n rounds.

3.1 Regret

The regret is an important measure of performance when the goal is to maximize
the expected cumulative reward. The regret of policy π on bandit ν is defined by

Rn(π, ν) = nµ∗(ν)− E

[
n∑

t=1

Xt

]
,

where the expectation is taken with respect to the probability measure on outcomes
induced by the interaction of π and ν. Minimizing the regret is equivalent to
maximizing the expectation of the sum of rewards. If the context is clear, we will
use Rn instead of Rn(π, ν).

Based on the following statement, the regret is always non-negative, and for every
bandit ν, there exists a policy π for which the regret is 0. Achieving zero regret is
possible if and only if the learner chooses the optimal action in each round.

Statement 2. Let ν be a stochastic bandit. Then,

• Rn(π, ν) ≥ 0 for all policies π,

• the policy π choosing At ∈ argmax νa for all t satisfies Rn(π, ν),

• if Rn(π, ν) = 0 for policy π, then P(µAt = µ∗) = 1 for all t.

The quantity ∆a(ν) = µ∗(ν)− µa(ν) is called the suboptimality gap, action gap
or immediate regret of arm a. Let Ta(t) =

∑t
s=1 I{As = a} be the number of times

action a was sampled by the end of round t. The following lemma decomposes the
regret in terms of the loss due to using each of the arms.

Lemma 1. (Regret decomposition lemma)
Suppose that the set of actions A is finite or countable. Then for any policy π, bandit
ν and horizon n ∈ N, the regret of policy π satisfies

Rn =
∑
a∈A

∆aE [Ta(n)] .
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Proof. Since
∑

a∈A I{At = a} = 1 for any fixed t,

Sn =
∑
t

Xt =
∑
t

∑
a

XtI{At = a},

Rn = nµ∗ − E[Sn] =
∑
a∈A

n∑
t=1

E [(µ∗ −Xt)I{At = a}] .

The expected reward in round t conditioned on At is µAt , this way

E [(µ∗ −Xt)I{At = a}|At] = I{At = a}E[µ∗ −Xt|At]

= I{At = a}(µ∗ − µAt)

= I{At = a}(µ∗ − µa)

= I{At = a}∆a.

By substituting this into the equation of Rn and using the definition of Ta(n), we
get the result.

3.2 Algorithm

The Upper Confidence Bound (UCB) algorithm follows the optimism in the face
of uncertainty principle, which means that based on the observed data each arm is
assigned a value called upper confidence bound, which overestimates the unknown
mean of the arm with high probability. An arm is played only if its upper confidence
bound is larger than the upper confidence bound of the optimal arm. By playing a
suboptimal arm, the upper confidence bound will fall below the upper confidence
bound of the optimal arm. In the algorithm we assume that the arms are 1-
subgaussian and that the arms are numbered from 1 to k.

If (Xt)
n
t=1 is a sequence of independent 1-subgaussian random variables with

mean µ and sample mean µ̂ = 1
n

∑n
t=1 Xt, by Theorem 2, for all δ ∈ (0, 1)

P

(
µ ≥ µ̂+

√
2 log(1/δ)

n

)
≤ δ.

We will use Ti(t− 1) to denote the number of times arm i was sampled by round
t and µ̂i(t − 1) will denote the sample mean of the obtained rewards. The upper
confidence bound in this case is defined the following way
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UCBi(t− 1, δ) =

∞, if Ti(t− 1) = 0

µ̂i(t− 1) +
√

2 log(1/δ)
Ti(t−1)

, otherwise
Here δ is called the confidence level and it quantifies the degree of certainty.

The intuition behind the algorithm is that the algorithm should explore
promising arms (µ̂i(t− 1) is large) and arms which are not well explored (Ti(t− 1)

is small). Suppose that at the start of round t the first arm has been sampled much
more frequently than the rest and because of it we expect that µ̂1(t − 1) ≈ µ1. In
this case the learner can be certain that arm i is worse than arm 1 if the upper
confidence bound is less than or equal to the mean of arm 1:

µ̂i(t− 1) +

√
2 log(1/δ)

Ti(t− 1)
≤ µ1 ≈ µ̂1(t− 1) +

√
2 log(1/δ)

T1(t− 1)
.

By choosing the arm with the largest upper confidence bound, an arm is chosen only
if its true mean could be larger than the mean of the arms that have been played
often.

3.3 Bounding the Regret of UCB

We will provide two bounds on the regret of the UCB algorithm.

Theorem 3. In case of the k-armed 1-subgaussian bandit problem, for any horizon
n, if δ = 1/n2, then for the regret of the UCB algorithm

Rn ≤ 3
k∑

i=1

∆i +
∑

i:∆i>0

16 log(n)

∆i

.

Algorithm 1 UCB(δ)
Input: n ∈ N, δ > 0

for t = 1, . . . , n do

Choose action At = argmaxi UCBi(t− 1, δ).
Observe reward Xt and update upper confidence bounds.

end for
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In the proof we will use the following notations: If (Xti)t∈[n],i∈[k] is a collection of
independent random variables with distribution Pi, then define µ̂is =

1
s

∑s
u=1Xui to

be the sample mean based on the first s samples. The arm chosen in round t will be
denoted by At.

Proof. We may assume, without the loss of generality, that the first arm is optimal,
so µ1 = µ∗. By the regret decomposition lemma,

Rn =
k∑

i=1

∆iE [Ti(n)] . (1)

We will prove the theorem by bounding E [Ti(n)] for each suboptimal arm. We
decouple the randomness from the behavior of the UCB algorithm. Let Gi be the
event defined by

Gi =

{
µ1 < min

t∈[n]
UCB1(t, δ)

}
∩

{
µ̂iui

+

√
2

ui

log

(
1

δ

)
< µ1

}
,

where ui ∈ [n] is a constant whose value will be determined later. So Gi is the event
when µ1 is not underestimated in any of the rounds by the upper confidence bound
of the first arm, while the upper confidence bound for the mean of arm i after taking
ui samples from arm i is below the expectation of the optimal arm. We will show
the following two points:

• If Gi occurs, the arm i will be played at most ui times: Ti(n) ≤ ui.

• The complement event Gc
i occurs with low probability.

Since Ti(n) ≤ n,

E[Ti(n)] = E[I{Gi}Ti(n)] + E[I{Gc
i}Ti(n)] ≤ ui + P(Gc

i)n. (2)

Now we will show that Ti(n) ≤ ui on Gi. We prove this by contradiction. Suppose
that Ti(n) > ui. In this case arm i was played more than ui times over the n rounds,

12



so there exists a round t ∈ [n] where Ti(t− 1) = ui and At = i. By definition of Gi,

UCBi(t− 1, δ) = µ̂i(t− 1) +

√
2 log(1/δ)

Ti(t− 1)

= µ̂iui
+

√
2 log(1/δ)

ui

< µ1

< UCB1(t− 1, δ).

This implies that At = argmaxj UCBj(t − 1, δ) ̸= i, which is a contradiction. This
proves that if Gi occurs, then Ti(n) ≤ ui. Now we will prove that Gc

i occurs with
low probability. By the definition of Gc

i ,

Gc
i =

{
µ1 ≥ min

t∈[n]
UCB1(t, δ)

}
∪

µ̂iui
+

√
2 log(1/δ)

ui

≥ µ1

 . (3)

We decompose the first set using the definition of UCB1(t, δ),{
µ1 ≥ min

t∈[n]
UCB1(t, δ)

}
⊂

{
µ1 ≥ min

s∈[n]
µ̂1s +

√
2 log(1/δ)

s

}
⋃
s∈[n]

{
µ1 ≥ µ̂1s +

√
2 log(1/δ)

s

}

Using Theorem 2 to bound the probability that the difference between the
expectation and the sample mean is large, we obtain:

P
(
µ1 ≥ min

t∈[n]
UCB1(t, δ)

)
≤ P

⋃
s∈[n]

{
µ1 ≥ µ̂1s +

√
2 log(1/δ)

s

}
≤

n∑
s=1

P

(
µ1 ≥ µ̂1s +

√
2 log(1/δ)

s

)
≤ nδ.

(4)

The next step is to bound the probability of this set{
µ̂iui

+

√
2

ui

log

(
1

δ

)
≥ µ1

}
.
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Assume that ui is large enough that

∆i −

√
2 log(1δ)

ui

≥ c∆i (5)

for some constant c ∈ (0, 1) whose value will be determined later. Since µ1 = µi+∆i,
using Theorem 2 we get that

P

µ̂iui
+

√
2 log(1/δ)

ui

≥ µ1

 = P

µ̂iui
− µi ≥ ∆i −

√
2 log(1/δ)

ui


≤ P(µ̂iui

− µi ≥ c∆i)

≤ exp

(
−uic

2∆2
i

2

)
.

Combining this with (3) and (4) gives that

P(Gc
i) ≤ nδ + exp

(
−uic

2∆2
i

2

)
.

If we substitute this into (2) we obtain the following result:

E[Ti(n)] ≤ ui + n

(
nδ + exp

(
−uic

2∆2
i

2

))
. (6)

We have to choose ui ∈ [n] to satisfy (5). It is natural to choose the smallest
integer for which (5) holds, which is

ui =

⌈
2 log(1/δ)

(1− c)2∆2
i

⌉
.

If ui > n, then (6) holds trivially, since Ti(n) ≤ n. Using the assumption that
δ = 1/n2 and the choice of ui we get that

E[Ti(n)] ≤ ui + 1 + n1−2c2/(1−c)2 =

⌈
2 log(n2)

(1− c)2∆2
i

⌉
+ 1 + n1−2c2/(1−c2). (7)

It remains to choose c ∈ (0, 1). Unless 2c2/(1 − c2) ≥ 1, the second term will
contribute a polynomial dependence on n. If c is too close to 1, the first term will
be large. Choosing c = 1/2 leads to

E[Ti(n)] ≤ 3 +
16 log(n)

∆2
i

.
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Substituting this into (1) we get that

Rn =
k∑

i=1

∆iE [Ti(n)] ≤ 3
k∑

i=1

∆i +
∑

i:∆i>0

16 log(n)

∆i

. (8)

The bound on the regret in Theorem 3 depends on the reciprocal of the gaps, and
if there is a very small suboptimality gap, then the bound will be large. However,
we can also prove a sublinear regret bound, that does not depend on the reciprocal
of the gaps.

Theorem 4. If δ = 1/n2, then the regret of UCB on any 1-subgaussian environment
with k arms, is bounded by

Rn ≤ 8
√
nk log(n) + 3

k∑
i=1

∆i.

Proof. Let ∆ > 0, its value will be determined later. From the proof of Theorem 3
we know that for each suboptimal arm i,

E[Ti(n)] ≤ 3 +
16 log(n)

∆2
i

.

Using the regret decomposition lemma (Lemma 1), we get that

Rn =
k∑

i=1

∆iE [Ti(n)]

=
∑

i:∆i<∆

∆iE [Ti(n)] +
∑

i:∆i≥∆

∆iE [Ti(n)]

≤ n∆+
∑

i:∆i≥∆

(
3∆i +

16 log(n)

∆i

)
≤ n∆+

16k log(n)

∆
+ 3

∑
i

∆i

≤ 8
√

nk log(n) + 3
k∑

i=1

∆i.

Here the first inequality is true, because
∑

i:∆i<∆ Ti(n) ≤ n and the last inequality
follows by choosing ∆ =

√
nk log(n)/n.
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The additive
∑

i ∆i term is unavoidable because the algorithm has to play each
arm at least once. This term does not grow as n grows, and it is typically negligible.

3.4 Asymptotic Optimality

The UCB Algorithm we defined previously have to run for a fixed number of steps
to return an arm. It can be modified to be an anytime algorithm, meaning that the
algorithm returns a valid solution to a problem even if it is interrupted before it
ends. The algorithm is expected to find a better solution if it keep running longer.

By changing the UCB Algorithm we defined earlier, we can achieve a bound,
which has the same order as in Theorem 3 section but the leading constant, governing
the asymptotic rate of growth of the regret is smaller. In Algorithm 2 number of
arms is denoted by k and f(t) = 1 + t log2(t).

Theorem 5. For any 1-subgaussian bandit, the regret of Algorithm 2 satisfies

Rn ≤
∑

i:∆i>0

inf
ε∈(0,∆i)

∆i

1 +
5

ε2
+

2
(
log f(n) +

√
π log f(n) + 1

)
(∆i − ε)2

 .

From this inequality we can see that

lim sup
n→∞

Rn

log(n)
≤
∑

i:∆i>0

2

∆i

.

A lower bound can be given, which is a constant multiple of the above expression
and this proves the asymptotic optimality of the algorithm.

Algorithm 2 UCB(δ)
Input: k ∈ N

Choose each arm once.
Choose action At = argmaxi

(
µ̂(t− 1) +

√
2 log f(t)
Ti(t−1)

)
.
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4 Median Elimination

In this section we will deal with a new learning objective, when the goal is to develop
an algorithm that finds a near optimal arm with high probability. In this case the
horizon is not fixed, and n will be used to denote the number of arms. An arm is
called optimal, if it has the highest expected reward among all of the arms. There
can be multiple optimal arms, their expected reward is denoted by r∗.

Definition 2. An arm a ∈ A is called ε-optimal if

E[X(a)] ≥ r∗ − ε,

where X(a) is a reward sampled from the distribution of arm a.

Definition 3. An algorithm is called an (ε, δ)-PAC (probably approximately correct)
algorithm for the multi-armed bandit problem with sample complexity T , if it outputs
an ε-optimal arm with probability at least 1− δ when it terminates, and the number
of steps the algorithm performs until termination is bounded by T .

4.1 Algorithm

We state a version of the Median Elimination algorithm [13, 14], for the case, when
the arms are 1-subgaussian.

Algorithm 3 Median Elimination
Input: ε > 0, δ > 0

Output: an arm which is ε-optimal with probability at least 1− δ

Set S1 = A, ε1 = ε/4, δ1 = δ/2, ℓ = 1.
repeat

Sample every arm a ∈ Sℓ for nℓ = ⌈8 log(3/δℓ)/ε2ℓ⌉ times, and let µ̂ℓ
a denote

its sample mean.
Find the median of the µ̂ℓ

a values and denote it by mℓ.
Sℓ+1 = Sℓ \ {a : µ̂ℓ

a < mℓ}
εℓ+1 =

3
4
εℓ, δℓ+1 = δℓ/2, ℓ = ℓ+ 1

until |Sℓ| = 1

17



4.2 Sample Complexity of Median Elimination

Theorem 6. The Median Elimination algorithm is an (ε, δ)-PAC algorithm and its
sample complexity is

O
(
n

ε2
log

1

δ

)
.

We will use two lemmas to prove this theorem.

Lemma 2. In the Median Elimination algorithm, for every phase ℓ

P
(
max
j∈Sℓ

µj ≤ max
i∈Sℓ+1

µi + εℓ

)
≥ 1− δℓ.

Proof. Without the loss of generality we can look at the first round and assume
that µ1 is the expectation of the best arm. We bound the probability of failure by
looking at the event E1 = {µ̂1 < µ1− ε1/2}, when the sample mean underestimates
the expectation. We sample the arms so many times in the first round, that

P(E1) = P (µ̂1 < µ1 − ε1/2)

≤ exp

(
−n1

2

(ε1
2

)2)
= exp

(
−1

2

⌈
8 log(3/δ1)

ε21

⌉(ε1
2

)2)
≤ exp

(
−1

2

8 log(3/δ1)

ε21

(ε1
2

)2)
=

δ1
3
.

In the first inequality we used the fact, that the arms are 1-subgaussian, then we
used the definition of nℓ. Now we bound the probability, that the sample mean of
arm j is larger than the sample mean of the optimal arm, if E1 does not hold and
arm j is not ε1-optimal. If µ̂1 ≥ µ1 − ε1/2, µj ≤ µ1 − ε1 and µ̂j ≥ µ̂1, then

µ̂j ≥ µ̂1 ≥ µ1 − ε1/2 ≥ µj + ε1/2.

this way

P (µ̂j ≥ µ̂1 | µ̂1 ≥ µ1 − ε1/2) ≤ P (µ̂j ≥ µj + ε1/2 | µ̂1 ≥ µ1 − ε1/2) ≤ δ1/3. (9)
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Let Y denote the number of arms which are not ε1-optimal but have a higher sample
mean than the optimal arm. Based on (9), E[Y | µ̂1 ≥ µ̂1−ε1/2] ≤ nδ1/3. By applying
Markov’s inequality, we get that

P(Y ≥ n/2 | µ̂1 ≥ µ̂1 − ε1/2) ≤
nδ1/3

n/2
= 2δ1/3.

This way the probability of failure is bounded by δ1.

Lemma 3. The sample complexity of Median Elimination is

O
(
n

ε2
log

1

δ

)
.

Proof. In the ℓ-th round n
2ℓ−1 arms are sampled, so the number of arms sampled in

total is n
2ℓ−1

8 log(3/δℓ)

ε2ℓ
. By definition δℓ = δ/2ℓ and εℓ =

(
(3/4)ℓ−1ε/4

)
. We can bound

the sample complexity the following way:

log2(n)∑
ℓ=1

n

2ℓ−1

8 log(3/δℓ)

ε2ℓ
= 8

log2(n)∑
ℓ=1

n

2ℓ−1

log(2ℓ3/δ)

((3/4)ℓ−1ε/4)2

=
128n

ε2

log2(n)∑
ℓ=1

(
8

9

)ℓ−1(
log

1

δ
+ log 3 + ℓ log 2

)

≤ 128n log(1/δ)

ε2

log2(n)∑
ℓ=1

(
8

9

)ℓ−1

(ℓC ′ + C)

= O
(
n

ε2
log

1

δ

)
.

Proof of Theorem 6. By Lemma 3, the sample complexity is bounded by
O
(

n
ε2
log 1

δ

)
. By Lemma 2, the probability of failure in round i is δi, so the probability

of failure over all rounds is bounded by
∑log2(n)

ℓ=1 δi ≤ δ. In each round, the optimal
reward of the remaining arms is reduced by εi at most, so the total error is bounded
by
∑log2(n)

ℓ=1 εi ≤ ε.
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4.3 Lower Bound on the Sample Complexity

As we saw in the previous section, O ((n/ε2) log(1/δ)) sampling is enough to find
an ε-optimal arm with probability at least 1− δ if there are n arms. In this section
we will provide a matching lower bound on the expected number of trials under any
(ε, δ)-PAC policy. The results of this section can be found in [15].

In this section, we will examine the special case when the rewards are Bernoulli
random variables with unknown parameters (biases). In this special case the arms
are often called coins and the unit rewards will be called heads. The number of arms
will be denoted by n, and Xℓ

k will denote the reward obtained the kth time arm ℓ is
sampled, pℓ will denote the mean of arm ℓ and p = (p1, ..., pn). We will only consider
policies that stop with probability 1 for every possible p. Given a policy, Pp will
denote the corresponding probability measure on the natural probability space for
this model, which captures both the randomness in the arms and the randomization
in the policy. The number of times arm ℓ is sampled will be denoted by Tℓ and T

will denote the total number of trials.

Theorem 7. There exist positive constants c1, c2, ε0 and δ0 such that for every
n ≥ 2, ε ∈ (0, ε0), δ ∈ (0, δ0) and for every (ε, δ)-PAC policy, there exists a p ∈ [0, 1]n

such that
Ep[T ] ≥ c1

n

ε2
log

c2
δ
.

In particular, ε0 = 1/8 and δ0 = e−4/4 satisfies this.

Proof. We define ε0 = 1/8 and δ0 = ε−4/4 and fix some ε ∈ (0, ε0), δ ∈ (0, δ0). Let
us consider the multi-armed bandit problem with n+1 coins numbered from 0 to n.
We will consider a finite set of possible p vectors, and we will call these hypotheses.
The bias of coin 0 will be p0 = (1 + ε)/2 under all of the hypotheses. Under H0, all
the other coins have a bias of 1/2,

H0 : p0 =
1

2
+

ε

2
, pi =

1

2
, ∀i ̸= 0.

For ℓ = 1, ..., n, define

Hℓ : p0 =
1

2
+

ε

2
, pℓ =

1

2
+ ε, pi =

1

2
, ∀i ̸= 0, ℓ.
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Fix an (ε/2, δ)-PAC policy. Under Hℓ, the policy must select coin ℓ with probability
at least 1− δ. Under Hℓ, the expectation and the probability will be denoted by Eℓ

and Pℓ. We define
t∗ =

1

cε2
log

1

4δ
=

1

cε2
log

1

θ
,

where c is a constant whose value will be chosen later and θ = 4δ. This way θ < e−4.
Let us assume, that there exist a coin ℓ ̸= 0, for which E0[Tℓ] ≤ t∗. We will show,
that in this case, the probability of selecting H0 under Hℓ is greater than δ and it
contradicts the fact that the policy is (ε/2, δ)-PAC. Without the loss of generality
we may assume, that E0[T1] ≤ t∗. Let us define A = {T1 ≤ 4t∗}.
Since t∗ ≥ E0[T1] ≥ 4t∗P0(T1 > 4t∗) = 4t∗(1 − P0(T1 ≤ 4t∗)), we obtain that
P0(A) ≥ 3/4. We define Kt = X1

1 + ... +X1
t to be the number of heads if coin 1 is

sampled t times. We define event C the following way:

C =

{
max

1≤t≤4t∗

∣∣∣∣Kt −
1

2
t

∣∣∣∣ <√t∗ log(1/θ)

}
.

Now we will prove a few lemmas which will be used for the proof of this theorem.

Lemma 4. P0(C) > 3
4
.

Proof. We will prove a more general result. Let us denote the bias of coin i under
hypothesis Hℓ by pi, and the number of heads if coin i is tossed t times by Ki

t . Let
us define Ci the following way:

Ci =

{
max

1≤t≤4t∗

∣∣Ki
t − pit

∣∣ <√t∗ log(1/θ)

}
.

It is easy to check that Ki
t−pit is a Pℓ-martingale. Since x→ x2 is a convex function,

and a martingale composed with a convex function is a submartingale, we can use
Doob’s maximal inequality to bound the probability of the complement of Ci:

Pℓ

(
max

1≤t≤4t∗

∣∣Ki
t − pit

∣∣ ≥√t∗ log(1/θ)

)
= Pℓ

(
max

1≤t≤4t∗

(
Ki

t − pit
)2 ≥ t∗ log(1/θ)

)
≤ Eℓ[(K

i
4t∗ − 4pit

∗)2]

t∗ log(1/θ)
.

Since Eℓ[(K
i
4t∗ − 4pit

∗)2] = 4pi(1− pi)t
∗, we get that

Pℓ(Ci) ≥ 1− 4pi(1− pi)

log(1/θ)
>

3

4
.
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The last inequality is true, because θ < e−4 and 4pi(1− pi) ≤ 1.
Under hypothesis H0, coin i = 1 has bias pi = 1/2. Applying the result under

these settings we get that P0(C) > 3/4.

Lemma 5. If 0 ≤ x ≤ 1/
√
2 and y ≥ 0, then (1− x)y ≥ e−dxy, where d = 1.78.

Proof. It is straightforward to prove that, log(1 − x) + dx ≥ 0, for 0 ≤ x ≤ 1/
√
2.

This way, y (log(1− x) + dx) ≥ 0 for all y ≥ 0. By rearranging and exponentiating,
we get that (1− x)y ≥ e−dxy.

Let B be the event, that the policy selects coin 0. Since the policy is (ε/2, δ)-PAC
and δ < e−4/4 < 1/4, the probability of B is P0(B) > 3/4. We have already seen
that P0(A) ≥ 3/4 and P0(C) > 3/4. Let us define S to be the intersection of A, B
and C, so S = A ∩B ∩ C. Based on the above P0(S) > 1/4.

Lemma 6. If E0[T1] ≤ t∗ and c ≥ 100, then P1(B) > δ.

Proof. Let W denote the history of the process until the policy terminates (the
sequence of selected coins at each time step and the observed rewards). We denote
the likelihood function by Lℓ(w) = Pℓ(W = w). We will use K to denote the total
number of heads obtained from coin 1. If the history is given up to round t− 1, the
coin choice at time t has the same probability under H0 and H1 and the reward at
round t has the same distribution under H0 and H1, unless the chosen coin in round
t is coin 1. This way,

L1(W )

L0(W )
=

(1/2 + ε)K(1/2− ε)T1−K

(1/2)T1

= (1 + 2ε)K(1− 2ε)K(1− 2ε)T1−2K

= (1− 4ε2)K(1− 2ε)T1−2K .

(10)

Now we will give a lower bound of this expression, when event S occurs. In this case
event A occurs as well, so K ≤ T1 ≤ 4t∗ and

(1− 4ε2)K ≥ (1− 4ε2)4t
∗

= (1− 4ε2)4 log(1/θ)/(cε)
2

≥ e−16d log(1/θ)/c

= θ16d/c.
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In the second inequality we used Lemma 5, which applies, since 4ε2 < 4/42 < 1/
√
2.

If event S occurs, then event A ∩ C occurs as well, so using the definition of t∗ we
get that

T1 − 2K ≤ 2
√

t∗ log(1/θ) = (2/ε
√
c) log(1/θ).

Using this, we can give a lower bound on (1− 2ε)T1−K :

(1− 2ε)T1−K ≥ (1− 2ε)(2/ε
√
c) log(1/θ)

≥ e−(4d/
√
c) log(1/θ)

= θ4d/
√
c.

If we substitute this into (10) we get that
L1(W )

L0(W )
≥ θ16d/c+4d/

√
c.

If we pick a large enough c, for example c = 100, we get that

L1(W )/L0(W ) > θ = 4δ,

whenever S occurs. This way
L1(W )

L0(W )
IS ≥ 4δIS,

where IS denotes the indicator of event S. Combining this result with the fact that
P0(S) > 1/4, we get that

P1(B) ≥ P1(S) = E[IS] = E0

[
L1(W )

L0(W )
IS
]
≥ E0[4δIS] = 4δP0(S) > δ.

We have shown that P1(B) > δ if c ≥ 100 and

E0[T1] ≤
1

cε2
log

1

4δ
.

So if we have an (ε/2, δ)-PAC policy, then for every ℓ > 0

E0[Tℓ] >
1

cε2
log

1

4δ
.

Equivalently, for every (ε, δ)-PAC policy

E0[T ] >
1

4cε2
log

1

4δ
.

23



5 Finitely Many Arms with a Special Structure

In this section we will consider a special case of the multi armed bandit problem
under the PAC settings in which there are finitely many arms and we have further
knowledge about the structure of the arms. This special case arises in applications,
for example the quantized estimation problem studied in [16] leads to a bandit
problem of this kind. In this case the assumptions on the arms are the following:

Assumption 1. There are n = 2m + 1, m ≥ 1 arms.

The arms will be denoted by a0, a1, ..., a2m and the expectation of arm ai will be
denoted by µi.

Assumption 2. There exists a k ∈ {0, 1, ..., 2m} such that

µ0 < µ1 < ... < µk−1 < µk > µk+1 > µk+2 > ... > µ2m .

Assumption 3. There exists a known ∆ > 0, such that for all 0 ≤ i ≤ 2m − 1,

|µi+1 − µi| ≥ ∆.

Assumption 4. The arms are 1-subgaussian.

5.1 Algorithm and Sample Complexity

For a fixed δ ∈ (0, 1), we can find the optimal arm with probability at least 1− δ by
running Median Elimination with ε = ∆/2. The sample complexity of this solution
is

O
(

n

∆2
log

1

δ

)
.

However under these assumption, we can create an algorithm, which finds the
optimal arm much faster.
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Algorithm 4
Input: δ > 0

Output: an arm which is optimal with probability at least 1− δ

Set S1 = A, δ1 = δ/2, ℓ = 1.
while |Sℓ| > 3 do

Sample nℓ = ⌈log(4/δℓ)/(22m−2ℓ−5∆2)⌉ times each of the three arms:
aj, j ∈ {i · 2m−ℓ−1, i = 1, 2, 3} and let µ̂ℓ

j denote their sample means.
i∗ℓ = argmaxj µ̂

ℓ
j

Sℓ+1 =
{
ai : i

∗
ℓ − 2m−ℓ−1 ≤ i ≤ i∗ℓ + 2m−ℓ−1

}
Renumber the arms from 0 to 2m−ℓ.
δℓ+1 = δℓ/2, ℓ = ℓ+ 1

end while

Sample nm = ⌈log(4/δm)/(2−3∆2)⌉ times the remaining arms: a0, a1, a2.
Let µ̂m

j denote their sample means.
i∗m = argmaxj∈{0,1,2} µ̂

m
j

return ai∗m

Theorem 8. Under Assumptions 1-4, Algorithm 4 finds the optimal arm with
probability at least 1− δ and its sample complexity is

O
(
log n+

1

∆2
log

n

δ

)
.

We will use the following lemmas to prove Theorem 8.

Lemma 7. For every phase ℓ = 1, 2, ...,m− 1

P
(
max
j∈Sℓ

µj > max
i∈Sℓ+1

µi

)
≤ δℓ.

Proof. Let i∗ = argmaxj∈Sℓ
µj. We have to show that P (ai∗ /∈ Sℓ+1) ≤ δℓ.

Since ai∗ /∈ Sℓ+1 if and only if |i∗ − i∗ℓ | > 2m−ℓ−1,

P (ai∗ /∈ Sℓ+1) = P
(
|i∗ − i∗ℓ | > 2m−ℓ−1

)
=

3∑
i=1

[
P(|i∗ − i∗ℓ | > 2m−ℓ−1 | i∗ℓ = i · 2m−ℓ−1) · P

(
i∗ℓ = i · 2m−ℓ−1

) ]
.
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The value of P
(
|i∗ − i∗ℓ | > 2m−ℓ−1 | i∗ℓ = i · 2m−ℓ−1

)
is either 0 or 1 and it is 0 for at

least one value of i ∈ {1, 2, 3}. We have to give an upper bound on the probability
P
(
i∗ℓ = i · 2m−ℓ−1

)
when |i∗ − i · 2m−ℓ−1| > 2m−ℓ−1. We will show that in this case

P
(
i∗ℓ = i · 2m−ℓ−1

)
≤ δℓ/2 and from this the statement of the lemma follows.

First we deal with the case, when i∗ > i · 2m−ℓ−1. With the j = (i+ 1) · 2m−ℓ−1,
i′ = i · 2m−ℓ−1 notations: i∗ > j > i′ =⇒ µi∗ > µj > µi′ , because i∗ is the index of
the optimal arm in Sℓ and based on Assumption 2 the arms satisfy that

µ0 < µ1 < ... < µi∗ > ... > µ2m+1−ℓ .

Since j − i′ = 2m−ℓ−1, from Assumption 2 and 3 follows that µj ≥ µi′ + 2m−ℓ−1∆.

By the definition of i∗ℓ if i∗ℓ = i′ then µ̂ℓ
i′ ≥ µ̂ℓ

j, so P(i∗ℓ = i′) ≤ P(µ̂ℓ
i′ ≥ µ̂ℓ

j). Consider
the following events:

A = {µ̂ℓ
j > µj − 2m−ℓ−2∆},

B = {µ̂ℓ
i′ < µi′ + 2m−ℓ−2∆},

C = {µ̂ℓ
j > µ̂ℓ

i′}.

It is easy to see that A ∧B =⇒ C :

µ̂ℓ
j > µj − 2m−ℓ−2∆ ≥ µi′ + 2m−ℓ−1∆− 2m−ℓ−2∆ = µi′ + 2m−ℓ−2∆ > µ̂ℓ

i′ .

This implies that:

P(i∗ℓ = i′) ≤ P(µ̂ℓ
i′ ≥ µ̂ℓ

j) = P(C) ≤ P(A ∨B) ≤ P(A) + P(B).

It remains to show that P(A) ≤ δℓ/4 and P(B) ≤ δℓ/4:

P(A) = P(µ̂ℓ
j ≤ µj − 2m−ℓ−2∆)

≤ exp

(
−1

2
(2m−ℓ−2∆)2

⌈
log(4/δℓ)

22m−2ℓ−5∆2

⌉)
≤ exp

(
−1

2
(2m−ℓ−2∆)2

log(4/δℓ)

22m−2ℓ−5∆2

)
= δℓ/4.

Similarly, P(B) ≤ δℓ/4. The case when i∗ < i · 2m−ℓ−1 can be proved similarly.
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Lemma 8. For the final phase:

P(max
j∈Sm

µj > µi∗m) ≤ δm.

Proof. Let i∗ = argmaxj∈Sm
µj. We have to show that P (i∗ ̸= i∗m) ≤ δm. By the law

of total probability,

P(i∗ ̸= i∗m) =
2∑

j=0

P(i∗ ̸= i∗m | i∗m = j)P(i∗m = j).

The value of P(i∗ ̸= i∗m | i∗m = j) is either 0 or 1 and it is 1 for exactly two values of
j. We prove that P(i∗m = j) ≤ δm/2 when j ̸= i∗ and this proves the lemma. By the
definition of i∗m, if i∗m = j then µ̂m

j ≥ µ̂m
i∗ . This way:

P(i∗m = j) ≤ P(µ̂m
j ≥ µ̂m

i∗).

By the definition of i∗ : µj ≤ µi∗ −∆. Consider the following events:

A = {µ̂m
i∗ > µi∗ −∆/2},

B = {µ̂m
j < µj +∆/2},

C = {µ̂m
i∗ > µ̂m

j }.

It is easy to see that A ∧B =⇒ C:

µ̂m
i∗ > µi∗ −∆/2 ≥ µj +∆−∆/2 = µj +∆/2 > µ̂m

j .

This implies that:

P(i∗m = j) ≤ P(µ̂m
j ≥ µ̂m

i∗) = P(C) ≤ P(A ∨B) ≤ P(A) + P(B).

It remains to show that P(A) ≤ δm/4 and P(B) ≤ δm/4:

P(A) = P(µ̂m
i∗ ≤ µi∗ −∆/2)

≤ exp

(
−1

2
(∆/2)2

⌈
log(4/δm)

2−3∆2

⌉)
≤ exp

(
−1

2
(∆/2)2

log(4/δm)

2−3∆2

)
= δm/4.

Similarly, P(B) ≤ δm/4.
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Lemma 9. The sample complexity of Algorithm 4 is

O
(
log n+

1

∆2
log

n

δ

)
.

Proof. The number of arms sampled in the ℓ-th round is 3 · nℓ, so the number of
arm sampled in total:

m∑
ℓ=1

3 · nℓ ≤ 3
m∑
ℓ=1

⌈
log (4/δℓ) /

(
22m−2ℓ−5∆2

)⌉
≤ 3m+ 3

m∑
ℓ=1

log (4/δℓ) /
(
22m−2ℓ−5∆2

)
= 3m+ 3

m∑
ℓ=1

log
(
2ℓ+2/δ

)
/
(
22m−2ℓ−5∆2

)
= 3m+

3

22m−5∆2

(
m∑
ℓ=1

22ℓ log
(
2ℓ+2/δ

))

≤ 3m+
3

22m−5∆2
log
(
2m+2/δ

) m∑
ℓ=1

22ℓ

≤ 3m+
3

22m−5∆2
log
(
2m+2/δ

) 22m+2

3

= 3m+ 128∆−2 log
(
2m+2/δ

)
= O

(
log n+

1

∆2
log

n

δ

)
.

Proof of Theorem 8. By Lemma 7 the probability that the optimal arm is removed
in the first m− 1 rounds is less than or equal to

m−1∑
ℓ=1

δℓ =
m−1∑
ℓ=1

δ

2ℓ
= δ − δ

2m−1
.

By Lemma 8, the probability that the algorithm doesn’t return the best of the three
arms in the last round is less than or equal to δm = δ/2m, so the probability, that
the arm returned by the algorithm is not optimal is less than δ. By Lemma 9, the
sample complexity of the algorithm is

O
(
log n+

1

∆2
log

n

δ

)
.
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Remark 2. In the general case when 2m−1+1 < n ≤ 2m+1 we can do the following:
At first update the indices:

i←− i+

⌊
2m + 1− n

2

⌋
.

This way we can sample the arms aj, j ∈ {i · 2m−2, i = 1, 2, 3}. Sample all of
them n1 = ⌈log(8/δ)/(22m−7∆2)⌉ times. Let µ̂1

j denote their empirical values and let
i∗1 = argmaxj µ̂

1
j . Keep the 2m−1 + 1 arms closest to the arm ai∗1 , denote the set of

these arms with S2. Renumber the arms from 0 to 2m−1. Set δ2 = δ/4 and ℓ = 2.
After this we can continue with the second round of Algorithm 4.

5.2 Experiments

Based on Lemma 9, the sample complexity of the algorithm is

O
(
log n+

1

∆2
log

n

δ

)
.

The following plots illustrate the relationship between the sample complexity
and certain parameters of Algorithm 4. Figure 1 demonstrates the logarithmic
relationship between the number of arms and the sample complexity. Figure 2
explores the dependence of sample complexity on δ. We can see, that as δ increases,
the sample complexity decreases, which aligns with the derived sample complexity
formula. On Figure 3 we can observe the inverse relationship between the sample
complexity and ∆ as higher values of ∆ correspond to lower sample complexities,
which is consistent with the 1

∆2 term in the derived formula of the sample complexity.
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Figure 1: The relationship between the number of arms (n) and the sample
complexity in case of ∆ = 1, δ = 0.01.

Figure 2: The relationship between the δ parameter and the sample complexity in
case of ∆ = 1, n = 1025.
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Figure 3: The relationship between the ∆ parameter and the sample complexity in
case of δ = 0.01, n = 1025.
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6 Infinitely Many Arms with a Concave Structure

In this section we will consider the problem in which the arms are the points of the
[0, 1] interval and an unknown concave function describes the expectations of the
arms. The assumptions on the arms are the following:

Assumption 5. The arms are the points of the [0, 1] interval and the expectation
of arm x ∈ [0, 1] is f(x), where f : [0, 1]→ R is an unknown concave function.

Assumption 6. The arms are 1-subgaussian.

Under these assumptions we can create an (ε, δ)-PAC algorithm, which is more
efficient than Median Elimination.

6.1 Algorithm

In each round of this new algorithm, either the set of the arms is reduced or the
algorithm terminates. In round ℓ the set of arms is denoted by Sℓ, which is divided
into four equal-length subintervals by five arms: xℓ

0, x
ℓ
1, x

ℓ
2, x

ℓ
3, x

ℓ
4 (Figure 4). The

expectation of arm xℓ
i is denoted by µℓ

i . In round ℓ we already have estimations of
µℓ
0 and µℓ

4 from the previous round. We want to estimate µℓ
1, µ

ℓ
2 and µℓ

3 as well, so
we sample xℓ

1, x
ℓ
2, x

ℓ
3 many times and we estimate the expectations with the sample

means. The sample mean of arm xℓ
i is denoted by µ̂ℓ

i .

Figure 4: The set of arms is divided into four equal-length subintervals
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If µ̂ℓ
1 and µ̂ℓ

3 are close to µ̂ℓ
2, then µℓ

1 and µℓ
3 are close to µℓ

2. If

µℓ
2 − ε/2 ≤ µℓ

1, µ
ℓ
3 ≤ µℓ

2 + ε/2, (*)

then the arm xℓ
2 will be ε-optimal because of the concavity and the algorithm can

return arm xℓ
2:

• An arm with expectation larger than µℓ
2 + ε cannot be between xℓ

0 and xℓ
1,

because in this case µℓ
1 would be under the line segment connecting the

expectation of this arm with µℓ
2 and this cannot happen because of the

concavity (Figure 5).

• An arm with expectation larger than µℓ
2 + ε cannot be between xℓ

1 and xℓ
2,

because in this case µℓ
2 would be under the line segment connecting the

expectation of this arm with µℓ
3 and again, this cannot happen because of

the concavity (Figure 6).

Figure 5: An arm with expectation larger than µℓ
2 + ε cannot be between xℓ

0 and xℓ
1

if (*) holds

Figure 6: If (*) holds, an arm with expectation larger than µℓ
2+ε cannot be between

xℓ
1 and xℓ

2
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• Similarly, neither the (xℓ
2, x

ℓ
3) nor the (xℓ

3, x
ℓ
4) interval can contain an arm with

expectation larger than µℓ
2 + ε.

If µ̂ℓ
1 is much smaller than µ̂ℓ

2, then µℓ
1 ≤ µℓ

2 and the optimal arm cannot be
on the left of arm xℓ

1 otherwise µℓ
1 would be under the line segment connecting the

expectation of the optimal arm with µℓ
2, which contradicts the fact that a concave

function describes the expectations (Figure 7). So in this case we can remove the
arms on the left of arm xℓ

1.
Similarly, if µ̂ℓ

1 is much larger than µ̂ℓ
2, then µℓ

1 ≥ µℓ
2 and because of the concavity,

the optimal arm cannot be on the right of arm xℓ
2. This way we can remove the arms

on the right of arm xℓ
2.

We can also remove arms similarly, if µ̂ℓ
3 is much smaller or larger than µ̂ℓ

2.

Figure 7: If µℓ
1 ≤ µℓ

2, the optimal arm cannot be on the left of arm xℓ
1
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Algorithm 5
Input: δ > 0, ε > 0

Output: an arm which is ε-optimal with probability at least 1− δ

Set δ0 = δ/2, x1
0 = 0, x1

1 = 0.25, x1
2 = 0.5, x1

3 = 0.75, x1
4 = 1.

Sample n0 = ⌈128 log(4/δ0)/ε2⌉ times x1
0 and x1

4.
Let µ̂1

0, µ̂1
4 denote the sample means and µ1

0, µ
1
4 denote the expectations.

Set S1 = [0, 1], δ1 = δ0/2, ℓ = 1.

while TRUE do

Sℓ+1 = Sℓ.

Sample nℓ = ⌈128 log(6/δℓ)/ε2⌉ times the three arms: xℓ
1, x

ℓ
2, x

ℓ
3.

Let µ̂ℓ
1, µ̂

ℓ
2, µ̂

ℓ
3 and µℓ

1, µ
ℓ
2, µ

ℓ
3 denote the sample means and expectations.

if µ̂ℓ
1, µ̂

ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then return xℓ

2

if µ̂ℓ
1 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = Sℓ+1 \ (xℓ
2, x

ℓ
4]

if µ̂ℓ
1 ≤ µ̂ℓ

2 − ε/4 then Sℓ+1 = Sℓ+1 \ [xℓ
0, x

ℓ
1)

if µ̂ℓ
3 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = Sℓ+1 \ [xℓ
0, x

ℓ
2)

if µ̂ℓ
3 ≤ µ̂ℓ

2 − ε/4 then Sℓ+1 = Sℓ+1 \ (xℓ
3, x

ℓ
4]

xℓ+1
0 = minSℓ+1, x

ℓ+1
4 = maxSℓ+1,

xℓ+1
1 = 3

4
· xℓ+1

0 + 1
4
· xℓ+1

4 , xℓ+1
2 = 1

2
· xℓ+1

0 + 1
2
· xℓ+1

4 , xℓ+1
3 = 1

4
· xℓ+1

0 + 3
4
· xℓ+1

4 .

Let µ̂ℓ+1
0 , µ̂ℓ+1

4 denote the sample means of xℓ+1
0 and xℓ+1

4 calculated in
round ℓ, and let µℓ+1

0 and µℓ+1
4 denote the expectations of xℓ+1

0 and xℓ+1
4 .

δℓ+1 = δℓ/2, ℓ = ℓ+ 1

end while

Theorem 9. Under Assumptions 5-6, Algorithm 5 finds an ε-optimal arm with
probability at least 1− δ.

First, we will prove a few lemmas, which will be used for the proof of the theorem.

Lemma 10.

P(∃ℓ, ∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8) ≤ δ/2,

P(|µ̂1
0 − µ1

0| ≥ ε/8 ∨ |µ̂1
4 − µ1

4| ≥ ε/8) ≤ δ/2.
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Proof. For every phase ℓ ≥ 1:

P(∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤
3∑

i=1

P(|µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤ 3 · 2 exp
(
−nℓ · (ε/8)2/2

)
≤ δℓ.

P(∃ℓ, ∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤
∞∑
ℓ=1

P(∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤
∞∑
ℓ=1

δℓ = δ/2.

P(|µ̂1
0 − µ1

0| ≥ ε/8 ∨ |µ̂4
0 − µ4

0| ≥ ε/8)

≤ P(|µ̂1
0 − µ1

0| ≥ ε/8) + P(|µ̂4
0 − µ4

0| ≥ ε/8)

≤ 2 · 2 exp
(
−n0 · (ε/8)2/2

)
≤ δ0 = δ/2.

Lemma 11. Suppose that |µ̂ℓ
i − µℓ

i | ≤ ε/8 for i = 0, 1, 2, 3, 4. Let x∗ denote the
optimal arm. If i < j and µ̂ℓ

i ≥ µ̂ℓ
j + ε/4, then x∗ ≤ xℓ

j. Similarly, if i > j and
µ̂ℓ
i ≥ µ̂ℓ

j + ε/4, then x∗ ≥ xℓ
j.

Proof. If µ̂ℓ
i ≥ µ̂ℓ

j + ε/4 then µℓ
i ≥ µℓ

j:

µℓ
i ≥ µ̂ℓ

i − ε/8 ≥ µ̂ℓ
j + ε/4− ε/8 = µ̂ℓ

j + ε/8 ≥ µℓ
j.

Arguing indirectly, assume that x∗ > xℓ
j. Then there exists a t ∈ [0, 1] such that

xℓ
j = t · xℓ

i + (1− t) · x∗. Because of the concavity:

f(xℓ
j) = f(t · xℓ

i + (1− t) · x∗) ≥ t · f(xℓ
i) + (1− t) · f(x∗) > f(xℓ

i).

It contradicts the fact that µℓ
i ≥ µℓ

j. The other case can be proven similarly.
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Lemma 12. If |µ̂ℓ
i−µℓ

i | ≤ ε/8 for i = 0, 1, 2, 3, 4 and µ̂ℓ
i−1, µ̂

ℓ
i+1 ∈ (µ̂ℓ

i−ε/4, µ̂ℓ
i+ε/4),

then
µℓ
i−1, µ

ℓ
i+1 ∈ [µℓ

i − ε/2, µℓ
i + ε/2].

Proof. Using the assumptions of the lemma, we get the following:

µℓ
i−1 ≥ µ̂ℓ

i−1 − ε/8 ≥ µ̂ℓ
i − ε/4− ε/8 = µ̂ℓ

i − 3/8 · ε ≥ µℓ
i − ε/8− 3/8 · ε = µℓ

i − ε/2,

µℓ
i−1 ≤ µ̂ℓ

i−1 + ε/8 ≤ µ̂ℓ
i + ε/4 + ε/8 = µ̂ℓ

i + 3/8 · ε ≤ µℓ
i + ε/8 + 3/8 · ε = µℓ

i + ε/2.

Similarly, µℓ
i+1 ∈ [µℓ

i − ε/2, µℓ
i + ε/2].

Lemma 13. If |µ̂ℓ
i − µℓ

i | ≤ ε/8 for i = 1, 2, 3 and µ̂ℓ
1, µ̂

ℓ
3 ∈ (µ̂ℓ

2− ε/4, µ̂ℓ
2 + ε/4), then

µℓ
2 ≥ max

x∈Sℓ

f(x)− ε.

Proof. Let x∗ = argmaxx∈Sℓ
f(x). Arguing indirectly assume, that f(x∗) > f(xℓ

2)+ε.
If x∗ < xℓ

1, then there exists a t ∈ [0, 1] such that xℓ
1 = (1− t) · x∗ + t · xℓ

2. The fact
that xℓ

1 is closer to x∗ than to xℓ
2 implies that t ≤ 1/2. Because of the concavity:

f(xℓ
1) = f((1− t) · x∗ + t · xℓ

2)

≥ (1− t) · f(x∗) + t · f(xℓ
2)

> (1− t) · (f(xℓ
2) + ε) + t · f(xℓ

2)

= f(xℓ
2) + (1− t) · ε

≥ f(xℓ
2) + ε/2.

This contradicts the fact that f(xℓ
1) ≤ f(xℓ

2) + ε/2.

If xℓ
1 < x∗ < xℓ

2, then there exists a t ∈ [0, 1] such that xℓ
2 = (1− t) · x∗ + t · xℓ

3. The
point xℓ

2 is closer to x∗ than to xℓ
3, so t ≤ 1/2. Because of the concavity:

f(xℓ
2) = f((1− t) · x∗ + t · xℓ

3)

≥ (1− t) · f(x∗) + t · f(xℓ
3)

> (1− t) · (f(xℓ
2) + ε) + t · (f(xℓ

2)− ε/2)

= f(xℓ
2) + (1− 3/2 · t) · ε

> f(xℓ
2).
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This is again a contradiction.
If xℓ

2 < x∗ < xℓ
3, then there exists a t ∈ [0, 1] such that xℓ

2 = (1 − t) · xℓ
1 + t · x∗.

The fact that xℓ
2 is closer to x∗ than to xℓ

1 implies that 1 > t ≥ 1/2. Because of the
concavity:

f(xℓ
2) = f((1− t) · xℓ

1 + t · x∗)

≥ (1− t) · f(xℓ
1) + t · f(x∗)

> (1− t) · (f(xℓ
2)− ε/2) + t · (f(xℓ

2) + ε)

= f(xℓ
2) + (3/2 · t− 1/2) · ε

> f(xℓ
2).

Which is again a contradiction.
If xℓ

3 < x∗, then there exists a t ∈ [0, 1] such that xℓ
3 = (1− t) · xℓ

2 + t · x∗. The point
xℓ
3 is closer to x∗ than to xℓ

2, so t ≥ 1/2. Because of the concavity:

f(xℓ
3) = f((1− t) · xℓ

2 + t · x∗)

≥ (1− t) · f(xℓ
2) + t · f(x∗)

> (1− t) · f(xℓ
2) + t · (f(xℓ

2) + ε)

= f(xℓ
2) + t · ε

≥ f(xℓ
2) + ε/2.

This contradicts the fact that f(xℓ
3) ≤ f(xℓ

2) + ε/2.

Proof of Theorem. By Lemma 10, P(∃ℓ, ∃i ∈ {0, 1, 2, 3, 4} : |µ̂ℓ
i − µℓ

i | ≥ ε/8) ≤ δ.

Now consider the case, when ∀ℓ, ∀i ∈ {0, 1, 2, 3, 4} : |µ̂ℓ
i−µℓ

i | ≤ ε/8. In each round at
least a quarter of the arms are removed or the algorithm terminates. By Lemma 16
the optimal arm is never discarded and by Lemma 13 an ε-optimal arm is returned
when the algorithm terminates. This way Algorithm 5 returns an ε-optimal arm
with probability at least 1− δ.
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6.2 Experiments

The following plots demonstrate the relationship between the sample complexity of
Algorithm 5 and the input parameters of the algorithm. The f(x) = −x2 function
describes the expectations of the arms in both cases. Figure 8 demonstrates the
inverse relationship between the sample complexity and ε. As ε increases, the sample
complexity steeply decreases. Figure 9 explores the dependence of sample complexity
on δ. We can see, that the sample complexity decreases much more slowly with an
increase in the δ parameter compared to an increase in the ε parameter.

Figure 8: The relationship between ε and the sample complexity in case of δ = 0.05

Figure 9: The relationship between δ and the sample complexity in case of ε = 0.05
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7 Lipschitz Continuous Case

In this section we will consider the case when there are infinitely many arms, which
are the points of the (0, 1) interval, and an unknown concave function describes the
expectations of the arms, where this function is Lipschitz continuous with a known
Lipschitz constant:

Assumption 7. Function f is Lipschitz continuous with Lipschitz constant L:

|f(x)− f(y)| ≤ L · |x− y| ∀x, y ∈ [0, 1].

In this case, if the length of the set of arms is less than or equal to 2 · ε/L and
it contains the optimal arm, then the arm in the middle of the interval will be ε-
optimal. By modifying Algorithm 5 so that it returns the arm in the middle when
the length of the set of arms is less than or equal to 2 · ε/L, we get Algorithm 6.

7.1 Algorithm

Theorem 10. Under Assumptions 5-7, Algorithm 6 is an (ε, δ)-PAC algorithm, and
its sample complexity is

O

(
1

ε2

((
log

L

ε

)2

+

(
log

L

ε

)
· log 1

δ

))
.

Proof. If f is Lipschitz continuous with Lipschitz constant L and there is an interval
with length less than or equal to 2 · ε/L containing the optimal arm (y), then the
arm in the middle of the interval (x) is ε-optimal:

|x− y| ≤ ε/L =⇒ |f(x)− f(y)| ≤ ε.

By Theorem 9, the probability that the optimal arm is removed by Algorithm 5 is
less than δ. This way Algorithm 6 is an (ε, δ)-PAC algorithm.
After ℓ rounds the length of the interval is (1/2)ℓ, so ℓ =

⌊
log2

L
ε

⌋
round is enough

to get an interval no longer than 2 · ε/L. So the algorithm terminates in ℓ rounds
and the number of samples required by the algorithm is bounded by:
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2

⌈
128

ε2
log

4

δ0

⌉
+ 3

ℓ∑
i=1

⌈
128

ε2
log

6

δi

⌉

≤ 3ℓ+ 2 + 2 · 128
ε2

log
4

δ0
+ 3 · 128

ε2

ℓ∑
i=1

log
6

δi

≤ 3ℓ+ 2 + 3 · 128
ε2

ℓ∑
i=0

log
6

δi

≤ 3ℓ+ 2 + 3 · 128
ε2

ℓ∑
i=1

log
12 · 2i

δ

= 3ℓ+ 2 + 3 · 128
ε2

log

(
ℓ∏

i=1

12 · 2i

δ

)

= 3ℓ+ 2 + 3 · 128
ε2

log

(
12ℓ+1

δℓ+1
· 2

ℓ(ℓ+1)
2

)
= 3ℓ+ 2 + 3 · 128

ε2

(
(ℓ+ 1) log

12

δ
+

ℓ(ℓ+ 1)

2
log 2

)
= O

(
1

ε2

(
ℓ2 + ℓ · log 1

δ

))
= O

(
1

ε2

((
log

L

ε

)2

+

(
log

L

ε

)
· log 1

δ

))
.
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Algorithm 6
Input: ε > 0, δ > 0

Output: an arm which is ε-optimal with probability at least 1− δ

Set δ0 = δ/2, x1
0 = 0, x1

1 = 0.25, x1
2 = 0.5, x1

3 = 0.75, x1
4 = 1.

Sample n0 = ⌈128 log(4/δ0)/ε2⌉ times x1
0 and x1

4.
Let µ̂1

0, µ̂1
4 denote the sample means and µ1

0, µ
1
4 denote the expectations.

Set S1 = [0, 1], δ1 = δ0/2, ℓ = 1.

while TRUE do

if |Sℓ| ≤ 2 · ε/L then return xℓ
2

Sℓ+1 = Sℓ.

Sample nℓ = ⌈128 log(6/δℓ)/ε2⌉ times the three arms: xℓ
1, x

ℓ
2, x

ℓ
3.

Let µ̂ℓ
1, µ̂

ℓ
2, µ̂

ℓ
3 and µℓ

1, µ
ℓ
2, µ

ℓ
3 denote the sample means and expectations.

if µ̂ℓ
1, µ̂

ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then return xℓ

2

if µ̂ℓ
1 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = Sℓ+1 \ (xℓ
2, x

ℓ
4]

if µ̂ℓ
1 ≤ µ̂ℓ

2 − ε/4 then Sℓ+1 = Sℓ+1 \ [xℓ
0, x

ℓ
1)

if µ̂ℓ
3 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = Sℓ+1 \ [xℓ
0, x

ℓ
2)

if µ̂ℓ
3 ≤ µ̂ℓ

2 − ε/4 then Sℓ+1 = Sℓ+1 \ (xℓ
3, x

ℓ
4]

xℓ+1
0 = minSℓ+1, x

ℓ+1
4 = maxSℓ+1,

xℓ+1
1 = 3

4
· xℓ+1

0 + 1
4
· xℓ+1

4 , xℓ+1
2 = 1

2
· xℓ+1

0 + 1
2
· xℓ+1

4 , xℓ+1
3 = 1

4
· xℓ+1

0 + 3
4
· xℓ+1

4 .

Let µ̂ℓ+1
0 , µ̂ℓ+1

4 denote the sample means of xℓ+1
0 and xℓ+1

4 calculated in
round ℓ, and let µℓ+1

0 and µℓ+1
4 denote the expectations of xℓ+1

0 and xℓ+1
4 .

δℓ+1 = δℓ/2, ℓ = ℓ+ 1

end while

7.2 Experiments

Based on Theorem 10, the sample complexity of the algorithm is

O

(
1

ε2

((
log

L

ε

)2

+

(
log

L

ε

)
· log 1

δ

))
.

The following plots demonstrate the relationship between the sample complexity
and the ε and δ parameters of the algorithm when f(x) = |x − 0.5| describes
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the expectations of the arms and L = 1. Figure 10 explores the dependence of
sample complexity on ε, the desired precision of the estimate. We can see, that as
ε increases, the sample complexity decreases steeply, this aligns with the derived
sample complexity formula. Figure 11 reveals the inverse relationship between the
sample complexity and δ. We can observe that higher values of δ correspond to
lower sample complexities. This is consistent with the log 1

δ
term in the formula of

the sample complexity.

Figure 10: The relationship between ε and the sample complexity in case of δ = 0.05

Figure 11: The relationship between δ and the sample complexity in case of ε = 0.05
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Figure 12 shows the relationship between the sample complexity and the
Lipschitz constant used by the algorithm when the f(X) = −100 |x− 0.5| function
describes the expectations of the arms. We can observe the logarithmic relationship
between L and the sample complexity suggested by the Theorem 10.

Figure 12: The relationship between the sample complexity and the Lipschitz
constant (L) used by the algorithm in case of ε = 0.1 and δ = 0.1
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8 Finitely Many Arms with a Concave Structure

In this section we will consider the case when there are finitely many arms and an
unknown concave function describes the expectations of the arms. By modifying
Algorithm 5 we can achieve to halve the set of arms in each round. First we will see
that this modified algorithm can be used to solve the case when there are 2m + 1

arms for some m ∈ N and then the general case can be solved using this special
case. The assumptions on the arms are the following:

Assumption 8. There are n = 2m + 1, m ≥ 1 arms numbered from 0 to 2m.

Assumption 9. The expectation of arm i is f(i), where f : R→ R is an unknown
concave function.

Assumption 10. The arms are 1-subgaussian.

The difference between Algorithm 5 and Algorithm 7 is that in the case when
µ̂ℓ
1 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) and µ̂ℓ

3 ≤ µ̂ℓ
2 − ε/4 then in Algorithm 5 only a quarter of

the arms is removed, while in Algorithm 7 the arm xℓ
1.5 = (xℓ

1 + xℓ
2)/2 is sampled

and based on the results another quarter of the arms is removed. Similarly, when
µ̂ℓ
1 ≤ µ̂ℓ

2 − ε/4 and µ̂ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then arm xℓ

2.5 = (xℓ
2 + xℓ

3)/2 is sampled
in order to remove another quarter of the arms.

8.1 Algorithm

Theorem 11. Under Assumptions 8 - 10, Algorithm 7 finds an ε-optimal arm with
probability at least 1− δ.

Lemma 14. Using the notation of Algorithm 7:

P(|µ̂1
0 − µ1

0| ≥ ε/8 ∨ |µ̂4
0 − µ4

0| ≥ ε/8) ≤ δ/2.

Proof. Based on the properties of subgaussian random variables:

P(|µ̂1
0 − µ1

0| ≥ ε/8 ∨ |µ̂4
0 − µ4

0| ≥ ε/8)

≤ P(|µ̂1
0 − µ1

0| ≥ ε/8) + P(|µ̂4
0 − µ4

0| ≥ ε/8)

≤ 2 · 2 · exp ·
(
−n0 · (ε/8)2/2

)
≤ δ0 = δ/2.
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Algorithm 7
Input: ε > 0, δ > 0

Output: an arm which is ε-optimal with probability at least 1− δ

Set δ0 = δ/2, x1
0 = 0, x1

1 = 2m−2, x1
2 = 2m−1, x1

3 = 3 · 2m−2, x1
4 = 2m.

Sample n0 = ⌈128 log(4/δ0)/ε2⌉ times x1
0 and x1

4.
Let µ̂ℓ

i and µℓ
i denote the sample mean and the expectation of xℓ

i .
Set S1 = {i : 0 ≤ i ≤ 2m}, δ1 = δ0/2, ℓ = 1.

while |Sℓ| > 5 do

Sample the three arms: xℓ
1, x

ℓ
2, x

ℓ
3, so that each of them will be sampled

nℓ = ⌈128 log(6/δℓ)/ε2⌉ times totally.
if µ̂ℓ

1, µ̂
ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then return xℓ

2

else if µ̂ℓ
1 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = {i ∈ Sℓ : i ≤ xℓ
2}

else if µ̂ℓ
3 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = {i ∈ Sℓ : i ≥ xℓ
2}

else if µ̂ℓ
1, µ̂

ℓ
3 ≤ µ̂ℓ

2 − ε/4 then Sℓ+1 = {i ∈ Sℓ : x
ℓ
1 ≤ i ≤ xℓ

3}
else if µ̂ℓ

1 ∈ (µ̂ℓ
2 − ε/4, µ̂ℓ

2 + ε/4) and µ̂ℓ
3 ≤ µ̂ℓ

2 − ε/4 then

Sample n = ⌈288 log(6/δℓ)/ε2⌉ − ⌈128 log(6/δℓ)/ε2⌉ times xℓ
1 and xℓ

2 so
that they are sampled ⌈288 log(6/δℓ)/ε2⌉ times totally.
Sample n = ⌈288 log(12/δℓ)/ε2⌉ times the arm xℓ

1.5 = (xℓ
1 + xℓ

2)/2.
if µ̂ℓ

1 ≤ µ̂ℓ
1.5 − ε/6 or µ̂ℓ

2 ≥ µ̂ℓ
1.5 + ε/6 then Sℓ+1 = {i : xℓ

1 ≤ i ≤ xℓ
3}

else if µ̂ℓ
2 ≤ µ̂ℓ

1.5 − ε/6 or µ̂ℓ
1 ≥ µ̂ℓ

1.5 + ε/6 then Sℓ+1 = {i : i ≤ xℓ
2}

else return xℓ
1.5 end if

end if

else if µ̂ℓ
1 ≤ µ̂ℓ

2 − ε/4 and µ̂ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then

Sample n = ⌈288 log(6/δℓ)/ε2⌉ − ⌈128 log(6/δℓ)/ε2⌉ times xℓ
2 and xℓ

3 so
that they are sampled ⌈288 log(6/δℓ)/ε2⌉ times totally.
Sample n = ⌈288 log(12/δℓ)/ε2⌉ times the arm xℓ

2.5 = (xℓ
2 + xℓ

3)/2.
if µ̂ℓ

2 ≤ µ̂ℓ
2.5 − ε/6 or µ̂ℓ

3 ≥ µ̂ℓ
2.5 + ε/6 then Sℓ+1 = {i : i ≤ xℓ

2}
else if µ̂ℓ

3 ≤ µ̂ℓ
2.5 − ε/6 or µ̂ℓ

2 ≥ µ̂ℓ
2.5 + ε/6 then

Sℓ+1 = {i ∈ Sℓ : x
ℓ
1 ≤ i ≤ xℓ

3}
else return xℓ

2.5 end if

end if

xℓ+1
0 = minSℓ+1, x

ℓ+1
4 = maxSℓ+1, x

ℓ+1
1 = (3 · xℓ+1

0 + xℓ+1
4 )/4,

xℓ+1
2 = (xℓ+1

0 + xℓ+1
4 )/2, xℓ+1

3 = (xℓ+1
0 + 3 · xℓ+1

4 )/4.

δℓ+1 = δℓ/2, ℓ = ℓ+ 1

end while

Sample the 5 arms so that each of them is sampled nℓ = ⌈128 log(6/δℓ)/ε2⌉
times in total. Return the arm with the highest sample mean.
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Lemma 15. If x is sampled n1 = ⌈128 log(6/δ)/ε2⌉ times then

P(|µ̂− µi| ≥ ε/8) ≤ δ/3.

Similarly, if x is sampled n2 = ⌈288 log(6/δ)/ε2⌉ times then

P(|µ̂− µi| ≥ ε/12) ≤ δ/3.

Proof. Based on Theorem 2:

P(|µ̂− µi| ≥ ε/8) ≤ 2 exp ·
(
−n1 · (ε/8)2/2

)
≤ δ/3,

P(|µ̂− µi| ≥ ε/12) ≤ 2 exp ·
(
−n2 · (ε/12)2/2

)
≤ δ/3.

Lemma 16. Suppose that |µ̂ℓ
i − µℓ

i | ≤ ε/8 and |µ̂ℓ
j − µℓ

j| ≤ ε/8. Let x∗ denote the
optimal arm. If i < j and µ̂ℓ

i ≥ µ̂ℓ
j + ε/4, then x∗ ≤ xℓ

j. Similarly, if i > j and
µ̂ℓ
i ≥ µ̂ℓ

j + ε/4, then x∗ ≥ xℓ
j.

Proof. If i < j and µ̂ℓ
i ≥ µ̂ℓ

j + ε/4, then µℓ
i ≥ µℓ

j:

µℓ
i ≥ µ̂ℓ

i − ε/8 ≥ µ̂ℓ
j + ε/4− ε/8 = µ̂ℓ

j + ε/8 ≥ µℓ
j.

Arguing indirectly, assume that x∗ > xℓ
j. In this case, there exists a t ∈ [0, 1] such

that xℓ
j = t · xℓ

i + (1− t) · x∗. Because of the concavity:

f(xℓ
j) = f(t · xℓ

i + (1− t) · x∗) ≥ t · f(xℓ
i) + (1− t) · f(x∗) > f(xℓ

i).

This contradicts the fact that µℓ
i ≥ µℓ

j.
Similarly, if i > j and µ̂ℓ

i ≥ µ̂ℓ
j + ε/4 then µℓ

i ≥ µℓ
j. Indirectly assume that x∗ < xℓ

j.
Then there exists a t ∈ [0, 1] such that xℓ

j = t · xℓ
i + (1 − t) · x∗. Because of the

concavity:

f(xℓ
j) = f(t · xℓ

i + (1− t) · x∗) ≥ t · f(xℓ
i) + (1− t) · f(x∗) > f(xℓ

i).

This again contradicts the fact that µℓ
i ≥ µℓ

j.
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Lemma 17. Suppose that |µ̂ℓ
i − µℓ

i | ≤ ε/12, |µ̂ℓ
j − µℓ

j| ≤ ε/12. Let x∗ denote the
optimal arm. If i < j and µ̂ℓ

i ≥ µ̂ℓ
j + ε/6, then x∗ ≤ xℓ

j. Similarly, if i > j and
µ̂ℓ
i ≥ µ̂ℓ

j + ε/6, then x∗ ≥ xℓ
j.

Proof. It can be proved the same way as Lemma 16.

Lemma 18. If |µ̂ℓ
j−µℓ

j| ≤ ε/8 for j = 0, 1, 2, 3, 4 and µ̂ℓ
i−1, µ̂

ℓ
i+1 ∈ (µ̂ℓ

i−ε/4, µ̂ℓ
i+ε/4),

then
µℓ
i−1, µ

ℓ
i+1 ∈ [µℓ

i − ε/2, µℓ
i + ε/2].

Proof. Based on the assumptions of the lemma:

µℓ
i−1 ≥ µ̂ℓ

i−1 − ε/8 ≥ µ̂ℓ
i − ε/4− ε/8 = µ̂ℓ

i − 3/8 · ε ≥ µℓ
i − ε/8− 3/8 · ε = µℓ

i − ε/2,

µℓ
i−1 ≤ µ̂ℓ

i−1 + ε/8 ≤ µ̂ℓ
i + ε/4 + ε/8 = µ̂ℓ

i + 3/8 · ε ≤ µℓ
i + ε/8 + 3/8 · ε = µℓ

i + ε/2.

Similarly, µℓ
i+1 ∈ [µℓ

i − ε/2, µℓ
i + ε/2].

Lemma 19. If |µ̂ℓ
j−µℓ

j| ≤ ε
12

for j = 0, 1, 2, 3, 4 and µ̂ℓ
i−1, µ̂

ℓ
i+1 ∈ (µ̂ℓ

i−ε/6, µ̂ℓ
i+ε/6),

then
µℓ
i−1, µ

ℓ
i+1 ∈ [µℓ

i − ε/3, µℓ
i + ε/3].

Proof. Based on the assumptions of the lemma:

µℓ
i−1 ≥ µ̂ℓ

i−1 − ε/12 ≥ µ̂ℓ
i − ε/6− ε/12 ≥ µℓ

i − ε/12− 3/12 · ε = µℓ
i − ε/3

µℓ
i−1 ≤ µ̂ℓ

i−1 + ε/12 ≤ µ̂ℓ
i + ε/6 + ε/12 ≤ µℓ

i + ε/12 + 3/12 · ε = µℓ
i + ε/3.

Similarly, µℓ
i+1 ∈ [µℓ

i − ε/3, µℓ
i + ε/3].

Lemma 20. If |µ̂ℓ
i − µℓ

i | ≤ ε/8 for i = 1, 2, 3 and µ̂ℓ
1, µ̂

ℓ
3 ∈ (µ̂ℓ

2− ε/4, µ̂ℓ
2 + ε/4), then

µℓ
2 ≥ max

x∈Sℓ

f(x)− ε.
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Proof. Let x∗ = argmaxx∈Sℓ
f(x). Arguing indirectly assume, that f(x∗) > f(xℓ

2)+ε.
If x∗ < xℓ

1, then there exists a t ∈ [0, 1] such that xℓ
1 = (1− t) · x∗ + t · xℓ

2. As xℓ
1

is closer to x∗ than to xℓ
2, t ≤ 1/2. Because of the concavity:

f(xℓ
1) = f((1− t) · x∗ + t · xℓ

2)

≥ (1− t) · f(x∗) + t · f(xℓ
2)

> (1− t) · (f(xℓ
2) + ε) + t · f(xℓ

2)

= f(xℓ
2) + (1− t) · ε

≥ f(xℓ
2) + ε/2.

This contradicts the fact that f(xℓ
1) ≤ f(xℓ

2) + ε/2 based on Lemma 18.
If xℓ

1 < x∗ < xℓ
2, then there exists a t ∈ [0, 1] such that xℓ

2 = (1− t) · x∗ + t · xℓ
3. As

xℓ
2 is closer to x∗ than to xℓ

3, t ≤ 1/2. Because of the concavity:

f(xℓ
2) = f((1− t) · x∗ + t · xℓ

3)

≥ (1− t) · f(x∗) + t · f(xℓ
3)

> (1− t) · (f(xℓ
2) + ε) + t · (f(xℓ

2)− ε/2)

= f(xℓ
2) + (1− 3/2 · t) · ε

> f(xℓ
2).

This is again a contradiction.
If xℓ

2 < x∗ < xℓ
3, then there exists a t ∈ [0, 1] such that xℓ

2 = (1− t) · xℓ
1 + t · x∗. As

xℓ
2 is closer to x∗ than to xℓ

1, 1 > t ≥ 1/2. Because of the concavity:

f(xℓ
2) = f((1− t) · xℓ

1 + t · x∗)

≥ (1− t) · f(xℓ
1) + t · f(x∗)

> (1− t) · (f(xℓ
2)− ε/2) + t · (f(xℓ

2) + ε)

= f(xℓ
2) + (3/2 · t− 1/2) · ε

> f(xℓ
2).

This way we got a contradiction.
If xℓ

3 < x∗, then there exists a t ∈ [0, 1] such that xℓ
3 = (1 − t) · xℓ

2 + t · x∗.As xℓ
3 is
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closer to x∗ than to xℓ
2, t ≥ 1/2. Because of the concavity:

f(xℓ
3) = f((1− t) · xℓ

2 + t · x∗)

≥ (1− t) · f(xℓ
2) + t · f(x∗)

> (1− t) · f(xℓ
2) + t · (f(xℓ

2) + ε)

= f(xℓ
2) + t · ε

≥ f(xℓ
2) + ε/2.

This contradicts the fact that f(xℓ
3) ≤ f(xℓ

2) + ε/2 based on Lemma 18.

Lemma 21. If |µ̂ℓ
i −µℓ

i | ≤ ε/12 for i = 1, 1.5, 2 and µ̂ℓ
1, µ̂

ℓ
2 ∈ (µ̂ℓ

1.5− ε/6, µ̂ℓ
1.5+ ε/6),

then
µℓ
1.5 ≥ max

x∈{i:xℓ
0≤i≤xℓ

3}
f(x)− ε.

Similarly, if |µ̂ℓ
i − µℓ

i | ≤ ε/12 for i = 2, 2.5, 3 and µ̂ℓ
2, µ̂

ℓ
3 ∈ (µ̂ℓ

2.5 − ε/6, µ̂ℓ
2.5 + ε/6),

then
µℓ
2.5 ≥ max

x∈{i:xℓ
1≤i≤xℓ

4}
f(x)− ε.

Proof. Let’s introduce the following notation

x∗ = argmax
x∈{i:xℓ

0≤i≤xℓ
3}
f(x).

Arguing indirectly assume, that f(x∗) > f(xℓ
1.5) + ε. If x∗ < xℓ

1, then there exists a
t ∈ [0, 1] such that xℓ

1 = (1− t) · x∗ + t · xℓ
1.5. From this t = x1−x∗

x1.5−x∗ ≤ 2
3
. Because of

the concavity:

f(xℓ
1) = f((1− t) · x∗ + t · xℓ

1.5)

≥ (1− t) · f(x∗) + t · f(xℓ
1.5)

> (1− t) · (f(xℓ
1.5) + ε) + t · f(xℓ

1.5)

= f(xℓ
1.5) + (1− t) · ε

≥ f(xℓ
1.5) + ε/3.

This contradicts the fact that f(xℓ
1) ≤ f(xℓ

1.5) + ε/3 based on Lemma 19.
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If xℓ
1 < x∗ < xℓ

1.5, then there exists a t ∈ [0, 1] such that xℓ
1.5 = (1− t) ·x∗+ t ·xℓ

2.
Here t = x1.5−x∗

x2−x∗ ≤ 1
2
. Because of the concavity:

f(xℓ
1.5) = f((1− t) · x∗ + t · xℓ

2)

≥ (1− t) · f(x∗) + t · f(xℓ
2)

> (1− t) · (f(xℓ
1.5) + ε) + t · (f(xℓ

1.5)− ε/3)

= f(xℓ
1.5) + (1− 4/3 · t) · ε

> f(xℓ
1.5).

This is again a contradiction.
If xℓ

1.5 < x∗ < xℓ
2, then there exists a t ∈ [0, 1] such that xℓ

1.5 = (1 − t) · xℓ
1 + t · x∗.

In this case t = x1.5−x1

x∗−x1
≥ 1

2
. Because of the concavity:

f(xℓ
1.5) = f((1− t) · xℓ

1 + t · x∗)

≥ (1− t) · f(xℓ
1) + t · f(x∗)

> (1− t) · (f(xℓ
1.5)− ε/3) + t · (f(xℓ

1.5) + ε)

= f(xℓ
1.5) + (4/3 · t− 1/3) · ε

> f(xℓ
1.5).

This way we got another contradiction.
If xℓ

2 < x∗, then there exists a t ∈ [0, 1] such that xℓ
2 = (1− t) · xℓ

1.5 + t · x∗. In this
case t = x2−x1.5

x∗−x1.5
≥ 1

3
. Because of the concavity:

f(xℓ
2) = f((1− t) · xℓ

1.5 + t · x∗)

≥ (1− t) · f(xℓ
1.5) + t · f(x∗)

> (1− t) · f(xℓ
1.5) + t · (f(xℓ

1.5) + ε)

= f(xℓ
1.5) + t · ε

≥ f(xℓ
1.5) + ε/3.

This contradicts the fact that f(xℓ
2) ≤ f(xℓ

1.5) + ε/3 based on Lemma 19.

Lemma 22. If |Sℓ| = 5 and |µ̂j − µj| ≤ ε/8 for j = 1, 2, 3, 4, 5 then the arm with
the highest sample mean is ε-optimal.
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Proof. Suppose, that µ̂i is the highest sample mean. In this case for j = 1, 2, 3, 4, 5:

µi ≥ µ̂i − ε/8 ≥ µ̂j − ε/8 ≥ µj − ε/4.

Proof of Theorem. Based on the lemmas, the probability that there is a round in
which for a sampled arm |µ̂ − µ| ≥ ε/8 (or |µ̂ − µ| ≥ ε/12 when needed) is less
than δ. Now consider the case, when |µ̂−µ| ≤ ε/8 (or |µ̂−µ| ≤ ε/12 when needed)
for all of the arms sampled in any of the rounds. In each round the set of the arms
is halved or the algorithm terminates. By Lemma 16 and 17 the optimal arm is
never removed and by Lemma 20, 21 and 22 an ε-optimal arm is returned when
the algorithm terminates. This way Algorithm 7 returns an ε-optimal arm with
probability at least 1− δ.

Theorem 12. The sample complexity of Algorithm 7 in case of n = 2m + 1 arms
is:

O
(

1

ε2

(
m2 +m log

1

δ

))
.

Proof. At the beginning we sample two arms n0 = ⌈128 log(4/δ0)/ε2⌉ times. If in a
round x1.5 or x2.5 is sampled, then we will count these samples to the next round.
We can do this, because otherwise this arm would have been sampled in the next
round, but this way it is not needed anymore. This way in each round three arms
are sampled, each n = ⌈288 log(6/δℓ)/ε2⌉ times max. When only five arms remain,
then three of them is already sampled, so in the last round only two arms have to
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be sampled, n = ⌈288 log(6/δm−1)/ε
2⌉ times maximum. So the sample complexity:

2 · ⌈128 log(4/δ0)/ε2⌉+ 3 ·
m−2∑
i=1

⌈288 log(6/δℓ)/ε2⌉

+ 2 · ⌈288 log(6/δm−1)/ε
2⌉

≤ 3m+ 3 · 288
ε2

m−1∑
i=1

log
6

δi

= 3m+ 3 · 288
ε2

log

(
m−1∏
i=1

12 · 2i

δ

)

= 3m+ 3 · 288
ε2

log

(
12m−1 · 2(m−1)m/2

δm−1

)
= 3m+ 3 · 288

ε2

(
(m− 1) log

12

δ
+

(m− 1)m

2
log 2

)
= O

(
1

ε2

(
m2 +m log

1

δ

))
.

If there are 2m + 1 < n < 2m+1 + 1 arms, we can do the following:
Run the first round of Algorithm 7 with arms{

i :
⌊n
2

⌋
− 2m−1 ≤ i ≤

⌊n
2

⌋
+ 2m−1

}
,

x1
0 =

⌊n
2

⌋
− 2m−1, x1

1 =
⌊n
2

⌋
− 2m−2, x1

2 =
⌊n
2

⌋
,

x1
3 =

⌊n
2

⌋
+ 2m−2, x1

4 =
⌊n
2

⌋
+ 2m−1

and δ0 = δ/2. If after the first round of Algorithm 7:

• S2 = {i : x1
0 ≤ i ≤ x1

2}, then set S = {i : 0 ≤ i ≤ 2m} ,

• S2 = {i : x1
1 ≤ i ≤ x1

3}, then set S =
{
i :
⌊
n
2

⌋
− 2m−1 ≤ i ≤

⌊
n
2

⌋
+ 2m−1

}
,

• S2 = {i : x1
2 ≤ i ≤ x1

4}, then set S = {i : n− 2m ≤ i ≤ n} .

The length of S is 2m + 1 in all cases. Now do Algorithm 7 with S and δ0 = δ/8.
Based on the lemmas, the probability that the optimal arm is discarded in the first
round is less than 3

4
· δ. If the optimal arm is not removed in the first round, then
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Algorithm 7 with S and δ0 = δ/8 will return an ε-optimal arm with probability at
least 1− δ/4. So the probability that the returned arm is not ε-optimal is less than
δ.

At the beginning two arms are sampled ⌈128 log(4/δ0)/ε2⌉ times each, then we
sample three arms ⌈288 log(6/δℓ)/ε2⌉ times maximum. After that we do Algorithm
7 with δ0 = δ/8 with 2m + 1 arms, so based on our previous calculation, the sample
complexity in this case is:

2 · ⌈128 log(4/δ0)/ε2⌉+ 3 · ⌈288 log(6/δℓ)/ε2⌉

+O
(

1

ε2

(
m2 +m log

1

δ

))
= O

(
1

ε2

(
m2 +m log

1

δ

))
.

Similarly to the Lipschitz continuous case, if there is a known ∆ > 0 such that
|µi − µi−1| ≤ ∆, i = 1, 2, ..., n, then Algorithm 7 can terminate when the number of
arms is 2 · ⌊ ε

∆
⌋+ 1 or less, by returning the arm in the middle (xj). In this case the

returned arm will be ε-optimal because:

|µi − µj| ≤ |i− j| ·∆ ≤
⌊ ε
∆

⌋
·∆ ≤ ε ∀i.

In this case the algorithm can terminate after
⌊
log2

n
2⌊ε/∆⌋+1

⌋
rounds so the sample

complexity in this case is:

O
(
ℓ2

ε2
+

ℓ

ε2
log

1

δ

)
.

where ℓ =
⌊
log2

n
2⌊ε/∆⌋+1

⌋
.

8.2 Experiments

Based on Theorem 12, the sample complexity of the algorithm is

O
(

1

ε2

(
m2 +m log

1

δ

))
.

The following plots show the relationship between the sample complexity of
Algorithm 7 and the parameters of the algorithm, when the f(x) = −(x− 0.5 ·N)2
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function describes the expectation of the arms in case of N arms. Figure 13 shows the
relationship between the sample complexity and the ε parameter. We can observe,
that the sample complexity decreases steeply as the value of ε increases, which
aligns with the formula of sample complexity. Figure 14 explores the dependence of
sample complexity on δ, and reveals the inverse relationship between them, which
is consistent with the log 1

δ
term in the formula of sample complexity.

Figure 13: The relationship between the sample complexity and ε in case of δ = 0.05

and N = 33

Figure 14: The relationship between the sample complexity and δ in case of ε = 0.05

and N = 33
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Figure 15 and 16 show the relationship between the sample complexity and
the number of arms in case of two different values of δ. For larger δ values, the
relationship appears to be quadratic, while for smaller values, it seems more linear.
This is consistent with the fact that for higher values of δ, the m2 term dominates
in the formula of the sample complexity, while for smaller δ values the m log 1

δ
term

becomes more significant.

Figure 15: The relationship between the sample complexity and the number of arms
(N = 2m + 1) in case of ε = 0.05 and δ = 0.5

Figure 16: The relationship between the sample complexity and the number of arms
(N = 2m + 1) in case of ε = 0.05 and δ = 0.01
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9 Conclusion

9.1 Overview of Known Results

In my thesis, I presented some of the principal results related to stochastic multi-
armed bandit problems. I explored two fundamental algorithms, each addressing a
different objective.

First, I presented the Upper Confidence Bound algorithm, which is one of the
best-known algorithms for maximizing the cumulative reward. Under this setting,
the regret is an important measure of performance, since it measures the difference
between the maximal reward, that can be achieve by playing the optimal arm all
the time and the expectation of the sum of the rewards collected by the algorithm.
By analyzing the regret of the algorithm, I demonstrated the effectiveness of the
algorithm in balancing exploration and exploitation to maximize the reward in the
long run.

Next, I examined the Median Elimination Algorithm, which can be used to
identify close-to-optimal arms in the multi-armed bandit problem. I proved, that
the algorithm returns a near-optimal arm with high probability and calculated the
sample complexity of the algorithm. I have also provided a matching lower bound
on the expected number of trials under any (ε, δ)− PAC policy.

9.2 Contributions of the Thesis

I have also presented my own results regarding some special cases of the multi-armed
bandit problem, in which further information is known about the expectations of
the arms. In all of these cases I assumed that the arms are 1-subgaussian. The main
contributions of this thesis are the following:

• I have developed an (ε, δ) − PAC algorithm for the case, when there are
finitely many arms, and we know that the expectations of the arms increase
up to a certain arm, after which the expectation decreases, and the difference
between the expectations of neighboring arms is at least ∆, where ∆ is
known in advance. In this case the optimal arm could be found using the
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Median Elimination algorithm (by choosing ε < ∆), however the provided
new algorithm finds the optimal arm much faster, with a sample complexity
of

O
(
log n+

1

∆2
log

n

δ

)
instead of

O
(

n

∆2
log

1

δ

)
.

• I have also considered the case, when the arms are the points of the [0, 1]

interval and an unknown concave function describes the expectations of the
arms and developed an (ε, δ) − PAC algorithm for this case as well. This
algorithm can be improved further, if we now that the function is Lipschitz
continuous with a known Lipschitz contstant L. In this case, the algorithm
can terminate, if the interval of the remaining arms is small enough, since in
this case we can estimate the difference in the expectations of the arms in the
interval, using the fact, that the function is Lipschitz continuous. I have also
calculated the sample complexity of the algorithm.

• After this, I have studied the the discrete case, when an unknown concave
function describes the expectations of the arms. I have modified the algorithm
created for the continuous case to work in the discrete case as well. The
algorithm in the continuous case removed at least one quarter of the arms
in each step. The idea was to modify the algorithm, so that it removes half
of the arms in each round. This way, the algorithm can work, when there are
2m + 1 arms for some m ∈ N, since we can always sample the arm exactly
in the middle of two arms, this was obvious in the continuous case, but not
in the discrete case. In this case the Median Elimination algorithm could be
used to find an ε-optimal arm with probability at least 1 − δ with a sample
complexity of

O
(
n

ε2
log

1

δ

)
.

However, the algorithm I developed achieves the same result with a sample
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complexity of

O
(

1

ε2

(
(log n)2 + log n · log 1

δ

))
.

• I have implemented each of these algorithms and run experiments to visualize
the relationship between he algorithm inputs and the sample complexity.

9.3 Future Directions

In this thesis, we focused on cases of the stochastic multi-armed bandit problem,
where the expectations of the arms are described by an unknown concave function.
However, the presented algorithms assume no additional external information.

A promising direction for future research is extending this framework to
contextual bandits, where the distributions of the rewards depend not only
on the selected arm but also on observable contextual information. Such an
extension is important, because in many real-world applications additional data
can significantly enhance decision-making. For example, recommendation systems
can use demographic information to provide better suggestions.

By incorporating a concave reward function in the contextual bandit framework,
it might be possible to develop algorithms that can leverage both contextual
information and the concave structure of the reward function to outperform the
existing algorithms.
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A Inequalities in Probability Theory

Statement 3. (Markov’s inequality)
For any random variable X and ε > 0:

P(|X| ≥ ε) ≤ E[|X|]
ε

.

Statement 4. (Doob’s maximal inequality)
Let (Xt)

n
t=0 be a submartingle with Xt ≥ 0 almost surely for all t. Then for any

ε > 0,

P
(
max
0≤t≤n

Xt ≥ ε

)
≤ E[Xn]

ε
.
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