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1 Introduction

A major turning point in the history of natural language processing (NLP) was the
emergence of the first semantically meaningful word embeddings into vector space
[31, 6, 5, 24]. It turned out that the same representation can be extremely useful for
several downstream tasks, such as translation or sentiment classification, that the
system was not trained on explicitly. The idea behind these embeddings is really
simple: a good way to characterize the meaning of a word is through the meanings
of other words that appear close to the given word in natural text. Arguably,
finding the proper representation of words and sentences is at the core of the success
surrounding present-day language models.

Numerous systems apply Deep Learning to aid mathematical reasoning, and
inside the trained models, they also implicitly create vector embeddings for mathe-
matical objects. There is, however, virtually no evidence that these embeddings are
faithful to the semantics of the considered mathematical theory.

It is a conjecture that the lack of proper embeddings is a major bottleneck of
learning assisted theorem proving systems and overcoming this problem is one of
the next major challenges. Here, I made steps in this direction, to clarify issues of
mechanistic interpretability [25] and contribute to AI safety [18, 34].

To get an idea of the differences between natural and formal languages, con-
sider the natural and formal sentences “The weather is wonderful today” and
“3 ∗ (6 − 2) = 24/2”. Each word in the English sentence has a rather small set
of meanings and the context determines which one is applicable. The meaning of
the sentence can be surprisingly well approximated by the set of the relevant mean-
ings of the words: changing the word order only results in subtle changes. [17]
(Section 1.3) provides a back-of-the-envelope estimation of the relative information
content of various linguistic components in natural language, concluding that around
80 − 84% comes from words, 12 − 16% comes from the logical/grammatical struc-
ture and emotive content accounts for around 5 − 7%. For the arithmetic formula,
however, many of the words are much more ambiguous, for example, the digit 2
can mean two, twenty, two hundred etc. Variables are an extreme example of terms
whose meaning is entirely context-dependent. On the other hand, formal languages
have unambiguously defined compositional semantics, i.e, we know exactly how the
meaning of a complex expression is built up from those of the subexpressions. In
summary, the bulk of the meaning in natural language comes from words, while in
formal language it comes from logical structure. It is hence an interesting – and yet
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open – question whether embedding methods for natural text will also work for em-
bedding formulas. Terms of a mathematical theory often have a very clear structure
and one can check how well that structure manifests in the embedding space. [40]

Transformers have gained a lot of attention because of their success in natu-
ral language processing [35], therefore in this thesis, I will focus on Transformers’
capabilities in understanding formal languages.

First, I build a mathematical framework for analyzing Transformers in Section
2. [9] Computational complexity of the models is also interesting from a theoretical
point of view, how it treats problems as formal languages. Therefore, in Section 3, I
analyze the capabilities of Transformers across different architectures. Changing the
definition of the architecture can have a significant impact on the model’s complexity
class. But it turns out that the most realistic architectures of Transformers are in
the complexity class of TC0, which is the class of problems that can be solved by
polynomial-size Boolean circuits of constant depth using gates of AND, OR, NOT
and majority. However, if we allow the model to have the chain-of-thoughts (CoT)
mechanism, i.e. the model can take intermediate steps, then it can recognize any
regular language. In Section 4, I cover the topic of modular addition. This a is first
step to understand what mechanisms from NLP work well directly and what needs
to be adapted to the particularities of the formal content. I have done some research
to understand the embedding of three-digit sums modulo 1000. So I summarize the
conclusions of this research and present the results from the literature in this section.
It seems to be a simple task, but it turns out that Transformers sometimes learn
it in a seemingly complicated way. In Section 5, I introduce the noisy majority
problem, which is an even simpler task. It should determine whether zeros or ones
form a majority in a sequence while ignoring noise symbols represented by twos.
This problem is simple enough to be rigorously analyzed and reverse-engineered.

Larger models produce better results, but the priority is not to have a state-of-
the-art model on a task. Instead, the goal is to analyze small models, understand
how they work, and find best practices to improve them. Once we have a good
understanding of small models and small problems, we can scale them up and move
on to larger models and more complex problems.

Finally, in Section 6, I discuss implications and future research directions.
During this thesis I have done numerous experiments and research. In Section 4,

I analyzed the embedding of modular addition, while in Section 5, I investigated a
problem where the model has to determine whether zeros or ones form a majority in
a sequence. The most significant experimental contribution is presented in Section



Mathematical Framework 6

5.5, where I introduced a method that enables smaller models to achieve perfect
test accuracy performance with comparable consistency to larger models. This is
particularly noteworthy since small models typically struggle to achieve consistent
results, even though they should theoretically be able to learn the task perfectly.

2 Mathematical Framework

Before I define Transformers, it is helpful to review the high-level structure of it.
Transformers have many variations for different tasks. A typical transformer-

based model consists of two main components: the encoder and the decoder. The
encoder processes the input data to extract meaningful representations, while the
decoder generates the output based on these representations. Transformer architec-
tures may vary based on specific use cases, such as encoder-only transformers (e.g.,
BERT [8]), decoder-only transformers (e.g., GPT [29]), or encoder-decoder trans-
formers (e.g., T5 [30]). In this thesis, I focus solely on decoder-only transformers. In
natural language processing (NLP), a token is a unit of text that models process. It
is usually a word, but it can also be a sub-word or a character. In computer vision,
a token can be a pixel, in audio processing it can be a sound, etc. In my case, a
token will always be a character (e.g. a mathematical symbol or a number).

The input of the decoder-only transformer is a sequence of tokens, and the output
is a probability distribution over the next token in the sequence. The model is trained
to predict the next token in the sequence given the previous tokens. The training
process involves minimizing the cross-entropy loss between the predicted and true
next tokens.

Positional encoding is a technique that adds a vector to the input embedding to
represent the positions of tokens in the sequence. Without positional encoding, the
model cannot account for the order of tokens in the sequence. Sometimes positional
embeddings are also learned, but in most cases, they are fixed.

The Transformer architecture consists of multiple layers of self-attention blocks,
each containing a multi-head self-attention mechanism and a feed-forward network.
They continuously refine the embedding of tokens to adapt to the context. The
output of each self-attention mechanism and feed-forward network is added back
to the input embedding, forming a residual connection. This embedding, which is
modified and reused throughout the layers, is called the residual stream.

At the beginning of multi-head self-attention mechanism, the embedding is split
into heads, and each head is processed separately. Then, the outputs of the attention
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Token embedding and positional encoding.

Figure 1: Decoder-only Transformer

heads are concatenated, linearly transformed to the original embedding dimension,
and added to the original embedding.

This is followed by a feed-forward network (FFN), also called multi-layer percep-
tron (MLP), with an activation function (e.g. ReLU). The output of the MLP is
added again to the residual steam.

Multi-head attention and the MLP are repeated ℓ times. The output of the last
layer is extracted with a linear transformation to get the logits. Using the softmax
function we can get the probabilities of the next token from logits.

The decoder-only transformer is illustrated in Figure 1.

2.1 Embedding and Positional Encoding

Let us define the architecture more formally. Let d be the embedding dimension,
ℓ be the number of attention blocks (layers), a be the number of attention heads,
dh be one attention head’s dimension. Let V be the vocabulary and v be its size.
These are hyperparameters of the model that are set manually before training.

Let WE ∈ Rv×d be the token embedding matrix, where each row represents
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the embedding of a token from vocabulary V . This embedding matrix is typically
learned during the training.

Let t = (t1, . . . , tn) be the input sequence, where ti ∈ V is the i-th token and n

is the length of the sequence. The token embedding is computed using WE and t.
The result is x0 = (x1

0, . . . , xn
0 ), where xi

0 ∈ Rd is the embedding of token ti, i.e., the
row in WE corresponding to token ti. Then, the positional encoding P ∈ Rn×d is
defined as follows:

Pi,2j = sin
(

i

N2j/d

)
Pi,2j+1 = cos

(
i

N2j/d

)
Here, i denotes the i-th token, 0 ≤ j ≤ d

2 − 1, and N is significantly larger than
the biggest j, e.g. N = 10, 000. The positional encoding is added to the token
embedding, i.e. out0 = x0 + P .

The input to the i-th attention block is the output of the previous block: outi−1.

2.2 Layer Normalization and Softmax Function

Before I define the self-attention block, I introduce some basic concepts.
A layer normalization [1] has two learnable parameters γ, β ∈ Rd, and is defined

as follows:

µ = 1
d

d∑
j=1

wj, σ2 = 1
d

d∑
j=1

(wj − µ)2

LayerNorm(w) = w − µ

σ2 + ϵ
⊙ γ + β,

where ⊙ represents element-vise multiplication and ϵ is a small constant to pre-
vent division by zero.

Layer normalization is applied before the self-attention block and before the feed-
forward network. It scales the input to have zero mean and unit variance, and then
scales it by γ and shifts it by β, thus the output has β mean and γ variance.

The softmax function is defined the following way:

softmax(w) := ew∑n
i=1 ewi

The purpose of the softmax function is to normalize the logits to get probabilities
(i.e. it sums the values for all tokens to 1).
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2.3 Multi-Head Attention

Let outi−1 ∈ Rn×d be the output of the previous layer. The self-attention block
begins with with a layer normalization, followed by the multi-head self-attention
mechanism, then comes the feed-forward network with another layer normalization.

For the self-attention mechanism we have the following parameters for each head
h: Let W h

Q,i, W h
K,i, W h

V,i ∈ Rd×dh , be the query, key, value matrices, M ∈ {0, 1}n×n

be the masking matrix and W h
O,i ∈ Rdh×d be the output matrix. The output of an

attention is calculated as follows:

xi−1 = LayerNorm(outi−1)

qh
i = xi−1W

h
Q,i ∈ Rn×dh

kh
i = xi−1W

h
K,i ∈ Rn×dh

vh
i = xi−1W

h
V,i ∈ Rn×dh

A = softmax
(

qh
i (kh

i )T + M√
dh

)
∈ Rn×n

rh
i = Avh

i ∈ Rn×dh

yh
i = rh

i W h
O,i ∈ Rn×dh

zi = [y1
i , . . . , ya

i ] + outi−1 ∈ Rn×d

where [y1
i , . . . , ya

i ] denotes the concatenation of the heads’ outputs. The 1√
dh

term is a scaling factor, which is used to prevent the dot product from becoming
too large.

The intuition behind the attention is the following. Let us consider only one
layer. For each head and for each token we create three vectors: query, key, and
value. Their dimensions are dh and they are calculated from their embedding with
a linear transformation. From query and key vectors we get the attention matrix A.
The Aij value represents how much the i-th token should attend to the j-th token.
This one is calculated by the dot product of the query and key vectors. The query
vector represents what that token is looking for, while the key vector represents the
context of that token. If the dot product of the query and key vectors are high,
it means key vector’s token is contextually important for understanding the query
vector’s token.

M denotes the masking matrix, which prevents tokens from attending to future
tokens. Typically we have
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M =



0 −∞ −∞ . . . −∞
0 0 −∞ . . . −∞

0 0 0 . . . −∞
... ... ... . . . ...
0 0 0 . . . 0


where −∞ means that future tokens will not influence the current token, because

we are applying the softmax function. (Sometimes there are also −∞ values on the
diagonal.)

To obtain the attention weights, we apply the softmax function to the attention
matrix, so that each row sums to 1. There are also other types of attention functions,
e.g. hard attention, where we only take the maximum value from the attention
matrix. In case of tie, we can take the average of the values, or we can take the
leftmost value, etc.

After that, we compute the sum of the value vectors, weighted with the attention
weights. This is multiplied by an output matrix (just to get the right dimension if
adh ̸= d), and then adding this information to the output of the previous layer (i.e.
residual stream) we get the output of the head.

Note that the softmax function is the only part that is not linear. We can think
about attention heads that splits into query-key and output-value circuits, where
the former one describes how much a given query token "wants" to attend to a given
key token, and the latter describes how a given token will affect the output logits if
attended to. [9]

This whole method is called scaled dot-product attention. Each head is calcu-
lated independently and in parallel, therefore the process is also called multi-head
attention. Head dimension is commonly defined as dh := d/a, therefore the output
matrix is only essential if adh ̸= d. Note also, that query and key vectors can have
other dimension than dh (i.e. value vectors’ dimension), since queries and keys are
only multiplied with each other. The only requirement is that they should have the
same dimension.

The complexity of the self-attention block is O(n2 · d), where n is the sequence
length, d is the embedding dimension, since calculating qkT terms in the attention
matrix requires O(n2 · d) steps. This is a huge limitation if we want to process long
sequences. Therefore, there are many techniques that try to optimize it, since in
large language models the large context window is crucial. [7, 2, 38, 16, 3, 4]
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2.4 Feed-Forward Network

The self-attention block is followed by a layer normalization and feed-forward net-
work (FFN). If the FFN has one hidden layer with hidden dimension of m, then
it consists of two linear transformations with a ReLU activation function, and fi-
nally there is a residual connection again. So we have learnable parameters of
Wi,1, W T

i,2 ∈ Rd×m, bi,1 ∈ Rm, bi,2 ∈ Rd, and the calculation is the following:

ci = LayerNorm(zi)

di = max(0, ciWi,1 + bi,1)Wi,2 + bi,2

outi = zi + di

Feed-forward layers constitute two-thirds of a transformer model’s parameters.
[10] showed that feed-forward layers operate as key-value memories: each key cor-
responds to input patterns while values predict next tokens’ distribution. Lower
layers learn shallow patterns while upper layers learn semantic ones. These outputs
are added to the residual stream thus it is a composition of memories, which is
subsequently refined throughout the layers.

2.5 Output Layer

The final output of the decoder-only transformer is followed by a linear transfor-
mation to get the logits for all tokens, and then a softmax function to get the
probabilities for all token. I call this part of Transformer as output layer. Formally,
let WH ∈ Rd×v, bH ∈ Rv be learnable parameters, then the final output is:

logits = outℓWH + bH ∈ Rn×v

p = softmax(logits) ∈ Rn×v

In summary, pi,j represents probability of the j-th token at the (i+1)-th position
given the input sequence t = (t1, . . . , ti). During generation, we focus on the vector
pn,., which predicts the next token. We usually determine the next token with
highest probability. Conversely, during training, we typically use the entire matrix
p, because we want to train to predict the whole sequence.
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2.6 Training

Each deep learning model requires a loss function to optimize. Usually, it measures
the difference between the predicted and the true values. In my case, the model was
trained by minimizing the commonly used cross-entropy loss.

Originally, cross-entropy comes from information theory. The formal definition
is the following:

Definition 2.1. Assume we have have two probability distributions over the same
set X: an estimated p and a true distribution q. Then the cross-entropy between p

and q is

H(p, q) = −Ep[log q] = −
∑
x∈X

q(x) log p(x)

where Ep denotes the expected value with respect to the distribution p. The second
equality only holds if X is discrete.

However, the distribution p is unknown in our case. So we have to approximate
it by taking a sample of sequences. Let y ∈ {0, 1}n×v be the one-hot encoded target
sequence, i.e. yi,j represents whether the i-th token in the sequence is the j-th
token in the vocabulary. Then we approximate the cross-entropy loss function the
following way:

H(p, y) = − 1
n

n∑
i=1

v∑
j=1

yi,j log pi,j

The model is trained by minimizing the loss function using the AdamW optimizer
[21], which is a variant of the Adam optimizer [15], a stochastic optimization method
using weight decay to prevent overfitting. The AdamW optimizer does the following:
let t denote the time step, θt the model parameters and ∇ft(θt−1) the gradient at
step t. Let β1 = 0.9, β2 = 0.999 be the gradient decay rates, λ the weight decay,
ηt = 10−4 the learning rate, and ϵ = 10−8 a small constant. mt, vt are the first and
second moment estimates. Then the update rule is the following:

gt := ∇ft(θt−1) + λθt−1

mt := β1mt−1 + (1 − β1)gt vt := β2vt−1 + (1 − β2)g2
t

m̂t := mt/(1 − βt
1) v̂t := vt/(1 − βt

2)

θt := θt−1 − ηt

(
m̂t√
v̂t + ϵ

+ λθt−1

)
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First, the AdamW optimizer calculates the gradient of the loss function and
adds the weight decay term. Then it calculates the first and second moments of the
gradient and uses decay rates, i.e. takes into account the previous moments. After
that, it applies bias correction to these moments, that helps correct the bias toward
zero during the early time steps. Finally it updates the parameters with the bias
corrected moments, learning rate, and weight decay term.

2.7 Initializations

Initialization of learnable parameters is also an important part of the training that
can highly affect it. The parameters are initialized with random values in the fol-
lowing way:

WE ∼ N
(

0,
1
d

)
W h

Q,i, W h
K,i, W h

V,i, W h
O,i, Wℓ,2 ∼ N

(
0,

2
3

√
ℓ · 1

d

)
for 1 ≤ i ≤ ℓ

Wi,1, Wi,2, Wℓ,1 ∼ N
(

0,
2
3

√
ℓ · 2

d

)
for 1 ≤ i ≤ ℓ − 1

The reason behind the factor 2
d

is that it precedes a ReLU activation function.
This initialization is called He Initialization or Kaiming Initialization and is designed
for ReLU activations. [13] The factor 2

3

√
ℓ is another common initialization from

[14].
Another similar and commonly used method is the Xavier initialization, which

is designed for sigmoid and tanh activations. [11] The difference between the He
Initialization and the Xavier Initialization is that the standard deviation of the
former one is equal to

√
2

din
, while the latter is equal to

√
2

din+dout
, where din and

dout are the input and output dimensions of the layer.

2.8 Further Techniques

Dropout [32] is a regularization technique that randomly removes some of the neu-
rons from the network during training. In each iteration during the training phase,
each neuron is removed with a predefined probability p. This helps to prevent the
model from overfitting. Formally, let m ∈ {0, 1}d be a random variable, where
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mi = 1 with probability p. Then during the traning phase we have

Dropout(w) = w ⊙ m,

where ⊙ is the element-wise multiplication. During the validation phase we have

Dropout(w) = (1 − p) · w.

This ensures that the expected value of the output is the same during training and
during validation.

Dropout is used after calculating the embedding (after the positional encoding
is applied), after multi-head attention and after the feed-forward network.

In practice, instead of forwarding one sequence through the model, we are for-
warding a collection of input sequences, called minibatches. This changes the for-
malization so that every matrix has an additional 3rd dimension. For example, the
input token embedding is X0 ∈ Rb×n×d, where b is the minibatch size, and n is the
maximal sequence length. If a sequence is shorter than n, we pad it with a special
token, thus every sequence will have the same length.

3 Complexity Class of Transformers

Computational complexity theory is a highly studied and wide-ranged topic in math-
ematics and theoretical computer science. The question arises where Transformer
models belong in this theory. In this section, I overview some of the results about
transformers’ computational complexity from [33], which is a detailed and recent
survey on this topic. After that I show the main result from [20], that says a
constant-depth transformer with T steps of chain-of-thoughts using constant-bit
precision and O(log n) embedding size can solve any problem that is solvable by
Boolean circuits of size T .

3.1 Circuit Complexity

Definition 3.1. A Boolean circuit is a directed acyclic graph where each node is
an AND, OR, or NOT gate. There are also input gates without fan-in (without
incoming edges), and output gates without outgoing edges. AND and OR gates have
two or more fan-in, while NOT gate has exactly one fan-in. The output of the circuit
is the value of the output gate.
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Each Boolean circuit calculates a function f : {0, 1}n → {0, 1}m, where n is the
number of input gates and m is the number of output gates. The size of the circuit
is the number of gates, and the depth of the circuit is the length of the longest path
from an input gate to an output gate.

Let SIZE[T (n)] denote the class of problems that can be solved by Boolean
circuits of size O(T (n)). Now we can define P/poly := ⋃

k∈N+ SIZE[nk], i.e. as the
class of problems that can be solved by polynomial-size Boolean circuits. Since any
Turing Machine with at most T (n) step can be simulated by a Boolean circuit of
size O(T (n)), we have P ⊆ P/poly.

Two classical problems are the following:

MAJORITY = {(x1, . . . , xn) ∈ {0, 1}n :
n∑

i=1
xi >

n

2 }

PARITY = {(x1, . . . , xn) ∈ {0, 1}n :
n∑

i=1
xi is odd}

Definition 3.2. The complexity class ACi is the class of problems that can be solved
by polynomial-size Boolean circuits with O(logi n) depth. The class NCi is the same,
but gates of AND and OR have fan-in exactly 2 (i.e. they are not allowed to have
more than 2 inputs). The class TCi is the same as ACi, but we also have a MA-
JORITY gate that can have arbitrary fan-in. Let AC := ⋃

i∈N+ ACi, and similarly
for NC and TC.

Specifically, AC0 is the class of problems that can be solved by polynomial-size
Boolean circuits of constant depth. We know that NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 for
all i ∈ N. We also know that PARITY, MAJORITY ̸∈ AC0.

3.2 Upper and Lower Bounds for Transformers

There are many variants of Transformers, and therefore the complexity of the model
can vary. Some aspects that can vary are the following:

• Architecture: encoder-only, decoder-only or encoder-decoder

• Attention pattern: leftmost-hard, rightmost-hard, avarage-hard, or softmax

• Position encoding

• Attention masking: none or (strict) future masking

• Layernorm: Inclusion or omission
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• Precision: infinite, O(log n), O(1), floating point

• Number of intermediate steps (chain-of-thought): zero, O(log n) or O(n)

• Uniformity: whether parameter values or number of parameters depend on n.

Paper [26] assumes infinite precision, and proves that Transformers are Turing
Complete. However, this is not very realistic, since we have finite precision in
practice.

Paper [23] shows that decoder-only Transformers with O(log n) precision and
softmax attention are in log-uniform TC0, that means we can construct a Turing
Machine with logarithmic space that can create the circuits. However, [12] showed
that leftmost hard attention is in AC0, i.e., when we only attend to the leftmost
token.

[20] uses floating number in other way than others. In their model, they are
rounding the numbers to a floating number after every operation. They showed that
even polynomial-depth constant-precision Transformers with log n steps of chain-of-
thoughts are within AC0. If they use logarithmic-preicision, but without exponents
of the floating numbers, then their model is in TC0.

The literature sometimes considers uniform complexity, and sometimes non-
uniform complexity. The latter one allows different programs for each different
input length, while in the former one, we need to have a Turing Machine that takes
n as input and outputs the appropriate program for the given input length. The
question arises whether having different transformer for each input is a realistic as-
sumption. However, note that in practice transformers cannot scale up to arbitrary
length of inputs. Furthermore, in many cases the model size should be also scaled
up for longer input sequences.

3.3 Lower Bound for CoT Transformers

Chain-of-thought (CoT) is a method that allows the model to "think" by making
intermediate reasoning steps. E.g. in a natural language problem, we force the
model to explain its reasoning, and not just give the final answer. It turned out that
it significantly improves the model’s ability to solve complex reasoning problems.
[36]

Now, let us formulate it. Let TF (x1, . . . , xn) denote the output of the transformer
model. Then, let xn+1 = TF 1(x1, . . . , xn) := TF (x1 . . . , xn). After that recursively
define xn+i = TF i(x1, . . . , xn) := TF (x1, . . . , xn+i−1). So after T (n) steps of chain-
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of-thoughts the model output is (x1, . . . , xn, xn+1, . . . , xn+T (n)). We can define for
each problem individually how we calculate the final output from these intermediate
steps. (Note that the the TF transformer also had n + T (n) input tokens, but the
last T (n) tokens were just padding tokens, so the model will ignore them.)

Definition 3.3. Let CoT[T (n), d(n)] denote the class of problems that can be solved
by a constant depth transformer with T (n) steps of chain-of-thoughts using O(d(n))
embedding size and constant-bit precision.

I define constant-bit precision here that the model can only use an s constant
number of bits to represent any number, and after every (interim or final) calculation
(addition, multiplication, inner product, softmax etc.) it will round to the closest
number that we can represent. In case of tie, we can break it by picking the one with
a smaller absolute value. Let us denote all operations with constant-bit precision
with an [·]s subscript. So e.g. sums(x) :=

[(
(x0 + x1)s + x2

)
s

+ . . . xn

]
s
. We can

define all operations in Transformers in the same way, but because of its clarity I
omit it here.

Theorem 3.4. For any polynomial function T : N → N, we have SIZE[T (n)] ⊆
CoT[T (n), O(log n)]. In particular, P/poly = CoT[T (n), O(log n)].

The following proof is from [20].

Proof. Given a Boolean circuit with size of O(T (n)). We can assume that it only
contains AND and NOT gates. Without loss of generality we can further assume
that its size is T (n). Take a topological order on the gates so that the input gates
are numbered from 1 to n. We will develop a transformer model in such a way, that
in each step of CoT, it will simulate the i-th gate of the Boolean circuit.

In a high-level, we will do the following: Let the Transformer contain two layers
with one-head attention mechanism and feedforward network with two hidden layers.
Store the information about Boolean circuits in the positional encoding. First, the
model obtains all the information of the current gate (gate id, gate type, first input
of the gate, second input of the gate) from the predefined position encoding by
adding it to the embedding. Then, in the first attention phase the model queries the
the first input. In the second attention phase the model queries the second input.
In the last feedforward network, the model calculates the output based on the gate
type and the inputs. In the next step, the model will get the previous output as
well.
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For each gate i ∈ [n + 1, n + T (n)] let a(i) and b(i) denote the first and second
input gate’s id. (NOT gate has only one input, so we can define b(i) = 0 for NOT
gates.) Let c(i) = 0 if i-th gate is NOT and c(i) = 1 if it is AND. For gates i ∈ [1, n]
we define a(i) = b(i) = c(i) = 0.

Let k := ⌈log2(T (n) + n)⌉ which is O(log n) since T (n) is polynomial. Let
d(n) := 3k + 6 be the token embedding dimension (thus d(n) = O(log n))) and the
token embeddings WE(0) = 0 and WE(1) = e1. For each 2 ≤ i ≤ n + T (n) let
positional encoding the following:

(θi−1
P E )T = [0, 0, 0, 0, c(i), i − 1(k2), a(i)(k2), b(i)(k2), 1]

where a(k2) and b(k2) denotes a special binary encoding defined later that maps
number i to a k-dimensional signed binary vector.

Before defining the query, key and value vectors I will show what values we want
to achieve. Since we have only one head, I will omit the head index. Let xi denote
the embedding of the i-th token. We want to achieve the following:

out0[i] = [xi, 0,0, 0,c(i), (i − 1(k2))T ,(a(i)(k2))T , (b(i)(k2))T ,1]T

y0[i] = [xi, xa(i),0, 0,c(i), (i − 1(k2))T ,(a(i)(k2))T , (b(i)(k2))T ,1]T

out1[i] = [xi, xa(i),0, 0,c(i), (i − 1(k2))T ,(a(i)(k2))T , (b(i)(k2))T ,1]T

y1[i] = [xi, xa(i),xb(i), 0,c(i), (i − 1(k2))T ,(a(i)(k2))T , (b(i)(k2))T ,1]T

out2[i] = [xi, xa(i),xb(i), gi(x),c(i), (i − 1(k2))T ,(a(i)(k2))T , (b(i)(k2))T ,1]T

where

gi(x) := ReLU(1 − xa(i) − c(i)) + ReLU(xa(i) + xb(i) + c(i) − 2) =

=

1 − xa(i)1 if c(i) = 0 (NOT gate)

xa(i) · xb(i) if c(i) = 1 (AND gate)

which is the desired output and it can indeed be calculated by the feedforward
network. The output of this iteration (and the input of the next iteration) will be
the fourth coordinate, i.e. xi+1 := TF (x1, . . . , xn, . . . , xi−1)[4] = gi(x).

Now we only need to define the attention mechanism. It will copy the value of
two fan-in of the gate to the second and third coordinate.

We will use the fact that [exp(−Bs)]s = 0, where Bs represents the largest
representable number with s bits of precision. (The exact representation of numbers
is not important as long as this property holds.)
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Let ak2 := 2 bink(i) − (1, . . . , 1), where bink(i) is the binary representation of i

with k bits. So ak2 ∈ {−1, 1}k. Now let us begin with the first attention: qi[2j−1] :=
(a(i)k2)[j], qi[2j] := 1, ki[2j − 1] := (i − 1)k2[j] · Bs, ki[2j] := −Bs, vi := e2 for
1 ≤ j ≤ k. We can construct these vectors, because the last coordinate of out0 is
always 1, so we can use it for the even coordinates.

Then we have the following: [exp (⟨qi, ki′⟩s)]s = 1i′=a(i). For this it is enough to
to prove that ⟨qi, ki′⟩s = (1 − 1i′=a(i))Bs. We have to think about how we calculate
the inner product with s bits of precision. It will start with h1 = (qi[1] · ki′ [1])s, and
then hj = (hj−1 + (qi[j] · ki′ [j])s)s. So if i′ = a(i), then h2j−1 = Bs and h2j = 0
for all j, thus h2k = ⟨qi, ki′⟩s = 0. If i′ ̸= a(i), then there is a smallest j′ when
h2j′−1 = −Bs. After that hj′′ ≤ 0 for all 2j′ − 1 ≥ j′′ ≤ 2k, and so h2k = −Bs,
which we needed.

So we proved that the first attention mechanism works as we wanted. The second
attention mechanism is the same, but with b(i). This finishes the proof.

Corollary 3.5. Every regular language belongs to CoT[T (n), O(log n)].

Proof. Regular languages can be recognized by finite automata, and it is known that
finite automata can be simulated by NC1 circuits with linear size. [19] Thus, by the
previous theorem, the statement holds.

4 Modular Addition

In this section, I summarize two articles [25, 27] which are considering modular
addition in transformers. The first article considers the problem of adding two
numbers modulo 113 with a one-layer transformer, while the second one considers
adding two five-digit numbers with a one-layer transformer. Both articles reverse
engineer the trained model to understand how the model works, furthermore, the
first one also investigates the learning process.

In [25] the authors used a one-layer transformer with d = 128, a = 4 and hidden
dimension of m = 512. The input to the model was the form of "a b =", where a

and b are the numbers to be added with one-hot encoding. This means that each
number between 1 and 113 was represented with a unique token. The output was
the sum of the numbers modulo 113. They focused on the embedding matrix WE,
and the so-called neuron-logit map WL := W1,2WH , i.e. the product of the output
linear map of the feed-forward network and the output layer matrix. After reverse-
engineering the model they found that the algorithm represents the number in a
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circle and convert addition to rotation about a circle. More formally the algorithm
is the following:

1. Embed input numbers a and b to sine and cosine functions with various fre-
quencies wk = 2kπ

P
, k ∈ N, i.e. to sin(wka), cos(wka), sin(wkb) and cos(wkb).

2. Compute the sine and cosine of the sum a + b using trigonometric identities:

cos(wk(a + b)) = cos(wka) cos(wkb) − sin(wka) sin(wkb)

sin(wk(a + b)) = sin(wka) cos(wkb) + cos(wka) sin(wkb)

This is computed in the attention and MLP layers.

3. For each output logit c, compute cos(wk(a + b − c)) using the trigonometric
identity:

cos(wk(a + b − c)) = cos(wk(a + b)) cos(wkc) + sin(wk(a + b)) sin(wkc)

This is a linear function of cos(wk(a+b)) and sin(wk(a+b)), and implemented
in WL.

4. The unembedding matrix adds together cos(wk(a+b−c)) for various k values.
This causes constructive interference at c∗ = a + b mod p (giving it a large
logit), and destructive interference everywhere else (giving small logits).

They were also investigating the learning process. They found that it can be
split into three phases: memorization of the training data, circuit formation, where
the model generalizes the mechanism, and cleanup, when weight decay removes the
memorization components. First, the model very quickly memorizes the training
set, but could not solve the problem on the validation set. It seemed that nothing
would happen after that, but after a long time it quickly learned the validation set as
well. This phenomenon is called grokking, i.e. the model suddenly understands the
problem. Two key condition was required to the grokking: the small training set,
and the the weight decay which tried to minimize the norm of the model weights.

The paper [27] also investigated a one-layer transformer but trained on five-
digit integer addition. They used decimal encoding, i.e. each digit in base 10 was
represented by a unique token. Their key findings were the following:

The model uses three base functions that operate on individual digit pairs and
two compound function that chain operations across digits:

• Base Add (BA): calculates sum of digits modulo 10 ignoring carry
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• Make Carry 1 (MC1): evaluates if adding digits results in carry of 1 to the
next column

• Make Sum 9 (MS9): evaluates if sum of digits is exactly 9

• Use Carry 1 (UC1): adds previous column’s carry to the current sum

• Use Sum 9 (US9): propagates carry across multiple digits

However, these tasks occur in the training data with different frequencies. E.g.
BA is much more common than US9. During training, tasks are learnt for each digit
independently, progressively increasing per digit accuracy.

The model has three attention heads that learn different aspects. E.g. to predict
the third digit from right, the first head calculates MC1 on first digit, the second
head calculates MC1 and MS9 on second digit, and the third head calculates BA
on third digit. The feed-forward network combines outputs from the three heads
using trigrams to compute the final digit. Simple carry propagation works well but
complex carry chains (like 99999+00001 = 100000) where the MC1 must propagate
across many digits, remain challenging. This one is challenging, because the model
must output the result from left to right. In their follow up work [28] they introduced
a method to improve this edge case.

In one of our previous work [40] we investigated the embedding of the tree digit-
numbers in the modular addition task. We found that the encoding of the numbers
was very important, the model could easily learn the problem with binary encod-
ing, but using one-hot encoding caused grokking effect. I have put a lot of effort
to understand the embedding of the numbers, but it turned out that it is very ar-
chitecture dependent. Some Transformer architectures had some patterns in the
embedding, while others had not. One common pattern was the grid pattern: the
more-digit numbers was arranged in a grid just like in the decimal system. This pat-
tern was part of the encoding, because a random initialization of a model already
had this pattern. However, this pattern was slightly degraded during the training.
Another interesting pattern is that some models represented the digits in circle or
line. However, its meaning and usefulness was not clear.

Additionally, we can think, that equivalent formulas should be close to each
other in the embedding space, because that would make the model easier to predict
the output. I found that 123 + 456 is not close to the number 579, but instead
123 + 456 gets closer to 291 + 288 during training. This means that the embedding
of equivalent expressions is slightly getting closer to each other, but not to their
values. However, this phenomenon only happens, if the dataset is enough complex,
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otherwise it will not happen. It is also not clear why this happens, and why some
models have this pattern, while others have not.

5 Noisy Majority Problem

A majority function or gate is a logical operator that receives a sequence of bits and
returns the majority of the bits. In case of tie, the output should be 0. It is known
that the majority function cannot be computed by AC0 circuits, and some variants
of Transformer are in AC0.

However, in practice, Transformers can perform well on this problem and solve
most of the input sequences. [39] In this thesis, I define a noisy majority problem,
where the input sequence is a ternary (base 3) number. The goal is the same, but
now the digits of 2 should be ignored, i.e. if we remove all digits of 2 from the input
sequence, then the output should be the same as in the original majority problem.
A detailed definition is given in the next section.

Theoretically, one attention head with dimension of one is enough to solve this
problem. In section 5.3, I show a minimal setup created by hand that can solve this
problem. However, it turns out that in practice, a transformer can barely learn the
problem with this setting. Larger models have better results, but our goal is to find
a method that more often solves the problem with the minimal setup. In Section
5.5, I present a method called "halving heads" that tries to achieve it.

Another direction is to understand the model’s algorithm: What does one head
do? When can we call a head "good"? How do heads interact with each other?
These questions are handled in Section 5.4. Certainly, these two directions are not
independent, because understanding the algorithm can help to find a better setup.

This project was part of a collaboration work with Zsolt Zombori, András Kornai,
Pál Zsámboki and Máté Gedeon. My contribution to this project was the following:

• I elaborated a minimal setup model with one head, which can theoretically
solve the noisy majority problem.

• I trained the minimal setup model with different learning rates.

• I implemented and investigated the learned accuracy of heads.

• I implemented and investigated the halving heads method.
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5.1 Problem Definition

Let Σ = {[BOS], 0, 1, 2 =, 4, 5, [EOS]} be the language of the problem. ([BOS]
and [EOS] tokens represent the beginning and end of sequence.) Let x =
([BOS], x1, x2, . . . , xn) be the input sequence over {0, 1, 2, =, 4, 5} such that there
can be only one ’=’ token in the sequence, and there are only ’0’, ’1’ and ’2’ tokens
before the ’=’ token.

Let n0 and n1 the number of ’0’ and ’1’ tokens preceding the ’=’ token, respec-
tively. The output token is determined as follows:

1a. If xn is ’=’ and n0 ≥ n1, then the output should be ’4’.

1b. If xn is ’=’ and n0 < n1, then the output should be ’5’.

2. If xn is ’4’ or ’5’ then the output should be ’[EOS]’.

So the model has to learn two tasks: determine the majority of ’0’ and ’1’ tokens
before the ’=’ token, and return an end of sequence token after that.

5.2 Technical Details

I trained thousands of one-layer attention-only generative transformer models with
different configurations (e.g. dimensions number, head number, etc.). This means
that the feed-forward network was omitted. The model also had no position encod-
ing, nor an output matrix (unless otherwise stated).

The dataset consists of 10,000 sentences, split into training, validation, and test
sets with a ratio of 75/15/15. The number of digits in each input sequence was
randomly chosen from the intervals [0, 100], [101, 150] and [151, 200] for the training,
validation, and test sets, respectively. So the model was trained on shorter sequences
but had to generalize to longer sequences.

The model was trained with the following hyperparameters: batch size =
128, learning rate = 0.001, weight decay = 0.01, dropout = 0.1. I used warmup
training iterations with a parameter of 2

1−β2
as recommended in [22].

Now I only focus on the performances of the models, I do not consider the
training time. Therefore, each model was trained for around 900 epochs, and the
best model was selected based on the validation accuracy. The test accuracy was
calculated on the best model. Validation and test accuracies are the proportion of
correctly predicted sequences on the first task. The second task (i.e. predicting the
[EOS] token) was not evaluated.
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5.3 Minimal Theoretical Transformer

If we have d = 1, dh = 1, we can construct a transformer that solves the problem,
if n0 + n1 > 0. Below, I present a minimal setup that solves the problem. (Since I
have one head and one layer, I will omit indices of heads and layers.) Let N be a
large number. The embedding and the key, query, value matrices are the following:

WE =



0
N

N + 1
0
1

N2

N2

0



’[BOS]’
’0’
’1’
’2’
’=’
’4’
’5’

’[EOS]’

WK = WQ = WV = 1

We are only interested in query vectors of tokens ’=’, ’4’ and ’5’, so the relevant
attentions will be the following:

kBOS = 0 k0 = N k1 = N + 1 k2 = 0 k= = 1 k4 = k5 = N2

q= = 1 0 N N + 1 0 1 −
q4 = q5 = N2 0 N3 N3 + N2 0 N2 N4

The attention of q= · k4 and q= · k5 will not be used at all, because ’4’ and ’5’
tokens come only after ’=’ token. For this reason I denoted its values with ’-’.

Since we take a softmax function for each query vector, therefore if the input
ends with ’=’, then only A=,0 or A=,1 will be significant. If the input is ’4’ or ’5’,
then A4,4 or A5,5 will be significant only. Therefore, if n0 + n1 > 0, then the output
of the attention mechanism in the first task will be:

y= = vBOS + n0e
Nv0 + n1e

N+1v1 + n2v2 + e · v=

1 + n0eN + n1eN+1 + n2 + e
= eN(n0N + n1e(N + 1)) + e

1 + n0eN + n1eN+1 + n2 + e

≈ n0N + n1e(N + 1)
n0 + n1e

.

Let a be defined such as y= ≥ a ⇔ n0 ≥ n1. We get that a := e(n+1)+n
1+e

.
Without loss of generality we can assume that the last token is ’4’ in the second

task. Then the output will be

y4 = vBOS + n0e
Nv0 + n1e

N+1v1 + n2v2 + e · v= + eN4
v4

+n0eN + n1eN+1 + n2 + e + eN4v4
≈ eN4

N2

eN4 = N2.
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These are only approximations, and are only valid if n2 ≪ eN . However, if we
assume that the Transformer is not infinitely precise then with an appropriate large
N value, the self attention mechanism outputs these values. Now, we need to define
the output layer, and prove that it will produce the correct logits.

Wout =
(
0 0 0 0 0 0 1 −1 4

)
,

bout =
(
0 0 0 0 0 0 −a − 1 a + 1 −4 · 3(N + 1)

)
.

Let us denote the embedding of a token as x<token> and let e<token> denote a
vector with 1 at the specified token and 0 elsewhere. Then the output layer produces
the following logits

• In the first task, we have(
x= + y=

)
Wout + bout = (y= − a) e4 + (a − y=) e5 + c · eEOS

as logits, where c = 4 · y= − 12(N + 1) < 0, which predicts indeed ’4’ or ’5’
depending on whether n0/n1 ≥ 1 or not.

• In the second task, we have(
x4 +y4

)
Wout +bout ≈ 4N2 −12(N +1)e[EOS] +(N2 −a−1)e4 ++(a+1−N2)e5

logits, which predicts ’[EOS]’ if N is large enough.

Note that I did not take advantage of positional encoding here, so we can even skip
it if we want by slightly changing the output layer.

To summarize, we can construct a minimal setup that can solve the noisy ma-
jority problem. However, note that training a transformer with high test accuracy
even with parameters of d = 2, a = 1 is not trivial. Most of the time it is not able
to learn the problem, there is only a few cases when it can almost perfectly learn
the problem.

Our goal was to identify methods that can consistently achieve high accuracy.
One approach is to increase the learning rate. Figure 3 shows the test accuracy of
the model with d = 2, a = 1 for different learning rates over 10-10 runs. We observe
that higher learning rates can help, but too large learning rate causes instability.
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Figure 2: Test and validation accuracies of models with different dimensions and
number of heads. 10 runs for each configuration.

Figure 3: Test accuracies of the model with d = 2, a = 2 for different learning rates.
10 runs for each configuration.
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5.4 Understanding Heads

I define two metrics to measure the performance of a subset of heads.

Definition 5.1. Let H ⊆ {1, . . . , a} be a subset of heads. Let Aℓ(H) ∈ [0, 1] be
the model accuracy on test set when all heads are zeroed out except the heads in H.
Formally out1 := [r1, . . . , ra] ⊙ eH + out0, where ei

H = 1 if i ∈ H and 0 otherwise.
Let us call it learned accuracy of H.

Definition 5.2. Let H = {h1, . . . , hj} ⊆ {1, . . . , a} be a subset of heads again. Let
r := [rh1 , . . . , rhj ] ∈ Rn×j. We learn a linear separator Ws ∈ Rj, bs ∈ R on the
head output of H on the training dataset. Expression of rWs + bs predicts the final
token: if it is greater than or equal to 0, then the output is ’4’, otherwise ’5’. Let
As(H) ∈ [0, 1] be the linear separator accuracy on test set. Let us call it separation
accuracy of H.

We expect that As(H) ≤ As(H ′) if H ⊂ H ′, since the model can use more
information. However, this one is not guaranteed in practice, as we see in some
cases. There are multiple reasons for this: on the one hand the linear separator
usually minimizes another expression than the As(H), on the other hand finding the
best separator requires many compute. But choosing the right separation algorithm
highly affects the results. In this thesis, I use support vector classification (SVC)
with a linear kernel. I use squared hinge loss as the loss function, and L2 penalty.
Formally, the optimization problem is the following:

||Ws||2 + C

[
1
n

n∑
i=1

max(0, 1 − yi(rWs + bs))
]

where yi ∈ {−1, 1} represents the true label (’4’ or ’5’, respectively) of the i-th
token. To reduce the impact of the penalty, I use C = 1000. This ensures that there
is a smaller margin between the two classes.

Figure 5 and 4 shows some example runs with their learned accuracy and sep-
aration accuracies for each pair of heads. We can see that around more than half
of the heads has high separation accuracy (above 95%), and the other half of the
heads has around 50% separation accuracy, which is equivalent to random guess.
Sometimes there are heads which are around 80% separation accuracy. If we con-
sider head pairs, then good heads remain good (as expected), and sometimes two
bad heads can achieve good separation accuracy. This suggests that two bad heads
can sometimes complement each other.
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Figure 4: Separation accuracies for each pair of heads for three different runs with
hyperparameters of d = 32, a = 16. The heads are sorted by their accuracies in the
diagonal.
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Figure 5: Learned accuracies for each pair of heads for three other runs with hyper-
parameters of d = 32, a = 16.
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Figure 6: Two successful (left) and failed (right) heads’ value vectors for tokens ’0’,
’1’ and ’2’, and their attention head outputs on test dataset.

Learned accuracy’s definition tries to measure how much the heads corporate
with each other in the models itself. Perfect heads are very rare, but not impossible.
E.g. in first example of Figure 5 head 7 has 100% learned accuracy. In the second
example, head 9 and 13 together also has near perfect accuracy, but they are very
bad alone. In the third example, none of the heads neither alone nor together have
good accuracy. We can conclude that usually there are only a few pairs of heads that
achieve high learned accuracy. When we consider triplets of heads, we experience
very similar results. Sometimes we find one triplet can achieve perfect accuracy, but
each two of them has much lower separation accuracy. These results suggest that
the model’s output layer probably focuses only on a few heads, and the other heads
may just help its decision, but the exact mechanism can be complex.

Let w01 := A=0
A=1

, i.e. the attention weight ratio between ’0’ and ’1’ tokens. Simi-
larly, let w02 := A=0

A=2
.

Figure 6 shows two successful and two failed heads’ with their value vectors for
token ’0’, ’1’ and ’2" and colored dots indicating head outputs for the test samples.
Colors blue represents tokens of ’4’, while red represents ’5’. We observe that the
successful heads ignore the ’2’ tokens, i.e. w02 is large, and it gives equal weight to
’0’ and ’1’ tokens, i.e. w01 ≈ 1. The two failed heads have different behavior: one of
them gives more weight to ’0’ tokens, thus it collapses into a single point. The other
one basically ignores the ’1’ tokens, and gives more weight to ’2’ tokens, therefore it
cannot separate red and blue dots. Let us examine how the weight ratios w01 and
w02 affect the separation accuracy.

Figure 7 shows the separation accuracy for each 16 heads of one run with respect
to w01 and w02 values. We can see that the successful heads have w01 ≈ 1 and
w02 ≫ 1, while the failed heads have different values. However, this does not
imply that successful heads should necessarily have these ratios, it only implies that
the model’s successful heads have these ratios. For example Figure 8 shows the
separation accuracy if we only modify the attention weights by hand. On the left
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Figure 7: Comparing w01 and w02 values with separation accuracy on three different
runs. Each dot represents one of the 16 trained heads, with color indicating its
separation accuracy. The x-axis shows w01, the weight ratio between ’0’ and ’1’
tokens, while the y-axis shows w02, the weight ratio between ’0’ and ’2’ tokens.
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Figure 8: Average separation accuracy of heads with different w01 and w02 values. On
the left plot w02 = ∞ is manually adjusted and different w01 values considered, while
on the right plot w01 = 1 is manually adjusted and different w02 values considered.

plot we set w02 = ∞, i.e. we the model ignores the ’2’ tokens, and consider different
w01 values. We can see that the model always achieves near perfect separation
accuracy, which is not surprising. The attention heads output will always be the
A=0n0v0+A=1n1v1

n0+n1
, which is easily separable at the point of A=0v0+A=1v1

2 . On the right
plot we set w01 = 1 and considered different w02 values. Now, the model clearly has
lower separation accuracy if the w02 is not enough large, though the difference is not
huge.

5.5 Reducing the Number of Heads

As we saw in the previous section, while the model has many heads, not all of them
are useful and the model often does not even use them all. Therefore, in this section,
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Figure 9: 1 − cumulative probability of accuracies for models with 1 and 64 heads.
The left plot shows the test accuracy of the models, while the right plot shows the
separation accuracy of the individual heads from the models.

I examine whether it is possible to achieve the same performance with fewer heads.
First, I compared two very small models with embedding dimension of 2, but

with different numbers of heads. I investigated how each model performed and how
individual heads performed according to separation accuracy. First model had 1
head, and the second model had 64 heads. In the latter model, I used an output
matrix WO ∈ R128×2 to convert back the 64 heads’ 2-dimensional outputs to the
2-dimensional embedding space.

The results are shown in Figure 9. Both plots show the 1-cumulative probability
of test accuracy, i.e. the proportion of runs out of 100 experiments where the
accuracy is above a certain value. As we can see in the left plot, the 64-head model
achieves high accuracy around two times more often, however, it needs much more
compute to train them. Therefore, it can be a good comparison if we consider the
individual heads’ performance in the two models. The right plot shows again the 1-
cumulative probability of the separation accuracy for individual heads. This means
that for the 64 heads, I randomly selected 10 runs and calculated the separation
accuracy of the individual heads. This gave me 640 data points for the 64-head
model. I also trained 640 1-head models, and calculated here the separation accuracy
of the individual heads, too. This also gave me 640 data points. As we can see,
the 64-head model has much less high accuracy heads on average than the 1-head
model. This suggests that it is not worth to keeping many heads in the model, since
most of them are not useful. It is a better idea to train a model with many heads,
and keep only the best ones. In the following, I present a method to do this.

Training a model with one head is possible, but it is very rare that it achieves
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Figure 10: Three typical validation accuracy curves with hyperparameters of d =
32, a = 16. Dashed lines indicates the halving heads steps: it masks with zeros half
of the active heads with least performance when the validation accuracy reaches
95%.

high accuracy. So, we have the idea of starting the model training with many heads.
If the model has high validation accuracy (above 95%), we can drop half of the heads
and continue training from there. If the validation accuracy becomes high again, we
can drop half of the remaining heads, again. We repeat this process until we have
only one head. I call this method as "halving heads". There are multiple ways to
choose heads to drop. One trivial way is is to choose them randomly, and we can
use it as a baseline. Furthermore, as another baseline, we can drop all the heads
except one right at the beginning. So I mask a − 1 heads and train the model with
only one head. This training with masking method is different from just training a
model with one head, because d still remains high, and will not be equal to dh. Since
I found that these two methods had nearly the same performance, I only attach the
results of the masking n − 1 heads at the beginning.

Another way to choose the heads is using separation accuracy on the individual
heads. This is denoted as "svc" in the figures referring to the support vector classi-
fication. We can also use the learned accuracy, but based on the previous results it
doesn’t give a good measure of the performance of the heads.

After running 100 trainings with hyperparameters of d = 32, a = 16, I found
that the overwhelming majority of runs had 4 halving steps, thus the final models
had only one head. Analyzing the validation accuracies of the models, I experienced
three different behaviors as shown in Figure 10: 1) the model only had small drops
in the accuracy, but quickly recovered, 2) the model had a large drop in the accuracy
after the the fourth halving, but it recovered very well, 3) the model had a large
drop in the accuracy, but could not recover at all or only partially. The first and
second case was the most common, and the third case was rare, but not impossible.

Separation accuracy uses only individual heads, but as we see in the previous
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Figure 11: 1−cumulative probability of accuracies for models with different halving
strategies. The left plot shows the results for d = 8, a = 4, while the right plot
shows for d = 32, a = 16.

section, some heads often cooperate with each other. Therefore, we may want to
keep heads that can cooperate with each other effectively. Shapley values from
game theory is designed to measure the importance of each individual. It provides
a fair contribution of the head with respect to the model’s performance. The formal
definition is as follows:

Definition 5.3. Given a set of heads H, let v : 2N → R be a characteristic function
with v(∅) = 0. If S ⊆ H then v(S) value specifies how well the model can perform
with only the heads in S. The Shapley value φi(v) gives a fair contribution of head
i with respect to function v:

φi(v) :=
∑

S⊆H\{i}

|S|!(|H| − |S| − 1)!
|H|! (v(S ∪ {i}) − v(S))

The formula takes into account all possible subsets of heads that do not contain
head i. The term v(S ∪{i})−v(S) represents the marginal contribution of head i to
the subset S. These marginal contributions are weighted by the number of possible
orderings of the heads in S and H \ S.

There are multiple options to define the characteristic function v: we can use
the learned accuracy or separation accuracy. I found that separation accuracy with
SV C gave better results, so I omit the results of the learned accuracy. This method
will be denoted as "shapley svc" in the figures.

Figure 11 shows the test accuracy frequencies of different halving algorithms
with hyperparameters of d = 8, a = 4 and d = 32, a = 16 over 100-100 runs. (I did
not run the Shapley method for d = 32, a = 16, because of the high computational
time.) If the model had more than one head at the end (i.e. had less than log2 a − 1
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Model Type d=32, a=16 d=8, a=4 d=2, a=1
Normal (a heads) 34% 9% 2%
Shapley SVC - 19% -
SVC 35% 13% -
Masking a − 1 heads 26% 7% -

Table 1: Number of models from 100 runs that achieves 100% test accuracy.

halving steps), then I considered it as a failure and marked it with 0% accuracy.
I also plotted only the interval [0.98, 1] to see the differences in more clearly, since
we are only interested in high accuracy models. As a baseline, I also included the
results when we do not mask any heads, and when we have only one head with an
embedding dimension of d = 2.

We can see that the normal runs, i.e. when we do not mask any heads, are the
most successful runs in both cases. They have 72 and 100 runs out of 100 that are
above 98% test accuracies. The second best seems to be the Shapley SVC, then
followed by the SVC and finally the masking a − 1 heads. However, this one is
only true if we consider the 98% threshold. If we want to get as many models with
100% test accuracies as possible, then the Shapley SVC seems to be better. Table 1
shows the frequencies with which these models achieve perfect test accuracy. (These
are the same values as in the Figure 11.) In both cases, the SVC algorithm more
often achieves perfect test accuracy models, and the Shapley SVC even more often
in the case of d = 8. Note, however, that the 19% with Shapley SVC is a significant
improvement over the 9% with the normal run in the case of d = 8, but the 35%
with SVC and 34% with the normal run cannot be considered as a difference over
100 runs. But it is still a good result, that the SVC can achieve as good results as
the normal runs, and almost 10% more often than the masking a − 1 heads method,
which is also an improvement.

Furthermore, it is more relevant to compare the results of halving head strategies
to the d = 2, a = 1 model. Halving head method succeeds much more frequently,
even though the two models have the same number of heads. The small models
only achieved two times the perfect test accuracy, while all of the halving head
strategies achieved 13-35% perfect test accuracy. However, important to note that
the embedding dimension is higher, therefore it is more relevant to compare the
halving head method with the initial masking. This is 7-26% perfect test accuracy.

To summarize, normal training is powerful enough in high dimensions, but strug-
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gles in lower dimensions. I have introduced a new technique called halving heads
to improve it in lower dimensions. We can conclude that the halving head meth-
ods are better than the initial masking method, which is also better than 1-head
2-dimensional models.

6 Conclusion

In this thesis, I investigated Transformers from multiple aspects. First, I built up a
mathematical framework for Transformers in Section 2. After that, I analyzed their
complexity class in Section 3, and showed that any Boolean circuit can be simulated
with a chain-of-thoughts. In Section 4, I summarized the results of modular addition
from literature and our experiences. Two different papers analyzed how transformers
learn to add two numbers modulo N , or two five-digit numbers.

Finally, in Section 5, I introduced the noisy majority problem, where the model
has to determine whether zeros or ones form a majority in a sequence while ignoring
noise symbols. This task was enough simple to understand fully how the model works
and how to improve it. I showed that even a minimal setup with one-dimensional
embedding and one attention head can theoretically solve this problem, but training
a similar small model consistently is challenging.

I presented how individual heads and pairs of heads work together to accomplish
this task. While most heads achieved high performance, some heads gave random
outputs. Successful heads tended to give equal weight to ’0’ and ’1’ tokens while
ignoring ’2’ tokens, even if in theory it is not needed. Additionally, unsuccessful
individual heads sometimes could cooperate with each other and form a successful
pair.

Instead of finding a model that is large enough to easily solve the noisy majority
problem, the goal was to find a method that can consistently achieve high accuracy
with a very small model. I introduced a method called "halving heads" that tries
to achieve this. The idea is to train a model with many heads, and then iteratively
drop half of the heads until only one head remains. I compared different strategies
for selecting which heads to keep, including Shapley values. Results showed that
if we focus on the perfect models only, then the halving heads method can achieve
results as good as the normal runs, but it had only one head at the end.

As we saw, there are multiple approaches to understand and improve the per-
formance of Transformers on formal language tasks. One way is to analyze the
individual heads and attention patterns. Another way is to analyze their embed-
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dings and interpret how they are used in the model, and understand how an ideal
model should look like. Furthermore, there are numerous ways to approach the
problem.

Future work could involve analyzing the learning dynamics in more detail, or
starting to evaluate the second task (predicting the [EOS] token). Additionally,
it is also relevant to understand more complex languages at this point, e.g. Dyck
language [37].
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